DYNAMIC JAHN-TELLER EFFECT AND MANY-VALLEY STRUCTURE OF ELECTRONIC SPECTRUM AS POSSIBLE REASON OF HIGH- $T_{\rm c}$ SUPERCONDUCTIVITY OF DOPED FULLERITE A₃C₆₀ V. M. Loktev, E. A. Pashitskii* N. N. Bogoliubov Institute for Theoretical Physics, Kiev, Ukraine The discovery of superconductivity with comparatively high critical temperatures $T_c \sim (20-40)$ K in crystal phase of fullerene C_{60} -fullerite, doped by alkali metal atoms A = K, Rb, Cs and Tl put a question about this phenomenon nature and its connection with high- T_c superconductivity in metal-oxides. Extraordinary rich vibrational spectrum of C_{60} molecules and respectively fullerite one that sweeps to frequencies $\omega \sim 2 \cdot 10^3$ cm $^{-1}$, and also the dependence of T_c on pressure and doping atom radii testify to phonon superconductivity mechanism in these organic compounds. But the question why is it absent in A_3C_{70} crystals which phonon spectrum is even richer remains unclear. In this paper it is shown (see also [1]) that the main reason for high- T_c superconductivity in ${\rm A_3C_{60}}$ may be the high symmetry of ${\rm C_{60}}$ molecules (buckyballs) and cubic fullerite crystals ${\rm A_xC_{60}}$ at stoichiometric (x=3) composition. Charge states of ${\rm C_{60}}$ molecule reveal Jahn-Teller deformation, therefore additional (may be rather strong) electron-phonon interaction with deformation vibrational ${\rm C_{60}}$ molecule modes (dynamical Jahn-Teller effect) appears in ${\rm A_3C_{60}}$ fullerite. Such a deformation interaction is accompanied by splitting of the partially degenerate conduction band, what also promotes electron-phonon coupling strengthening. One more mechanism of this interaction strengthening and respectively T_c increasing in cubic ${\rm A_3C_{60}}$ (or ${\rm RbTl_2C_{60}}$) crystals is their electronic spectrum many-valleyness. According to the numerical calculations [2] in fullerite conduction band there are 8 equivalent two-fold degenerate valleys in L-points and 6 non-degenerate (but more deep) ones in X-points of Brillouin zone. As is well known, intervalley interaction [3] and intravalley Cooper pairing [4] results in essential increasing of electron-phonon interaction, what qualitatively accounts for the rather sharp maximum in T_c at stoichiometric doped fullerite composition. ^{*}Institute of Physics, Kiev, Ukraine ^{1.} Loktev V. M., Pashitskii E. A., JETP (Letters) 55, 465 (1992). ^{2.} Saito S., Oshiyama A., Phys. Rev. Lett. 66, 2637 (1991). ^{3.} Cohen M. L., Phys. Rev. 134, A511 (1964). ^{4.} Pashitskii E. A., Shpigel A. S., Ukr. Fiz. Zh. 23, 669 (1978).