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A MODEL FOR THE CURRENT TRANSPORT IN HIGH-TEMPERATURE
SUPERCONDUCTING TAPES
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A new model is developed to describe the low-temperature transport properties of polycrystalline HTSC
ceramics at high magnetic fields. It is concluded that if the Abrikosov vortices in the grains are rigidly
pinned, the double-step character of J c(H) vs H dependence and abnormal hysteresis can be observed.

Evidence for surface barriers to vortex motion in the grains of YBCO-123 metal ceramics is summarized.
Characteristic features of this barrier appear in the abnormal hysteresis loop of the critical transport
current.

1. Introduction

Grain-oriented films have shown convincingly the ability of metal ceramic materials
to conduct considerable current without dissipation [1 ]. The difficulties associated
with flux-line lattice instability in ideal single crystals of metal ceramics have been
successfully avoided by the introduction of additional pinning centers (for example,
by neutron irradiation of the crystals [2]). But the situation for the long-length
tapes is much more complicated. The contacts between granules in these materials
must have good electrical properties. In Y- and Bi-metal ceramics this is prevented
by the extremely small coherence length & and the structure peculiarity
(Zandbergen et al.[3]). At such distances, particularly in the region of structure
defects, stoichiometry composition of ceramics, its oxygen content can alter, which
is reflected in the local values of the critical temperaturc and order parameter. As
aresult, the superconducting metal oxide characteristics prove to be sensitive to all
kinds of atomic defects — dislocations, small-angle boundaries and other packing
defects, twinning planes and all the more — to such important structure
disturbances that are the weak-linked boundaries. The situation becomes
complicated owing to the sensitivity of ceramic contact properties to the matching
of directions of the crystallographic axes of granules (Dimos et al. [4]).

By orientating the grains one can obtain samples with well co-orientating (in
line with one another) granules (“the alignment" phenomenon [5 ]). In our opinion,
with this technology, however, there are no prospects of fulfilling the main stand-
ards for long-length wire samples, i.e. the high efficiency of the technological
process and the ability of the products to withstand considerable bending strains.

The fulfillment of these requirements with the advantages of the "alignment" of
the grain (as in the Bi-based tapes, Heine et al. [6 ]) is complicated through loosing
contact of technology researches with understanding of the Josephson medium
physics. This complicates the choice of perspective trends through which the
achievement of success is the most probable.

For example, now one fails to attain satisfactory understanding of the nature of
the current state in metal oxide samples in high magnetic fields. Usually it is
assumed that the magnetic field H considerably influences the critical current J c

of ceramics superconductor at fields H = Hos <I>0/ (2AW), where CDO is the

magnetic flux quantum, W is the contact width and A is the London penetration
depth into the granules. For metal ceramics the "critical” field H, is too small,

H,~100e [7].
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The strong J o= dependence weakens for H >H, if there are spatially

inhomogeneous of the Josephson contacts critical current density. In that case the
Hvalueisreduced to H ;= CDO/ (24r) where ris the correlation radius of the spatial

fluctuations of the Josephson critical current (or the small contacts width) [8-10].
But there is good reason to believe that the main contribution to the Josephson
medium critical current stabilization is given by the penetration of Abrikosov
vortices into the granules. This problem was considered early [11-13 ] but without
taking into consideration the surface barriers effects. The surface barrier to vortex
-motion has recently come into evidence in high-temperature superconductors
(Malozemoft, [14]).
In this paper a new model is developed to describe the field dependence of critical
current of a Josephson media in high magnetic fields H >> H,, which takes into

account the surface barrier effects. A good agreement between the proposed theory
and experiments [15,16 ] has been achieved.
2. Dependence of critical current on parallel magnetic field

It is conventionally assumed that the weak links are the origin of the low critical
current density J, HTSC-ceramics at high magnetic fields. Really, magnetic field

considerably influences the critical current 7, of Josephson junctions at fields
,uoH~<I>0/ Sy - Therefore the often observed double-step behaviour and plateau
region in the J (B) curves are interpreted as a result of the percolation paths that

remain after the Josephson decoupling in high magnetic fields has occurred [7,15 ].

Itis known that field A essentially suppresses the Josephson current if full phase
difference Ap along the contacts areas is of the order of 7z, i.e.
Ap= W (dp/dx) = . If there are no Abrikosov vortices in granules, then

dp/dx = (4n12,uo/ ®)H /A , so the conventional ratio B, = @/ (24 W) takes place.

