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Recently reported fine structure of the optical absorption edge of pure fullerite and it pressure
dependence have been reproduced in terms of interband transitions within a simple tight binding
model. It is shown that the fine structure originates from the lowest intra-molecular excitations which
are forbidden in an isolated C 60 but allowed in a crystal due to the inter-molecular hopping. The

structure is added to a tail of the on-site dipole-allowed transitions. The observed ratio of intensities,
edge shift rates and pressure dependence of the spectral shape have been explained in terms of the
exponential behavior of the hopping integrals.

There exists still unresolved problem of the true bandwidth value W in
fullerite. An analysis of the available photoemission and inverse photoemission
data [1], thermopower estimations [2] and ab inifio calculations [3] give the
values of W rom 0.2 to 1.0eV but the upper and lower critical field measurements
14 | predict much smaller values of W =200 K. Calculations within a tight binding
method [2 ] give similar results, so W is definitely unknown.

Recently a weak fine structure of optical absorption edge of pure fullerite has
been discovered at T=4.2K [5,6] and pressure dependence of it has been
measured at room temperature [6]. At room temperature it looks like a weak
fcaturc at 1.8eV on the tale of a strong feature at 2.1eV . The spectrum shape
differs to a marked degrec from the calculated one [7] and no proved
interprctation of the fine structure and pressure dependence of it has been given.

To clarify the above problems in this paper we report the results of our
calculations of the spectrum as a function of hydrostatic pressure. The
calculations were carried out on the basis of Slater atomic orbitals within a simple
tight binding model based on the freezing molecular states and intermolecular
hopping integrals. Only z-clectrons were included in the consideration.

The tight binding model of Cgo 1N general use {2,3] deals with a minimal

basis of atomic p_-orbitals ¢, {7) atom « of Cyo unit, so the /-th molecular orbital
(MO) is a linear combination of atomic orbitals (LCAO),

60
a=1

C,,are the eigenstates of the molecular hamiltonian written usually in the nearest
neighbor approximation:
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where a; is an annihilation operator of p -electron in the i-th atom; the sum

labeled with A (or p) is taken over the pairs of atoms neighboring along the
hexagon-hexagon (or pentagon-hexagon) edges; and V, and Vp are the hopping

integrals taken from molecular data or adjusted to an experiment. LCAO
coefficients C ; of the minimal basis are determined by the icosahedral symmetry

of fulleren and do not depend on the values of the hamiltonian parameters V,
and Vp [31].

Interaction between molecules in solid Cy, mixes up the MO’s into the Bloch
sum
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and splits MO levels E, into the energy bands E,, which are solutions of the
generalized eigenvalue problem,

DET I1H — ESI =0 @)

where # and S arc the hamiltonian and overlap matrix. It should be noted that a
solution of the non-linear Eq.(4) depends on the absolute value of E while the
model hamiltonian (2) produces just a splitting of energy. Therefore using the
solutions of Eq.(2) we ought to take into account in Eq.(3) only degenerated
MO’s believing for simplicity that the Bloch states from the different MO levels
are not mixed up. In this case onc¢ may calcg\late the energy E from the
corresponding molecular level E; by replacing H in Eq.(4) by the screened

Coulomb potential V.,

60 60
ikR . -
Hy,=>¢ Z N CoCom < 90 1V 7 — R) > (3)
R a=1 b=1

Taking into account the large distances between the neighboring atoms of
adjacent molecules only two-site integrals may be included in Eq.(5). Each of the
integrals cxpressed in terms of o- and w-hopping integrals h s the form [3,8 |:

Vo = <@a 1Vl pp > = — (Vo + V) (R, d) (Rb dy+V, (ﬁa ﬁh) ©6)

where R = RB/R is a unit vector in the radial direction and d = Z/d is a unit
vector in the direction from atom « to atom 4. The overlap matrix has the same
form.

