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The critical behaviour of the model which describes zero-temperature phase transitions in fully frustrated
Josephson-junction arrays is studied within the field-theoretical renormalization-group approach in three
dimensions. Three-loop expansions for B-functions and critical exponents are obtained. They are re-
summed, and specific symmetry properties of the model are employed to choose the most adequate

resummation technique as well as to estimate its numerical accuracy. The fixed points of the re-

normalization group equations are found. Domains of continuous phase transitions are shown to exist at
the phase diagram of the model, and the high precision estimates for critical exponents are obtained.
These numbers, however, can hardly be considered as critical exponents for real fully frustrated arrays
since corresponding initial values of coupling constants lie outside the regions of attraction of the stable
fixed points. Phase transitions in such systems are shown to be, in principle, discontinuous.

The aim of the report is to study the critical behaviour of two-dimensional
regular Josephson-junctions arrays (JJAs) fully frustrated with external magnetic
field which undergo phase transitions from insulating to superconducting state at
zero temperature.

Originally, newly developed methods of fabricating regular JJAs with well
controlled parameters have given rise to recent interest to experimental and theo-
retical study of such systems. Main features of JJAs behaviour are known to be
described by the following Hamiltonian [1-3 ]:
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Z being the vector potential of external magnetic field, and cbo is a quantum of
flux. Here E, plays a role of charging energy which is responsible for the Coulomb
blockade of superconducting grains while the Josephson coupling Ej. favours estab-

lishing of the global phase coherence and overall superconductivity in the system.
At zero temperature superconductor-to-insulator transition occurs when the ratio
of coupling constants E_ and Ej exceeds a critical value. Since quantum fluctuations

are essential in the case considered, the effective dimensionality of the system
should be put equal tothree: D=2+ 1 [2].

If external magnetic field is uniform JJAs turns out to be regulary frustrated
with the frustration parameter f = Bao/ D, a, being the area of an elementary

plaquette. We shall consider JJAs with square and traingular lattices in a magnetic
field correspondingtof = 1/2 which are usually referred to as fully frustrated JJAs.
The structure of the ground state of the model Eq. 1 with f = 1/2 is well known
[1,2]. To study phase transitions in this model and its critical behaviour proper
Hubbard-Stratonovich transformation [1,3 ] may be applied to Eq. 1 which results
in the following Landau—Wilson Hamiltonian:
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where cDa is a complex vector field, ,8=1,2. For uy> 0, Y= 0, wo> 0 this
Hamiltonian describes phase in JJAs with square plaquettes while the case uy> 0,
v, <0, w, = 0 corresponds to JJAs with triangular lattice [1,3]. It governs also the

critical behaviour of triangular JJAs with f = 1/4 since they are known to belong
to the same universality class as fully frustrated systems with square lattice [1 ].
Moreover, this field-theoretical model describes phase transitions in tetragonal and
hexagonal superconductors with d-wave pairing [4 ], in superconductors with two
— sand d — order parameters [5 ], in some anisotropic ferro- and antiferromagnets
[6,7 ] and in superfluid helium-3 [8].

The critical thermodynamics of the model Eq. 3 has been studed by many
scientists [3,6—11]. The main attention, however, has been paid to certain limits
(v0 =0, Wy = 0, etc.), and the theatment has been restricted mostly with the

lowest orders in e- and (1/N)-expansions. On the other hand, two-loop renor-
malization group (RG) calculations in three dimensions show [12 ] that taking into
account of higher-order contributions to the S-functions changes the results of the
lowest-order RG analysis drastically. In particular, it alters the total number of
fixed points and avoids degeneracy of the 0(4)-symmetric fixed point which is
four-fold degenerate within the one-loop approximation.

In such a situation higher-order calculations seem to be very desirable since
results expected would verify (or disprove) predictions of the two-loop RG analysis.
Moreover, they would help to clear up to what extent the field-theoretical RG
approach in three dimensions can play a role of regular (converging) approximation
scheme in the case of the model with three coupling constants, provided an adequate
resummation procedure is applied to the expansions employed. It should be noted
that for the simple O (n)-symmetric model this technique enables one to calculate
the fixed point coordinates and critical exponents with excellent accuracy [13,14].
It provides also rather good qualitative and quantitative results for models posses-
sing two coupling constants [15-18 ].

We calculate the S-functions for the Hamiltonian Eq. 3 up to three-loop order
within a massive theory. When expressed in terms of dimensionless effective
coupling constants u, v and w are as follows:

B,=u- u - %(uv + uw + w2) +Z%—6- |:177u3 + 200u2(v +w) +
+ 46uv(v + 2w) + 308uw’ + 144(v + w)wz] - 0.25519966u* —
— 0.44259575u3(v + w) — 0.26196454u%v(v + 2w) — 0.91607904u>w?* —
— 0.05845000uv2(v + 3w) — 0.80466103uww? — 0.68776103uw’ —

— 0.12780132vw?(v + 2w) — 0.08467496w* , (4a)
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+ 524uw + 380vw) — 0.35690502u” — 0.83435956u’v — 1.19600812u%w ~
= 0.67052441uv% — 1.82324690uvw — 1.25447756uw?® — 0.182243600° —

— 0.69969227v%w — 0.88666803vw? — 0.34590566w3] , (4b)
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+ 200u(v + w)] ~ 0.3569050243 — 0.47271099%(w + w) —
— 0.18832632uv(v + 2w) — 0.29008138uw? — 0.02928214v%(v + 3w) —

~ 0.14517440vw? — 008661012} . 0

Such expansionsl for the model with arbitrary dimensionality N of the field
(Da have been presented earlier [19].