In presence of the intragranular vortices, a correct estimate of the modification of
the Ferrell-Prange equations must be done.
There is the total connections between the gradient-invariant vector potential

Q = Vy — (2n/®y)A (the full phase differenceis Ap = del ) and the screening

current j = js f ~Q on the surface of contact electrodes:
del =froths =— [(Zn/tbo)BdN] dx = p(x+dx)— p(x)— [4n12y0/¢0]jsjdx 5
C S

where the contour C passes on the surface of the electrodes between the point x and
x + dx, so the area s is s=dx-t, B = #oH =rot A, and the London equation

J = (PHIO/ Znyclz)Q is used. Thus, the full change of the phase difference ¢(x)
across the junction is [9]

3 _ 2y 2. 1
Ap = Wdp/dx = —(D—O—-W(ZA Jgp+ dyH) (H
where the direction X is perpendicular to the external field H = H_. If there are no

Abrikosov vortices in the granules, then J; value is given by the external field H,,
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jy=dH/dy=H,/A and Ap~(2A + §)H,, . After the Abrikosov vortices have entered
the granules, the js value is no longer propqrtional to the external field H o and the
phase difference Ap (1) depends now on the surface critical current amplitude j, y

of the grains.
In a general case the surface screening current J v has the Meissner part of

surface current jsm and the irreversible one, I, g determined by the magnetic flux
pinning in the vicinity of the granule surface. The sign of jcg depends on the

magnetic history of the sample.
If we use the boundary condition that at the granule surface (x = 0) the value
of induction B(0) and the external field /7, are in equilibrium [17]

T H, = B(O)//zo + Meq . (2)
where M p is the equilibrium (Abrikosov) diamagnetic magnetization, then [8,11 ]
JyHE) =j, *j, = Meq//l %o 3
For H > H_, the Meq value is almost constant vs. field H,,
2
Meq H)= <I>0/(8m1 ) In (ch/He)(l - He/ch) =H,

and Jgm = constant (H). As a result, for fields region
H<<H,=H = @,/ (uy Wd,) the Ap value (1) is approximately constant vs.
H, and the Josephson medium critical current J . Vs. H dependence has a double-
step character [11-13]. The firstdropinJ _isfor H = H = d)ol{y‘)(Zi + dN)W} X
This is followed by a plateau regime at magnetic fields Hp <HS Hj2 ; Hp = chg .
where

Hy = @/ (ug2nrdy) + (B2/dy) j, + QAd\)H . @

N
The second drop in J,. occurs at high enough fields H = H,z . Here r is the

correlation radius of the spatial fluctuations of the Josephson critical current and
we have assumed that for A >> H_, the intergrain field is roughly equal to H,. If

the Josephson junction effective width r and thickness d y are small, r<<1 and
dN << A, then Hﬂ >H, .

For example, let magnetic field A be parallel to the ab plane of YBCO granule
and the Josephson junction exists in the c-direction. Then A=1_,

H,=H,k =®n (k)/(4nudA), and for A =0.15um, T=21/4 =5,
§,=15nm, dy,=2nm, r=0.1um, critical current value in the ab-plane

'jcg =2-10° A, the B!2 = "0”,2 value is equal to sz =27T.
If there exists a surface barrier to Abrikosov vortex motion the equilibrium part
of the Meissner path of surface current Jg for field increasing and field decreasing

processes is different. As a result, a new mechanism of the Josephson critical current
hysteresis appears. In the presence of a barrier against flux entry or exit the
boundary condition on K, 0) (2), where flux has entered is now
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H,=H,I[B, (0)1, and the condition where flux has exited is H, = H, [B . )1

[ISA]A.S distinct from the equilibrium case, when the Meissner current value is fixed
by the equilibrium magnetization Meq , in the presence of a surface barrier the
Jem value depends on the distance X0 of the first Abrikosov vortices layers on the
surface ‘
Jou=H = (Bl ) exp {—xv/la} x,/sinh (x,)]. &)

Here X, =Xy — h a/ 2, x,=h a/ 2 " ha is the distance between Abrikosov vortex in
the direction normal to the granule surface,

h = [@y/ BT2V3] 12

(Kogan [19], Ivlev and Kopnin [20]). The x,, value is found from the Gibbs free
energy minimization

x, = Aa-cosh_l[ (uoH,/B){sinh (x))/x}], 6
and (for field-increasing process) we receive the surface current
2,1/2
. ) B X 7
I = Men/}‘a » M, B) = Hen - Ko sinh (xl) ! it
and for field-decreasing process it is
241/2
Iy = M, /A, M, (B)=1\H, - "W ©

(Clem used the continual model for the vortex density distribution, so in formulas
(6-8) the term x,/sinh (x;) was absent [21 ].)