To obtain the clectron spectrum as a function of separation between the
molecules in a solid C¢, one needs to state a distance-dependence of the hopping
integrals Vv, and S, = <¢p, |, >. Note the very importance of this step

because it states the structural and macroscopic properties of a crystal.
Gunnarsson ef al. |9 ] omitted S, and used in Eq.(6) the following formula
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V(d) = — 4V, (d) = (d/dy) Vyexp [ — (d — dg)/L] )

The parameter values V;=0.90eV, L=0. 5054 and dy=3. 004 were adjusted by
fitting V_(d) to the matrix elements of hamiltonian (2) V,=-2.78eV and V=
2.59¢V at distances d equal to the hexagon b, = 1.39 1A and pentagon b =1 455A
edge respectively. Such a choice gives for the lowest unoccupied molecular orbital
(LUMO) a bandwidth closc to the result of the ab initio local density
approximation (LDA) W=0.50eV [3]. The distance-dependence of Eq.(7)
originates from an exponential tail of the atomic potential. However the ratio
V./V, as a function of d varies from -1 at d=0 to 0 at d »». The equation
V,(d) = — 4 V_(d) was justified at the valence bond distance of 1.54 but it seems

to be doubtful at >34 in the van der Waals crystal.
Gelfand and Lu [2] used analytical forms of the hopping integrals V,_ and V

derived [8] for the screcned Coulomb potential of carbon on the basis of the
Slater atomic orbitals

e (F) = (Cs/n)la zexp( — &r). ®)

The bandwidth of LUMO level was found to be W=0.03eV in the order smaller
than the LDA one. Such an underestimation was due to the Slater parameter
valuc §ay=1.64 which does not reproduce well the asymptotic behavior of the

atomic orbital (here ¢ is Borh radius). Nevertheless the LUMO density of states

[2 ] coincided with LDA result {3 ] at an appropriate energy scaling that was used
to explore the effect of orientation disorder on the normal- state electronic
transport of fullerite [2].

In the present band structure calculations we use the analytical forms of
hopping integrals V and V_ [8 ] and take into account the corresponding overlap
integrals. The parameter Cao=1.27 was determined by fitting the Slater orbital
Eq.(8) to the precise atomic wave function [10] at actual distances. It differs to a
marked degree from the Slater value 1.64 and the single — ¢ [10] approximate
value 1.57. The latter one was obtained by the variational procedure of Hartree-
Fock-Roothan which was not able to produce any true asymptotic behavior of a
trial function. Our calculations give LUMO band structure and density of states
shapes which are very close to the ab initio results [3 ]. Howeve in our case the
bandwidth W=0.2¢V is a factor of 2.5 less.

The optical absorption edge corresponds to the forbidden intra-molecular
transition between the highest occupied molecular orbital (HOMO) A, and
LUMO ¢, level which is displayed in a crystal spectrum as a low absorption band

due to the ability of inter-molecular transitions. To calculate the spectrum we also
take into account the second lowest on-site transition from HOMO £, to the next

unoccupied lig level which is allowed and gives rise to a high absorption band.
The corresponding energy differences [9] E,=2.223 and E,=2.870 eV are the

centres of gravity of the low and high absorption bands and depend on the
hamiltonian (2) parameter values. 5
The oscillator strength of interband transition is f;; =2 ITIikI /(3Ey) (in

7
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a.u.) where i=1 or 2 for the low or high absorption band and Kis a wave number,
E, is the interband difference and 7’ik is the momentum matrix element. The

latter one was obtained on the basis of Slater orbitals. The imaginary part of the
dielectric constant (in atomic units)

e,(E) = 27:22 N 48 (E— Ey)/E 59
ik

was calculated using the full-zone tetrahedron method where the 240 irreducible
k-point set of fcc lattice was multiplied twice by /4 rotation about the four-fold
crystal axis to take into account the lowering of the fcc symmetry in fullerite.
Note the importance of the last operation which changes drastically some features
of the spectrum. The real part of dielectric constant was obtained from the
dispersion relation

o € E dE
e (E)=1+2% f 2() (10)

Since the used &,(E) includes just the above- mentioned transitions, then Eq.(10)
gives an approximate &,(E). The omitted upper band transitions would add near
constant term to the ¢ (E) in the absorption edge region. This approximation is
sufficient for our purposes to estimate the shifts of the bands under pressure.