The series Egs. 4 are known to be at best asymptotic. To make them convergent
the Borel summation technique is usually applied. The Borel transforms of the
original series may be "summed up", i.e. approximated with some finite analytic
expressions, in several different ways. One can construct, using a resolvent series

F(u,v, w,A) = Zlk z z al’m'k_l__mulvmw/‘_[_m , &)
k I m

the generalized Pade approximants [L/M ], the so called Canterbury approxi-
mants invented by Chisholm, etc. (see Refs. 17 for detail). In such a situation it
becomes necessary to determine which approximation scheme is the most adequate
one. So, certain criteria should be formulated. The following criteria seem to be
reasonable:

i) the resumation technique chosen should not lead to unphysical results;

ii) all (known) symmetries of the problem should be preserved by the approxi-
mation scheme employed;

iii) new results should be consistent with the most accurate numerical estimates
for 0(n)-symmetric and other simple models known up today;

iv) new results should be self-consistent, i.e. numerical values of any critical

exponent calculated by means of the resummation of different expansions, say,

expansions fory and y_l , should be identical (as close as possible).

It may be shown that, according to these criteria, [3/1 ] generalized Pade-Borel
approximant provides the best results. The fixed point coordinates given by this
resummation procedure are presented in Table 1, which contains also, for compa-
rison, their counterparts found earlier [12 ] within two-loop approximation.

Two-loop contributions to the RG functions have been mentioned to alter
significantly the results of the lowest-order RG analysis. Asone can see from Table 1,
the taking into account of three-loop terms does not cause strong changes in the
fixed point coordinates. Nevertheless, really three-loop calculations improve the
results markedly.
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TABLE 1. Coordinates of the fixed points of RG equations obtained within two-loop (approximant
[2/1], upper lines) and three-loop ([3/1], lower lines) approximations. Some numbers presented
here slightly differ from those published in Ref. 19 because of a small numerical error in early
calculations.

1 2 3 4 5 6 7 8
u 0 1.486 0 0.034 1.870 1.833 1.870 1.833
c 0 1.367 0 0.187 1.683 1.679 1.683 1.679
v 0 0 1.870 1.833 0 0 -1.870 -1.359
¢ (1] 0 1.684 1.491 0 0 -1.680 -1.495
w 0 0 0 0 -0.935 -0.680 0.935 0.680
¢ 0 0 0 0 -0.842 -0.748 0.840 0.748

The point is that the model Eq. 3 possesses some specific symmetry. Indeed, if
the field @ undergoes the transformation
D, ->D, D,>iD,, (©6)
the coupling constants are also transformed:
u->u, }z—»u+2w, w-=> —w @))
but the structure of the Hamiltonian itself remains unchanged [12]. Just the same
situation takes place in the case of another field transformation [3,7 |:
-1/2 ; -1/2;

o, 2@ +iv), @,-27% 0 +0,) ®
which does not affect the Hamiltonian structure resulting only in the following
replacement of u, v and w:

u=>u+v+2w, v->-2w, w--—-v/2. 9)

It is well known that RG functions of the problem are completely determined
by a structure of the Hamiltonian; they do not depend on uy ,v, and w, which

play a role of initial values of effective coupling constants when the RG flow of «,
v and wis searched. Hence, RG equations should be invariant with respect to any
transformation conserving a structure of the Hamiltonian [20]; Egs. 7,9, in
particular, were shown to be such transformations.

It means that 8, , B, , and B, should obey some special symmetry relations

which may be readily written down:
ﬂu(u,v,w) = ﬂu(u,v + 2w,—w),
B, (uv,w) + 28 (u,v,w) = B (v + 2w,—w),
B, (uv,w) = = (uy + 2w,—w). 10

B (wv,w) + B (wv,w) + 28 (uv,w) =B, (u+v + 2w,~2w,~v/2),
B, (uv,w) = =28 (u+v + 2w,—2w,~v/2), :
2B (uv,w) = =B (u+v +2w,=2w,~v/2). - an
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Moreover, due to this special symmetry, transformations Egs. 7, 9 can, at most,
rearrange the fixed points of RG equations not affecting numbers u,,v, and w,

themselves. This is precisely what occurs when one applies Eq. 7 to the content of
Table 1: the first four fixed points stay at their places while the points 5-8 undergo
pair transpositions 5 >7,7 > 5,6 - 8,8 -» 6. So, with the symmetry mentioned
in mind, the 5-th and 7-th (the 6-th and the 8-th) points may be thought to be
actually the same fixed point. Due to this symmetry any statement concerning the
behaviour of the system which is correct for v = 0 should be correct as well for
2w= —-v.