In presence of the surface barrier the vortex contribution to the surface current
is given by = jcg -exp (—xv//l), so the full surface current value is

js{ft =M (en)(ex)/la + jcg -exp (_—xv/}‘a) . ©)
Here for field increasing case we have used the generalized square-root model [21 ]

. ) I 172 5
H,(B") = [Hs + k,, (BIug{xy/sinh (x))} ] . k= 1= (HJ/H ) (10)

H = <I>0/ (4ny01a£a) » H , is the upper critical field for the grains, and for decrea-
sing external field

Hex(Bl) =B/'“0+Hc1 . an
For spatially inhomogeneous contacts the Yanson relation is valid [9]
1 1
- sf of
IC(H) = (12)

[1+A902]1/2 B [l+(H/Hﬁ§’)2:|'/2'

Where H(Y' = @/ (4mudr) . After the Abrikosov vortices have entered granules,
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Ap = r[2mug/ @o| 2%+ dyH]] (13

where the surface current value j_, is given by the formula (3) for equilibrium
sf

boundary conditions (2) and by the formula (9) if there is the surface barrier.
According to (9)—(10) in increasing external fields the Ap valuc (13) is
approximately constant vs. the external field H, for the region H < H,= H,"z ,

where
= 2/4 i
Hy =,/ [yOandN] + (2 d\)j g+ (Ald)H . (14)

As before, the Josephson medium critical current J vs. H dependence has a

double-step character (compare (4) with (14)), but in the presence of a barrier
against flux entry into granules for increasing fields the plateau region
H =H,s H,'z is considerably large when

H =& /(4npd £ )>>H =@ ln (k)/(4mpd L),

i.e. I‘k/ln (x) >> 1. Here we used the anisotropic Ginzburg—-Landau theory. It is
assumed that the external field A . IS parallel to ab plane and c axis is perpendicular

to the Josephson junction area, I' = lc/zla , K= ).a/{f s Vortex-lattice decoration
experiments (Vinnikov et al. [22]) have shown that in YBCO T =,lc/).a =35,
K= 100,soHS>>Hcl .

3. Comparison to experimental data
We use our model to interpret some experimental data on J vs H hysteresis

obtained for YBCO-123 ceramics [15,16 |. Similar results have been qualitatively
interpreted in terms of an effective hysteretic magnetic field at the grain interfaces
[16,23 ]. In our model the effective magnetic field at the grain surface is-assumed
to be equal to the external field He , i.e. we avoided the complication of

demagnetizing factors from the grains. Of course, if the ceramics granules are in
the Meissner phase, the magnetic force lines can be concentrated substantially near
the Josephson junctions even at small demagnetizing factor of individual granules.
The analysis of this problem is in the general case rather difficult since the result
depends on the intergrain cluster topology, granule shape and orientation, etc.
There are, however, rather general considerations according to which the local field
effect (if it really makes a considerable contribution in the case of this particular
specimen) is exhibited in the J _(H) dependencies.

Let us consider, for example, highly textured ceramics with plate-like granules
having thickness L. Let the external magnetic field be directed parallel to the
texturing ab-plane (i.e. the plate surface) and normal to the transport current. In
the Meissner phase a part of the flux is expelled into the intergrain space, and the
necessity to maintain the full magnetic flux results in an increase of the local
magnetic field by about L/ (?la) times. So the respective field acting on the contacts

of the medium is Heffz L/(2A JH, - If the full flux penetration field is small

(H e J ch << Hfl ) the increase of the local fields will result in somewhat earlier

penetration of the magnetic flux into the granules and the field dependence of the
ceramics critical current J (H) should exhibit the bend due to both sharp

weakening of local fields at intragranular flux diffusion and the change in the nature
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of the Josephson junction response to the field in the presence of the Abrikosov
vortices. )

If the intergrain cluster is so rare that the magnetic field goes into its cells freely,
the local increase of the magnetic field becomes less pronounced. That cluster have
been realized in early works on YBCO-123 ceramics [15,16]. In Fig. 1 a,b the
experimental results [15,16 ] are compared with our calculations of J Vs H depend-

