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The process of formation of two-wave structures in binary mixtures (for instance, poly-
mer blends or binary alloys), which is described by the Cahn–Hilliard (CH) equation 
with dynamic boundary conditions with feedback, is considered. Asymptotic periodic im-
pulse structures of relaxation, pre-turbulent and turbulent type with finite, countable or 
uncountable number of fronts of discontinuities per a period are studied. It is found that 
asymptotic structures are elements of the attractor of the initial value boundary problem. 
Application to a square-shaped binary polymer is considered. Computer simulation de-
scribing the formation of crystallites in melts is done. 

Keywords: Cahn–Hilliard equation, nonlinear dynamic boundary conditions, limit distri-
butions of relaxation, pre-turbulent or turbulent type 

Introduction 

Last years, network scientists have directed their interest to the multi-layer 
character of real-world systems, and explicitly considered the structural and dy-
namical organization of graphs made of diverse layers between its constituents. 
Most complex systems include multiple subsystems and layers of connectivity 
and, in many cases, the interdependent components of systems interact through 
many different channels. Such a new perspective is indeed found to be the ade-
quate representation for a wealth of features exhibited by networked systems in 
the real world. The contributions presented in this Focus Issue cover, from differ-
ent points of view, the many achievements and still open questions in the field of 
multi-layer networks, such as: new frameworks and structures to represent and 
analyze heterogeneous complex systems, different aspects related to synchroniza-
tion and centrality of complex networks, interplay between layers, and applica-
tions to logistic, biological, social, and technological fields. 

Formulation of the problem 

In this paper, we study an initial value boundary problem, which describes the 
process of formation of two-dimensional spatial-temporal structures in symmetric 
diblock copolymers, which are confined by unite cube. We consider evolution of 
one component of a binary mixture, which is modeled by the two-dimensional 
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convective Cahn–Hilliard equation [1] with dynamic boundary conditions with 
feedback and some initial conditions. This model describes distribution of concen-
tration in a binary melt after surface (super)cooling. We assume that velocities of 
nucleation of crystallites, which arise on the sides of the square, are nonlinear 
functions on concentration and temperature that correspond to real experimental 
data [2]. Indeed, the frequency of nucleation can be approximated by a parabolic 
function with negative second derivatives with respect to the temperature of crys-

tallization ([2], Fig. 60). Hence, the flow of concentration J ~ ux is the same non-

linear function at the sides of the square x = 0  and x = l. The same statement is 
true for the coordinates y = 0 and y = l, where l is the size of the system. Then we 
can consider the boundary conditions 

   1,0, ,0,x xu t y F u t y    ,      2, , , ,x xu t l y F u t l y    ,    (1) 

   1, ,0 , ,0y yu t x G u t x    ,      2, , , ,y yu t x l G u t x l    ,    (2) 

where F1, F2, G1, G2 are given non-linear functions, and the initial conditions 
must be added. In a similar way, we can consider boundary conditions for the de-

rivatives uxxx and uyyy, respectively. Next, the CH-equation can be linearized in 
the vicinity of the disordered phase u = 0, and, as a result, we have the initial 
value boundary problem with non-linear boundary conditions. 

The main observation is that solutions of the problem can be found as 

     1 2, ,u t x y f t a x g t a y    ,                     (3) 

where f and g are unknown functions; a1 and a2 are parameters of the problem. 

Then it will be proved that the functions f(ζ) and g(η) tend to periodic piecewise 

constant limit functions as t   with finite or infinite number of the points of 

discontinuities per periods. The resulting solutions are presented in Fig. 1. 
Indeed, the problem can be reduced to the difference equation 

 1
1

l
f t f t

a

 
       

 
                       (4) 

for function f, and to a similar difference equation for function g, but with another 

map Ф2. The solutions of these equations are asymptotic periodic piecewise con-

stant impulses (see [3]). Hence, an asymptotic solution u(t, x, y) is the sum of such 
impulses. In 1D-case, the problem has been solved for confined binary alloys [4] 
and for polymer blends [5]. 