What happens when another transformation is applied to fixed point coordinates
presented in Table 1? It is easy to see that Eq. 9 practically does not change the
location of fixed points 1, 2, 7 and 8 and causes pair transposition 3=>5,5->3.
The rest of fixed points, the 4-th and the 6-th ones, however, are converted one to
anotherunder Eq. 9 only within three-loop approximation. Corresponding two-loop
results turn out to violate the symmetry relations induced by Eq. 9. More precisely,
the differences between the coordinates of the point 4 and the transformed co-
ordinates of the point 6 ("symmetry discrepancies”) given by [2/1] Pade—Borel
approximants are about 0.3, while within three-loop approximation they are sub-
stantially less than 0.01.

Comparison of coordinates of 0(2)- and 0(4)-symmetric fixed points given by
[3/1] approximants with "exact"” ones [13,14 ] shows that they differ by no more
than 0.01. Since symmetry discrepancies obtained within this approximation
scheme are of the same order of magnitude, we believe that the procedure men-
tioned provides an accuracy of order of one percent for models with several coupling
constants. To the contrary, two-loop RG expansions resummed in the same way
lead in such cases, as we have seen, to rather crude estimates. So, the calculation
of three-loop terms enables one to obtain results which are much more accurate than
those given by two-loop RG expansions.

All the fixed points found are unstable in three-dimensional parameters space
(u,v , w). The 4-th and the 6-th ones, however, are stable wtithin the planes (u, v)
and (u, w) respectively. The existence of such points is important since it implies
the possibility of continuous phase transitions in numerous physical systems des-
cribed by the model Eq. 3. Corresponding critical exponents may be found by
calculation of three-loop RG expansions, say, for y and # with subsequent re-
summation of y series and making use of well-known scaling relations. Three-loop

RG series for y~! and 7 are as follows:

-273—<3u + 2 + 4wt +4uv+4uw+4vw>

+0.00011428 [9u® + 1842 + w) + 1Suv(v + 2w) +
+ 24uw’ + 5v2(v + 3w) + 18uw? + 8w3] , (12)

Y-l=l—%—v-gw+—7-l§-<3u + 20 + 4w? +4uv+4uw+4vw) -

~ 0.00228954 91> + 1843 + w) + 15uv(v + 2w) + 24un? +
+ 5% + 3w) + 18uw? + 847] - 0.00089125 [0 + 182w + w) +

+ luw(v + 2w) + 20uw? + 40w + 3w) + 16vw?* + 8w3] : 13
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Analogous expressions for arbitrary field dimensionality have been presented in
Ref. 19.

Critical exponents for the fixed point 4 stable within the plane («, v) are found
to be:

y=1336, n=0.02, v=0.677, a=-0030, =0347. (14

The calculation of critical exponents for the fixed point 6 stable within the plane
(u,w ) gives values which are identical, within the accurracy adopted, to those of
the point 4. This is the manifestation of the specific symmetry discussed in detail
earlier.

It is interesting to compare the results obtained for 0(2)-symmetric fixed point
(the point 3, unstable) with data given by resummed six-loop RG expansions for

0(n)-symmetric Ad* model [13,14]. The six-loop approximation being nowadays

the most advanced instrument for calculation of critical exponents in three di-
mensions leads, forn = 2, to

o =1.316, =7 =0.032 (15)
while the approximation scheme employed gives:
y=1.310, #=10.026. (16)

The numbers Eq. 16 are also practically identical to those obtained for the fixed point 5.
It should be thought as another manifestation of the symmetry just mentioned.
The critical exponent v is known to control the superfluid density Py, the Mott

gap and the crossover temperature to classical behaviour in JJAs [3 ]. That’s why
its numerical value is of prime importance in our case. As follows from above
calculations it should be equal to 0.68, i.e. to the value which is very close to that for
unfrustrated arrays.

On the other hand, the numbers Eq. 14 can hardly be considered as critical
exponents for real fully frustrated JJAs since corresponding initial values Uysvg,

w, of coupling constants lie outside the domains of attraction of the stable fixed

points. More precisely, these values are situated in the region of fluctuation insta-
bility of the model Eq. 3. Hence, superconductor-to-insulator phase transition in
fully frustrated JJAs should be, in principle, discontinuous (first-order).

Itis well known, however, that fluctuation-induced first-order phase transitions
are very weak. Therefore, before a discontinuous transition will occur, a system
usually demonstrates scaling-like behaviour governed by effective critical expo-
nents. Since in the case considered the 0(4)-symmetric fixed point lies on the
boundary of the domains in (u, v) and (4, w) planes which contain proper initial
values of coupling constants, fully frustrated JJAs are expected to behave, in the
critical region, in a way similar to that of 0(4)-symmetric model. Corresponding
critical exponent values calculated on the base of higher-order RG expansions in
three dimensions are as follows [21 ]:

y=1441, n=0.032, v=0.732, a=-0.197, =0378. (7

These numbers differ substantially from those for JJAs in zero magnetic field.
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