10°
~N

£

3]

<

—;U \K

o> —
10
0 B.Tesla . 20 0 B. Tesla 20
a b

Fig. 1. The experimental (squares) and calculated (solid line) hysteresis loop Qf the transport critical
current density for YBCO metal ceramic: (a) experiment Watanabe et al. [15], (b) experiment
Kwasnitza et al. [16]); P, field increase, p, field decrease

ence (see below). The most important feature of these curves is a power law
J .~ 1/ g2 dependence of the critical currents for decreasing field. Here the J Vs
H dependence is approximately

J'B

0 jc2
, B..=® /(47A r). (13
B,,+ V2B B, 2 = Dol (47A,7)

TheJ (B D value (15) was obtained from the equations

J (B))=

H, (B))=(B)/p,+H,, Jc(Bt)z'JCO/(l +lap, 1),

[H2 — (B /#0)2] 1/2
Bp, = r[2my/ @ Uiy + dyH)] o Jy= N . 316)

a

There are two main features in hysteretic phenomena in decreasing field H v
Namely, the depression of the critical current at # = 0, when

Ap = A‘prem = r[2Jr,u0/(D0 (ugjcg>] ?
(13), therefore

RONZROLESACH TN OLEI I

rem
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where the "effective remanent magnetic field H: em "is

Hrem = Aa'jcg ? » " an
and a shift AH of maximum J.vs. H position. According to (12) in our model the
maximum of Josephson critical current in decreasing field must be observed in the
vicinity of field H = AH , where

Ap ~ j; (AH) = M (AH) - j = 0. (18)

IEH , >2,]j, then M®*(H) = H and the field AH = jog (AH)A,, s0 the AH value

is equal to the effective magnetic field A" =).-jcg (17). In another limit
H cl <<Aajcg

[2AHHCI] 1z = Aa ch

(AH). (19)
Here Hm is the maximum of external field Hm , the condition Hm = Hcl isassumed.
According to (19) in the case H, < ).a jcg for fields H | <H < Hp + H the AH
value depends on the maximum field # m

For the analyzed superconductor and for the chosen Josephson junction the
values la B Ea and d,, are given, so the essential parameters are the granular

critical current j s and the correlation radius r of the spatial fluctuations of the
Josephson critical current (or the width of small junctions). (TheJ s value depends
on the structure of the percolation cluster in the Josephson medium, and it was
chosen so that JSP(0) = J:a'C(O).) But the H_ value given by
H = @0/ (4muy A, &) is not strictly correct [21,24,25 ] so we use a more general
form

H, = q<b0/(47r,uo Aa Ea) s (20)
where gis a constant of the order of unity. It was found that the calculated hysteresis
loop (Fig. 1) is very sensitive to the gvalue, while the parameters rand jcg determine
mainly the plateau region length Hﬂ (14) (for Hp <H V= H,'z the J (H l) value
is almost constant). Parameter ¢ determines the value of magnetic field
B= B, = (q2/ 4Ink)B, ,when M, =M, (7,8),i.e. hysteresis of J (H) caused
by the surface barrier is absent for B > B§ . As aresult,for given jcg value parameter
g determines the critical current J P amplitude.

The calculated curves describe the qualitative features of the data [15,16 ] quite
well (Fig. 1). The critical current J " amplitude value as well as the behaviour of the

J vs.H dependence for decreasing external fields are well represented. It is evident

that egs. (7)—(13) give a good fit to the data for parameter ¢ = 0.4 + 0.5 . In our
opinion it is convincing evidence, that in case of the experiment [15,16 ] the J o Vs

H hysteresis is caused by the surface barrier irreversibility.

The temperature dependence of the hysteresis in YBCO ceramics comes from
the studies by Watanabe et al. [15 |.The hysteresis becomes smaller with increasing
of temperature, but still remains clearly at a lower field region. When there is a
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potential barrier the temperature dependence of the critical current can be
described by

J (T)=1J,(T)B,/(B, + |Be*f’(n|) ,

where for increasing field

2
t =—9rp 0, ;0 ,M-1
BlAT) = [ . 2412 aloley ]+B, @D
N
and for decreasing field
Bl =2 [(2303)”2 20ug 8 1M ‘] +B. 22)

Heret=1-T/T_, B, = ®,/[2nrd, ], the exponent M arises from the granular
critical current temperature dependence j e m=j C(;t M, According to (21)-(22)
the hysteresis value depends on the difference between B:ff(T) and Bgff(T) and

decreases for T —» T, if the exponent M > 1 (see Fig. 2). The characteristic field
BE above which the hysteresis amplitude is negligible is decreasing also:

2 0 0
B5 = B§0 = BsO/chl (B>> B ).\
The 51m11ar result can be obtained in the absence of a surface barrier
13’—2/1 B2 420, 0N + B 23)
eff ”Olcg ’

24)

H
Vool R0 172 0 N-1
Beff d [B t l,uo ]+B,

but here the abrupt suppression of the hysteresis J c value is absent.