Let’s consider a binary mixture which is placed into a square of size l. Assume 

that the mixture L is supercooled to the temperature T < Tg, where Tg is the tem-

perature of phase surface decomposition. We suppose also that we are dealing 
with a bulk copolymer melt which is in a disordered state u = 0 initially and u(t, x, y)  
is one of the components of the binary mixture. 
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Fig.1. Limit distributions of relaxation type in 2D-case 

 
Next, we consider the convective CH-equation of the form [1]: 

   2 2
1 2 1 21 1t x y xx yy

xx yy
u a u a u k u u u k u u u          

   
           (5) 

with the boundary conditions [5,6,7]: 

 1xu F u  at 0x  ,    2xu F u  at x l ,              (6) 

 1yu G u  at 0y  ,    2yu G u  at y l ,               (7) 

 1xxxu u   at 0x  ,    2tu u   at x l ,                (8) 

 1yyyu u   at 0y  ,    2tu u   at y l ,      (9) 

where  4, , , ,k k k kF G C I I    are given functions, and I is an open bounded 

interval. The initial conditions are 

   0,0u x u x .                            (10) 

If the right-hand sides of the boundary conditions are zero, then we obtain the 
double Neumann boundary conditions. We can also consider so-called dynamic 
boundary conditions with additional terms tttu  and tu . Indeed, as remarked in [6], 

«a dynamic boundary condition recently proposed by some physicist to account 
for interactions with the walls». Further, as noted in [8,9,10], dynamical interac-
tion with the boundary surface must be taken into account for some materials. 
Mathematically, this fact corresponds to the considering a free energy functional 
of a system, which contains also a boundary contributions. 

Thus, we can consider classical the double-Neumann or double-Robin type 
boundary conditions or non-classical boundary conditions of Wentzell type (see 
[6]). It means that the surface rate or the flow of concentration is proportional to 
the variational derivative [ ]F u u  , where [ ]F u  is the free energy functional on 

the surface Ω: 
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 u F u u    ,                               (11) 

where τu is the relaxation time of the concentration of binary mixture, γ is propor-

tional to the frequency of collision between the atoms on the flat wall which con-
fines the binary mixture. The right side of (11) plays the role of the driving force. 
In particular, we can choose 

  : nF u u u u u      .               (12) 

Here α, β are constants, ∆Гu is the Laplace–Beltrami operator. Without this opera-

tor, we obtain the classical Robin boundary conditions 

u t xu u u u                                (13) 

in the one-dimensional case on the flat wall. At first, being applied to polymer bi-
nary mixtures, this type of the boundary condition has been considered in [11,12]. 
For binary alloys, such conditions have been considered in [5] for the first time. 

The present paper is aimed to considering of generalized boundary conditions 
in the form 

3, ,u x n nu u u u     
 

,                      (14) 

where Ф is a nonlinear function with feedback that depends also on additional pa-
rameters of the problem. We confined ourselves by the study of the convective 
CH-equation in a bounded domain 3R . For simplicity, we assume that Ω is a 
cube of size l. On each surface in x, y-space, there are dynamic boundary condi-
tions of type (14) with additional «classical» stationary boundary conditions 

3 3, ,n n nu u u u     
 

                    (15) 

on  , where [ ]   is a given functional. Indeed, the homogeneous boundary 

condition for the CH-equation is well-known in literature  

3 0nu  .                                 (16) 

Reduction of the problem to difference equations of continuous type 

We begin from the determination of function    A B A Bu N N N N    

called an order parameter, and where the chain of NA subunits is covalently 

bonded to the chain of NB subunits, and NA + NB = 1; a
–1

 is a dimensionless ve-

locity of convection. Here, k :k k k  k – kc is the Flory–Huggins parameter, kc is the 

critical value of phase decomposition. Note that if k > kc, there are sinusoidal fluc-

tuations in the vicinity of the disordered phase 0u  . If k < kc, there are mono-

tone  fluctuations of the order parameter. 

Further, at a neighborhood of the mean value u = 0 (when NA = NB ), we can 

consider the linearized CH-equation: 
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 1 2 1 2t x y xx yyxx yy
u a u a u k u u k u u        .                     (17) 

A solution of this equation can be found in the form 

     1 2, ,u t x y f t x a g t y a    .         (18) 

We assume that a1, a2 > 0. Then, substituting representation (18) into equation 
(17), we obtain two ordinary difference equations: 

   1 0f f      ,                      (19) 

   2 0g g      ,                        (20) 

where 1/t x a   , 2/t y a    and 2
1 1 1k a  , 2

2 2 2k a  . 