Fig. 1. Real (dashed line) and imaginary
(solid lines) parts of dielectric constant as
a function of energy for fcc lattice
constant a=14.14

Dielectric constants

Energy (eV)

The resulting curves are presented in Fig.1. The absorption appears at the
energies exceeding 1.9 ¢V as a number of sharp peaks. Some of them are doublets
originated from the known double peak structure of LUMO density of states [3].
The low absorption band is superimposed on the high one at E=2.6 eV. Note the
close values of these band widths caused by a splitting of the molecular levels
while their ratio of intensities is equal in the order of magnitude to MO’s intersite

overlap integral. The last one increases exponentially if the molecules are drawn
together.
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Getting e, and ¢, one can obtain the absorption coefficient & = 4nk/A where A
is the wave length of light and « is the imaginary part of the refractive index

1
= {16+ - e 12y B

Fig. 2. Absorption coefficients for various
fcc lattice constants are pointed at the
curves in A  (solid lines) and
experimental one [6] for zero pressure
and 7=4.2K (dotted line in arbitrary
units, 0.2 eV shifted the to right). The
origins of every curve are shifted by 20
units up

Absorption coefficient {1/mkm)

L i
0 = v ——t —
1.8 22 26 3.0

Energy (eV)

The calculated absorption coefficients as a function of energy in the cases of
normal and compressed crystals are shown in Fig.2. In the framework of the
model the low and high absorption bands arc expanded exponentially if the
intermolecular distance decreases because the band splitting is proportional to
the hopping integral. The strucfiifes in the centers of the bands at E,=2.223 and

E,=2.870 ¢V arc keeping their place while the others are shifted proportionally to

their distances from the corresponding center of band. That explains the
observed differcnces of the red shifts under pressure of the low and high
absorption equal to -0.0552V/GPa and -0.15¢V/GPa, respectively. The last
value recalculated via intermolecular distance [6]is equal to 1eV/ A which is close
to our estimation of the near 2.6 eV threshold shift which is equal to 0.6eV /A.
The calculated shift of the lower edge is close to the upper one and much exceed
the observed value. Note that the lower edge is not well defined (see Fig.2) and
should be smoothed out at room temperature. These are the reasons why the
experimentally observed weak feature [6] seems to be not the lower edge but
should be related with a singularity inside the “forbidden” band which is closer
to the E| level and must have lesser shift then the edge has.

Comparing the parameter {a,=1.27 adjusted here to a,/L=1.05 from Eq.(7)

one may obtain that the shift of the absorption edge in the model of Ref.3 is equal
to 1.2eV/A which is close to the experimentally quoted number. However the
absorption bands in that model would have a factor of 2.5 larger widths.

The experimental [6] absorption curve shape, Fig.2, is close to the results of
our calculations. However to consist the energy position of bands with the
observed values in framework of the model used one needs to reduce E, to 2.0



PDu3ukKa ¥ TEeXHUKA BbICOKUX AasaeHuin 1995, No 1

and E, to 2.4¢eV that contradict to the wel known experimental value of 7, ¢, o

splitting equal to 1eV. Both this contradiction and the previous estimation of
shifts brings us to the conclusion that the bandwidth W in our model is
underestimated 2.5 times. So enlarging the Wl splitting from 0.4eV of ours to

leV of Ref.3 and correspondently multiply the bandwidth 2.5 times one may
obtain a result which satisfies the different experiments.

Unfortunately we cannot compare all the details of the fine structure with the
experimental one since of the phase transition from the fcc to simple cubic lattice
with four non-equivalent positions of C, units takes place at low temperature. As

it was shown in [3] that causes drastic changes in LUMO density of states but
keeps the value of bandwidth. That partially explains inconsistence between the
measured [0 ] and calculated in Ref. [7 ] spectrum. The other reason may be that
the sum in Eq.(9) was calculated in {7 ] without the lowering of the fcc symmetry.

As is shown in Fig.2 the pressure increasing produces a broadening,
smoothing out and overlapping of the bands that is in accordance with the
experiment [6]. The absolute values of the absorption coefficient are also in a
reasonable range.

To sum up, we have reproduced the experimentally observed fine structure,
differences of intensities, shifts and pressure dependence of the absorption
spectrum shape of fullerite in terms of the exponential behavior of the hopping
integrals. The applied pressure expands the absorption spectrum in such a way
that the shift of a singularity in each absorption band is proportional to the
distance from the level of molecular excitation energy. This shift being free from
various broadening factors should be used for an experimental estimation of the
bandwidth.
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