4. Discussion
The critical current of a Josephson junction depends on the full phase difference
Ap = Ap st Ap,, along the junction

130 width W, which consists of the two parts.
Oneis connected with the surface current
value, Ap, = [27:/40/4) ] w212 oJsf» and
another is due to the external field H,

Ng T=4.2K penetration to the intergranular space

3 Ap,, = [Znyo/d) ] Wd\H, . If the junc-

-° \ T=31K tions length dN is bmall enough, so that

i R  1-a2k | Bey<< A‘Psf , then behaviour of the
I Josephson critical current in a magnetic
I=53K | fieid is determined mainly by the surface
5 currentjsf value. It depends on the jump
0 B.Tesla 16 of the magnetic field on the granular
Fig. 2. Calculated temperature dependence of surface.

hysteresis for YBCO (experiment see in [15])
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If there is the equilibrium connection between the external field H, and
induction B at the surface (2),
H,=B0)/uy+ M, ,

then jsfz Hcl/la. In the presence of a barrier against flux entry or exit the
boundary conditions on He , where flux has last entered is He = He” , and the
conditions where flux has last exited is He = Hex. In the numerical calculations

involving the critical entry and exit fields, the following two models so far have been
used: (i) the no-entry and no-exit barrier model (2), and (ii) the square root model
(10)—(11). But the total scheme for the surface currents calculation (7)-(9),(12)
allows one to use any model.

It must be born in mind that these models should not be taken too seriously,
since they do not have a solid theoretical foundation. The most difficult is to
understand the possibility of fulfillment of the equilibrium boundary conditions
(2), at least this condition is widely used [17,24]. The point is that for these
condition the distance between the surface and nearest vortex X0 does not coincide

with the equilibrium value of Xo=x,+ ha/ 2 (6). As a consequence, one can think

that there exists an additional Lorentz force which repulsed vortices from the
surface of superconductor. The influence of that force may be compensated by a
supplementary compression of a vortex lattice.

But the straightforward numerical calculations of the Gibbs free energy for the
vortex structure shows that a highly small compression of the distance between the
vortices in the direction parallel to the surface of the slab gives the equilibrium
position of X0 corresponding to the boundary conditions (2).

It should be noted that the surface current value jsf is very sensitive 1o the

distance x

o and for the "equilibrium” boundary conditions (2) the equality

exp |:(x0 - h/2)/la] = x,/sinh (x,) 25

must be fulfilled. Only in that case thejsfvalue isjsf =H, /la . Near the surface the
current density is

My = L si
Me=r [Men(ex)exp (=x/A) = [H = M, ] sinh (x/la)] . (26

x<xg. Here the first term is a modified Meissner part and the second one is the

contribution of vortices.
If the condition (25) is violated an additional square root dependence of the

surface current exists: jsf~ Bl/2 (see, for example, (15)). It leads to the well-
distinguished dependence of the Josephson media critical current J(B) ~ B2
Exception appears in the case of the surface barrier existence, when the jslf value
reaches its maximum probable value jslf =H s/la (7),(10), close to the Ginzburg—
Landau critical current chL. Analysis of a great number of works, where such

J c'-H L2 dependence has been observed shows that it may be connected with the
field dependencies of the intragranular critical current jcg rather than with the
intergranular one (the polycrystal films and the case when the normal component
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of the external magnetic field leads to the strong J . vs H dependence (Tachiki and

Takahashi [26], Matsushita et al. [27]). In any event if the plateau region is
strongly pronounced then J vs. H dependence in that region has roughly linear

character, JC~H (see, for example, [28]).

For decreasing fields, a power low J C(H l) ~H N with N ranging between 0.6

and 2.8 has been observed by Deutscheretal. [29 ]. The plateau region in that work
shows a maximum which may be connected with jcg vs. B dependence (see egs.