We assume that 1 0  . By definition, λ1 = χ – χc, where χ is the Flory–

Huggins parameter, which characterizes the interaction between atoms in polymer 

blends [13]. That is χ < χc, where χc is the critical parameter of phase decomposi-

tion of the disordered phase of polymer melt into two ordered phases. It will be 

shown that if χ – χc, then there are monotone distributions of the concentration of 

one component of a binary mixture. In this case, surface perturbations are dominat-

ing, and we can speak about surface induced ordering in the melt volume, as T < Tc, 

where Tc is the critical temperature of surface decomposition into two ordered sur-

face-induced phases. 
Then we can find solutions exactly. Indeed, we assume that 1a , 2 0a  . Then it 

follows from (18) that function  f(x(t),t) constant along characteristic dx(t)/dt = a1, 

function g(y(t),t)  is constant along characteristic dy(t)/dt = a2. Next, after integrat-

ing equations (19), (20) from points ζ0 = t, η0 = t to points ζ0 = t + 1/a1 along charac-

teristics dx(t)/dt = a1 and dy(t)/dt = a2, respectively, we have the following relation: 

       1 1 2 2, 0, exp expf l t f t C t C t      ,        (21) 

 where 1 1   , 2 2    and 1C , 2C R . Then it follows from relations 

    1 1
1 1 2 2 3,0 0,0f l f C C C       ,          (22) 

    1 2,0 0,0f l f C C    ,                        (23) 

    1 1 2 2,0 0,0f l f C C      ,                 (24) 

that 

         1
1 1 2 2 ,0 0,0 ,0 0,0C f l f f l f

             ,        (25) 

   1
2 2 1 1 ,0 0,0C C f l f         ,        (26) 

    1 1
3 1 1 2 2,0 0,0C f l f C C       .         (27) 

We confined ourselves by the study of the case of C1 = 0. Then 
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     2 2, 0, expf l t f t C t    ,                 (28) 

Where  α2 < 0. We derive from (28) that 

   , 0, 0f l t f t                         (29) 

as t   for all points t R . 

Next, after integrating (19) from t   ζ = t to ζ = t – l/a1, we obtain: 

       1 1 1 0f t f t l a f t f t l a            .         (30) 

Now we use double Neumann–Neumann boundary conditions. Then a func-
tional equation follows from differential-difference equation (30): 

        1 2 1 1 1 2 1 0G f t F f t l a G f t F f t l a                     .     (31) 

Further we suppose that equation (31) can be solved so that 

   1 1f t f t l a     ,                       (32) 

where 1 0l a t    . Map  2
1 ,C I I   where I is an open bounded interval. 

We consider only the class of so-called unimodal maps [3], which have only one 
extreme point. An example is the well-known logistic map (1 )u u u  , which 

maps interval [0,1] into itself. 
In the same way, we can obtain the difference equation for function g(η) 

   2 2g t g t l a     ,                      (33) 

where α2 > 0. The solution of equation (32) can be found with step by step iterat-

ing of the initial function 1( )h t  on 1/ 0l a t    with the aid of map 1 : I I  . 

In typical cases, limit solution p1(t) is a piecewise constant periodic function with 

finite, countable or uncountable set of points of discontinuities Г on a period. If Г 
is finite, then we deal with solutions of relaxation type. If Г is countable, then we 
have limit distributions of pre-turbulent type. If Г is uncountable, then we have 
limit distributions of turbulent type (see Fig. 1). 

Here, 1( )p t P  for almost all points t R  excluding a set of points of mea-

ger Lebeque zero, where Р
+
 is a set of attractive fixed points of map Ф1 [3]. Pa-

rameter 2
1 1 1k a   is a parameter of period doubling bifurcations of limit solutions 

because map Ф1 depends on this parameter. Thus, the mobility of atoms k1 and the 

velocity of convection a1 are bifurcation parameters. Note that the mobility  k1 = = 

k1(θ) can be a monotone function depending on dimensionless temperature  . But 

there is also a special case k1:~ k1θ
–1

. If a mixture is cooled at flat walls, then os-

cillating structures with non-monotone amplitudes appear at the surface. Next, 
these wave-type structures propagate into the volume of the mixture with expo-
nential decay amplitudes. If t  , then the spatial temporal structures tend to 

the function 
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     1 2,p p p      ,                                 (34) 

where 1/t x a    and 2/t y a   . Here 1 1( )p P   and 1 2( )p P  , where 

1P , 2P  are attractive fixed points of maps Ф1 and Ф2, respectively. In Fig. 2, the 

results of computer simulation of limit distributions of concentration are pre-
sented. 
 