(1),(9),(12)). As is shown above the JC(Hl )~H_”2

etal. [15]and Kwasnitza et al. [16] experiments as well. In accordance with the
presented theory this evidences about the surface barrier in the investigated
samples.

But where may the surface barrier in the conventional nontextured metal
ceramics appear from [15,16]? On the other hand, what supports the strained
vortex state which is needed for satisfaction of the equilibrium boundary condition
H,=B0)/u,+ M, . (2)? From our point of view the answer to these questions

takes place for the Watanabe |

cannot be obtained within the bounds of the conventional equilibrium theory based
on the Gibb’s free energy minimization [24 ].

A limited nature of the equilibrium approach is evident if one takes into account
that the critical state of type II hard superconductors is nonequilibrium in principle
and its current state is metastable. Therefore the flux creep (flux diffusion) process
plays an important role in the process of the critical state establishment.

The existence of pinning centers leads to dependence of flux distribution on the
magnetic history of the sample. The critical state model (Bean [30 ], London [31 ])
assumes that, when a current or field is changed in a specimen, shielding currents
are induced on the surface up to the maximum density J e When this is reached the

current density remains constant, and magnetic flux penetrates deeper into the
superconductor. According to the critical state model the J .may depend on the local

microstructure of specimen and flux density, but not the experimental situation.
The justice of this model is given by enormous amount of the experimental facts

.[24 ]. The microscopic interpretation of the critical state model is based on the idea

of flux creep and well-known nature of the driving force on vortices [32 }.

The vortices had been nucleating at the surface and moving into the super-
conductor until the force due to the gradient density of vortices was balanced by the
pinning (here it is assumed that vortices do not nucleate in the volume of the
sample). The flux distribution for any cycle of external field or transport current is
then defined uniquely by the pinning force. The flux density is usually assumed to
take its equilibrium value at the surface, as defined by the reversible magnetization
curve (H,= B(0)/u, + Meq ). Deviations from these conditions are called surface

barriers.

Additional physical considerations are necessary for a proper choice of the
boundary conditions. Here I use the principle of minimum entropy production
(minimum dissipation [33]). According to this principle, a regime with the
minimum possible value Q = JE should be realized on the surface. This choice is
equivalent to the condition that the surface supercurrent Jg f which is responsible for

the vortex injection, should have the minimum possible value. For a nonuniform
surface the Meissner state becomes unstable (for # >>H_ > H ) at the surface

defects, where surface current density is close to jCGL . Then, under the influence
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of the surface current j_ 7 jeq =H, /A (out of the surface defects) the Abrikosov

vortex germ broadens over the full surface region. In an ideal material flux lines
would distribute homogeneously across the whole sample according to the
equilibrium condition (2). For a hard superconductor, however, this is inhibited by
the pinning forces which allow a vortex movement only as long as the driving current
density j > jcg 3

Consequently, almost on the whole sample surface the condition j, 7% jeq is

fulfilled, which minimizes the dissipation in time of the Abrikosov vortex line
nucleation. For that reason the observed coincidence of jsf value width

H s/}. =j CGL (Sec 2) may be connected with "weak places" (surface defects) on the

superconducting surface. From these considerations the present author assumes,
that in the given experiments [15,16 ] almost all Josephson weak links are simul-
taneously the "weak place" for Abrikosov vortex nucleation in the superconductor
electrodes, soin their region the surface current reaches its maximum possible value

1 = j CGL . It is equivalent to fulfillment of the surface barrier boundary conditions

(10,11) in those weak places.
5. Conclusions
In the framework of the discussed model the reason for J vs. H hysteresis lies

in the irreversible dependence of the granule surface current. The critical current
J, stability to high magnetic fields may be due to both the inhomogeneity of the

Josephson weak links (small Josephson junctions width r value (4),(14)) and
existence of the Abrikosov vortices within the granules.

The author gratefully acknowledges Professor V. M. Svistunov for stimulating
discussions and for a critical review of the manuscript. I am grateful to Professor
A. P. Malozemoff who informed me of his results before publication what stimulated
this work. The author has benefited from many valuable discussions with Professor
A. M. Grishin, Doctors B. A. Glowacki, V. Yu Tharenkov and A. A. Zhukov.