   

                      a                                             b                                         c 

 

d 

Fig. 2. Limit distributions of pre-turbulent type with countable points of discontinuities 
per a period 
 

For limit distributions of pre-turbulent type, there are thickening lines. For 
limit distributions of turbulent type, there are Cantor type sets of lines of discon-
tinuous for wave fronts of propagation of concentration in the volume. It is similar 
to well-known Sierpinski carpet. As a result, there is directional ordering, so that 
in Ox direction we have solutions of relaxation type for example, and solutions of 
relaxation type in Oy direction. There are also the following cases: relaxation   
pre-turbulent type, relaxation   turbulent type, relaxation   turbulent type, pre-
turbulent   turbulent type and so on. 

Reduction of problem to a system of difference equations at a plane 

In this section, we consider common case without surface solidification of the melt 
one in one direction. Then the problem can be reduced to the functional relations: 

       1 2G f t g t y a G f t l a g t y a             + 
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+         1 2 0F f t g t y a G f t l a g t y a              ,          (35) 

       1 2
ˆ ˆG f t x a g t G f t x a g t l a             + 

+         1 2
ˆ ˆ 0F f t x a g t F f t x a g t l a              ,          (36) 

where we assume that l1 = l2 = l and a1 = a2 = a. Since functions ( / )f t x a  and 

( / )g t y a  are constant along lines d / dx t a  and d / dy t a , we can consider 

relations (35), (36) only at points x = l and y = l. So we obtain that 

       1 2G f t g t l a G f t l a g t l a             + 

+         1 2 0F f t g t l a G f t l a g t l a              ,           (37) 

       1 2
ˆ ˆG f t l a g t G f t l a g t l a             + 

+         1 2
ˆ ˆ 0F f t l a g t F f t l a g t l a              .           (38) 

Next, we assume that these relations are solvable so that 

     1 ,f t f t l a g t l a      ,                   (39) 

     2 ,g t f t l a g t l a      .                   (40) 

If the map      1 2: , , , ,f g f g f g       is a structurally stable hyperbolic 

map, then functions f(t), g(t) are asymptotic 2
N

l/2-periodic piecewise-constant 

functions with finite or infinite number of the points of discontinuities per a pe-
riod, where N is the least common multiple of attractive circles of the map 

: I I I I     [14]. 

Points of discontinuities 

Let us consider an initial curve     : , 0,1n
h u R u h t t      and define 

the set  ( )H h t H    such that: (i) ( )s
h W a   if dim ( ) 1sW a n  ; (ii) if 

( ) ( )sh t W a   and dim ( ) 1sW a n  . Then at t t  the curve h  intersects 

( )sW a ; (iii) det 0uD   if ( )su W a  and dim ( ) 1sW a n  ; (iiii) if unstable 

manifold ( )uW a  of point ( )a   such that dim ( ) 1uW a   intersects with a 

stable manifold ( )sW a  of point ( )a  , then this intersection is transversal. 

Then we obtain from (iiii) that the map φN has a one-dimensional separatrix go-

ing from one saddle to another saddle. H
+ 

is a set of the second category in C
0 

 

topology, at follows from 1D-case [3]. Function ( )hp t  is multivalued on the set 

      
0

, 1 : ,s
p

i

t i i h t i W a a P






       ,                (41) 
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    0 ,pp t C R P    and mod( ) ( ) ( )i Np t a p t    on every interval 

 , 1J i i  , 0, 1, ...i   such that (mod1)J J  , ( ) ( )sh J W a  , a P . 

Thus, three-dimensional CH-equation with nonlinear flow at the facet of the 

cube and the nonlinear dynamic boundary conditions has been considered. It is 

shown that the IBVP has a unique oscillating solution with non-decreasing ampli-

tude which tends to a piecewise constant periodic distributions in the form of 

   1 2 3, , , , ,u x y z t P t x t y t z       as t  , where , 1, 2,3.k R k     

Distribution  1 2 3, ,P     is 2
N
p-periodic on every argument; k kp n  , 

1,2,3,...k  , 2,3,...kn  , and N is the least common multiple of the periods of at-

tracting cycles of map 3 3: R R   where  31 2

1 2 3, ,
nn n     . As a result, the 

problem is reduced to the equations: 

         1 2 3ˆ ˆ ˆ ˆ, , , : , 1,2,3, :k kn n
k k k k kk ku t p u t u t u t k u u           ,  (42) 

where ku  are the original components of solutions. As noted above, asymptotic 

behavior of the solution of system (42) is known. 