1. Roas B., Schultz L., Saeman—Ischenko G., Phys. Rev. Lett. 64, 479 ( 1990).
2. van Dover R. B., Gyorgy E. M., Schneemeyer L. F., Mitchell J. W., Rao K. W., Puzniak R., Wastezak J. V.,
Nature 342, 55 (1989).
. Zandbergen H. W., Fu W. T., Kadowaki K., van Tangelo G., Physica C161, 390 (1989).
Dimos D., Chaudhari P., Mannhart J., LeGoues F.K., Phys. Rev. Lett. 61, 219 (1988).
Salama K., Selvmanickam V., Goa L., Sun K., Appl. Phys. Lett. 54, 2352 (1989).
. Heine K., Tenbrink J. Thoener M., Appl. Phys. Lett. 55, 2441 (1989).
. EkinJ. W., Larson T. M., Hermann A. M., Sheng Z. Z., Togano K., Kumakura H., Physica C160,
489 (1989).
8. Svistunov V. M., D'yachenko A. I., Tarenkov V. Yu., Int. J. Modern Phys. BS, 3255 (1991).
9. Svistunov V. M., D’'yachenko A. 1., Tarenkov V. Yu., Physica C185-189, 2429 (1991).
10. Bulaevskii L. N., Clem J. R., Glazman L. I., Malozemoff A. P., Phys. Rev. B45, 2545 (1992).
11. D'yachenko A. I., — Donetsk (the Ukraine), 1991.— P. 17 (Preprint Ukrainian Acad. Sci., DonPhTI
—91—11.
12. Svistunov V. M., D’yachenko A. I., Supercond. Sci. Technol. 5, 98 (1992).
13. D’yachenko A. 1., Fizika i Tehnika Visokix Davlenii 2, § (1992).
14. Malozemoff A. P., Proceedings of 1992 TCSUH Workshop on HTS Houston, TX, Feb. 27-28, 1992
15. Watanabe K., Noto K., Morita H., Fujimori H., Mizuno K., Aomine T., Ni B., Matsushita T., Yamafuji K.,
Muto Y., Cryogenics 29, 263 (1989).
16. Kwasnitza K., Widmer Ch., Physica C171, 211 (1990).
17. Tinkham M., Introduction to Superconductivity, McGraw—Hill, New York (1975), 259 p.
18. Clem J. R., J. Appl. Phys. 50, 3518 (1979).
19. Kogan V. G., Campbell L. J., Phys. Rev. Lett. 62, 1552 (1989).
20. Ivlev B. I., Kopnin N. B., Phys. Rev. B44, 2747 (1991).
21. Clem J. R., Low Temperature Physics — LT13, ed. by K. D. Timmerhaus et al., vol.3:
Superconductivity (Plenum press: New York — London), P. 102— 106.

59




" 60

Proceedings of International Simposium

22.

23.
24.

25.
26.
27.

28.
29.

30.
31.
32.

33.

34.

Vinnikov L. Ya., Grigor'eval. V., Gurevich L. A., Osip'yan Yu. A., Pis’'ma Zh. Eksp. Teor. Fiz. 49,99
(1989).

Evetts J. E., Glowacki B. A., Cryogenics 28, 641 (1988).

Campbell A. M., Evetts J. E., Critical currents in superconductors, Taylor and Francis LTD, London
(1972), 332p. ;

Ternovskii F. F., Shekhata L. N., Zh. Eksp. Teor. Fiz. 62, 2297 (1972)

Tachiki M., Takahashi S., Solid State Commun. 72, 1083 (1989).

Matsushita T., Otabe S.E., Ni B., Kimura K., Morita M., Tanaka M., Kimura M., Miyamoto K.,
Sawano K., Jap. J. Appl. Phys. 30, L342 (1991).

Osamura K., Oh S. S., Ochiai S., Supercond. Sci. Technol. 3, 143 (1990).

Dai U., Deutscher G., Lacour C., Laher-Lacour F., Mocaer P., Lagues M., Appl. Phys. Lett. 56, 1284
(1990).

Bean C. P., Phys. Rev. Lett. 8, 250 (1962).

London H., Phys. Lett. 6, 162 (1963).

Ullmaier H,. Irreversible properties of type II superconductors, Springer — Verlag, Berlin — New
York (197S5), 165 p.

Glansdorff P., Prigogine I. R., Thermodynamic theory of structure, stability and fluctuations, London
— New York — Sydney — Toronto: Wiley — Interscience, a division of J. Wiley&sons, 1971. —
280 p.

Ternovsky F. F., Shekhata L. N., JETP 62, 2297 (1972).