Applications to polymer systems. 2D-case 

We assume that polymer blends are in a disordered state 0u  . Then under ac-

tion of surface (super)cooling, blends form ordered regions of 1 micrometer by 
the order. We consider spatial-temporal ordering in a melt which arise for surface 

temperatures Tg < T < Tm, where Tg is the glass temperature, and Tm is the melting 

temperature. We assume also that there is surface cooling with feedback which 
results in nucleation of crystallites of nanometer-size areas. Such process of nu-
cleation will be described by dynamic boundary conditions with feedback. 

We consider a binary mixture which is placed in a square of size l. It will be 
shown that surface nucleation with feedback results in appearing spatial-temporal 
traveling waves of relaxation, pre-turbulent and turbulent type in the square. In 
Fig. 2, the results of computer simulation are shown. Similar distributions are 
typical for nanometer-side crystallites for Au or NaCl. An example of latter case 
is the change in color of Cd crystals [15]. 

We also show mathematically what a scenario of change of the dimensionality 
of the system is. Indeed, as noted in [15], Fig. 6: «If a NsM consists of thin nee-
dle-shaped or flat, two-dimensional crystallites, only two or one dimension of the 
building blocks becomes comparable with the length scale of the physical phe-
nomenon». In these case, the NsM becomes a two-or or dimensional system ac-
cording to this phenomenon. 

The ordering effect can be described mathematically by composition of limit 
solutions of the form: limit constant solutions   oscillating solutions of relaxa-
tion type. For decomposed waves f(t – x/a) and g(t – y/a), it means that in Ox -

direction the boundary conditions are 
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 1 0t x
u F u


 ,    2t x l

u F u


                 (43) 

and in Oy -direction the boundary conditions are 

 1 0t y
u G u


 ,    2t y l

u G u


 ,                 (44) 

where F1, F2 are monotone functions, and G1, G2 are non-monotone functions. 

There are also situation when we have limit distributions constant   constant, 
constant   pre-turbulent, constant   turbulent, relaxation   relaxation, relaxa-
tion   pre-turbulent, relaxation   turbulent, pre-turbulent   turbulent and tur-
bulent   turbulent types in Ox- and Oy-directions, respectively. 

Conclusions 

In this paper, theoretical results describing different scenarios of the surface in-
duced ordering in a confined 2D-binary mixture have been considered. A new 
type of «mixed multi-directed turbulence» is constructed mathematically, so that 
in every 2D = 1D  1D-direction we have a different type of «turbulence». Thus, 

there are limit distributions in a square with dynamic non-linear nucleation of 
crystallite from the sides of square, which results in oscillating piecewise-constant 
periodic distributions of concentration of binary mixture with finite, countable or 
uncountable number of fronts of discontinuities per a period. The number of oscil-
lations in every 1D-direction can be different. Thus we have different oscillating 
behavior of limit distributions of concentration in different directions of the sides 
of the square. Mathematical results have been compared with the experiment. 
 

The author is grateful to A.N. Artemov (Ukraine) and Roman Taranets (USA) 
for the valuable discussion. Special thanks are due to A.N. Artemov for the help 
in modeling of Fig. 1. 
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И.Б. Краснюк, Т.Н. Мельник, В.М. Юрченко 

ПОВЕРХНОСТНО-ОРИЕНТИРОВАННЫЕ ДВУМЕРНЫЕ ВОЛНОВЫЕ  
СТРУКТУРЫ В ОГРАНИЧЕННЫХ БИНАРНЫХ СМЕСЯХ 

Рассмотрен процесс формирования двумерных структур в бинарных смесях (на-
пример, в полимерных смесях или бинарных сплавах), который описывается урав-
нением Кана–Хиллиарда с динамическими граничными условиями с обратной свя-
зью. Исследованы асимптотические периодические импульсные структуры релак-
сационного, предтурбулентного и турбулентного типов с конечным, исчисляемым 
или неисчисляемым числом разрывов на периоде. Установлено, что асимптотиче-
ские структуры являются элементами аттрактора в начально-краевой задаче. Рас-
смотрено приложение модели к случаю бинарного полимера квадратной формы. 
Выполнено компьютерное моделирование, описывающее формирование кристал-
литов в расплаве. 

Ключевые слова: уравнение Кана–Хиллиарда, нелинейные динамические гранич-
ные условия, ограниченные распределения релаксации, предтурбулентный и тур-
булентный тип 

Рис. 1. Предельные распределения релаксационного типа в 2D-случае 

Рис. 2. Предельные распределения предтурбулентного типа со счетными точками 
разрывов на периоде 
 
 
 


