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In the paper a mathematical model of multiple material fracture at simple loading based on the
percolation is presented. On the basis of this model the porosity corresponding to formation of
macrodiscontinuity is evaluated. A kinetic equation for porosity with an account of the formation and
the curing of microdiscontinuities is proposed. Conditions for obtaining the state with unlimited
deformability at forming of metals under external pressure are analyzed. The proposed mathematical
model of metal fracture is explained by an example of hydroextrusion process. Namely, the
relationships for the extrudate damage are obtained and the conditions for the opening axial cavity are
discussed.

According to current ideas [1,2] the metal fracture at plastic deformation is a multistage
and multiscale process. It is developed at various structural levels. The lower levels of a
fracture provoke the higher-level ones, i.e. the secondary defects are nucleated from the
coalescence of the primary ones, the tertiary defects being formed from the secondary ones,
etc. The progress of defects at the same level is self-modelled up to a certain moment, i.e. as
the damage degreis increased the geometry of the defect cascade is transformed according to
the similarity principle (scaling law) [2]. Violation of self-modelling is due to formation of
another level defects [2].

Effective methods for the study of the above processes can be taken from the percolation
theory [3]. We present some concepts of this theory which are the basis for the below model
of material fracture at the plastic deformation under pressure.

Let us assume that (to a certain amount) a large volume of space v is randomly filled up
with substance. At v<<l the substance forms small regions separated from one another. At
addition of substance these regions start to coalesce thus originating the formations
(clusters).The cluster sizes increase and at some critical value v, a cluster is formed which
spreads over the entire volume. This cluster is referred to as an infinite cluster. For three-
dimensional regions, v, = 0.17 [3]. The clusters are of completely random shape. But on the
average, the geometry of randomly arranged substance has quite definite properties. One of
them is reflected by the hypothesis of similarity according to which the cluster size
distribution function related to a mean value at given v is unchanged and independent on v.
The similarity is upset at the moment of the infinitive cluster formation.

Let us assume the following model of fracture. At each level there is a corresponding
simple defect, i.e. the fracture atom. The bound set (cluster) of fracture atoms forms the

75




Du3HKa H TeXHHKa BbICOKMX AaBjeHni 1997, Tom 7, Nel

this level. An infinite cluster of fracture atoms of one level gives a fracture atom of another
level. Thus the defects are considered to correspond to the clusters. This results in the
similarity principle for defects substantiated in [2] which states that at a continuous fracture
the cascade of defects is transformed in similar manner, and all the linear sizes of cascade
grow proportionally to a statistically average size of defects. Actually the similarity
principle, in the given case, is a manifestation of regularity in the cluster development
characterized by the similarity hypothesis of the percolation theory.

According to the similarity principle, the cluster geometry of the defect cascade is
completely determined by the relative volume of defects. In [4], we obtain the kinetic
equation for this quantity which is further referred to as porosity.

This equation is:
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where ® — porosity, y — intensity of shear strain, ¢ — hydrostatic constituent of stress tensor,

T - intensity of tangential stress, o — internal friction coefficient.

This relation implies that both the formation of micropores and their curing (at ¢ < 0)
take place at plastic deformation. The processes correspond to the first and the second terms
in the right-hand side of relation (1) respectively.

From the equation (1) it follows that at c; < 0, the some equilibrium porosity (®,)
becomes steady in the material under deformation. The value of this porosity is a root of an
equation:
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According to [5] the criterion of metal fracture at the pressure treatment is the
appearance of a simple defect at the macrolevel. On the basis of the proposed model we
evaluate the “critical” loosening due to which this effect appears in material.

According to [1] the formation of microdiscontinuity with the linear size ot the order of
0.1 um is an elementary act of fracture. The coalescence of these defects gives
microdiscontinuities with the size of the order of the linear size of the structural
heterogeneity (block, grain). The coalescence of the latter ones results in the appearance of a
macrocrack. In terms of the proposed model we have: a microdiscontinuity of about 0.1 pm
is the first-level fracture atom; a microdiscontinuity of the structural heterogeneity size is the
second-level fracture atom; a macrodiscontinuity is the third-level fracture atom. According
to the percolation theory the relative portion of this substance should reach its value v, for
the formation of an infinite cluster of any substance. Therefore, the nucleation of the third-
level fracture atom per unit volume requires v, of the second-level fracture atoms and v.-v,

of the first-level ones. Thus the critical loosening is evaluated as ®, = vcz,. Substituting v, =
0.17 into the expression, we obtain ®, =~ 3% which corresponds by the order of magnitude
to experimental value ®, ~ 1% [1]. At ®, < O, the solid fracture is before its equilibrium
value. And at ®, > ©, the value ®, will be reached before the solid starts to fracture. The
state with the unlimited deformability should correspond to the given condition.
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plastic deformation of metals without fracture under the external pressure. The above model
of metal fracture can be explained by an example of steel loosening at hydrostatic extrusion
[6,7]. According to [1,8] for the steels; oo ~ 1072, @< 10-2.It follows from [5] that at the
hydrostatic extrusion o/t ~ —1..-3. In view of this fact and neglecting the terms of the
second order in Eq. (1) one gets the simplified kinetic equation for porosity

2 . ©
d@z(u+»®)dy. (3)
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It follows from Ref.[9] that at small magnitude of the contact friction which is typical for
the hydroextrusion, along the die axis

c R p> 2 )
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where p is the radius of the arbitrary point along the die axis, p,, p- is the radius of the
deformation area boundaries. !

Substituting relationships (4), (5) nto Eq. (3) one gets the following differential equation :
for deformation of ©:

do

~188x - 60 = -2 3, (6)
dx

where x = In (p/p,).
The initial condition:® = ©; at x = x;, where ©, is the porosity of the initial billet,
x) = In(p,/py).
The solution of Eq.(6) at this initial condiction has the form
X )
@(.\') = F() O,- 2-{3-0( jeF(‘\A) dx|, (7)
X
where F(x) = 3(x; — x)[2 + 3(x + x})]. Substituting x = 0 into Eq. (7) one gets the expression
for the porosity of the extrudate ®,:
X
0, - ®|€_3X'(2+3’\")+21‘r§0‘ j‘e'3“"2*3"')dx.
0

Replacing the variables in the integral one can reduce the latter to the probability integral
for which there are the tables {10]. Having performed simple transforms one gets:

0,=0, exp[— % 2(2 + %s)] % 20%@‘j -{(D'i—v'-i(l + z sn— ({2 )} (8)

==F
where @(z)= ‘\/.;——: '[e 2" d& is the normal distribution function [10], € = In (p,/p,)? is
T

the logarithmic deformation at the hydrostatic extrusion. Fig. 1 presents the plots of
®, = O,(¢) at various values of a and ©,.
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Fig. 1. Extrudate porosity as a function of logarithmic deformation ®, at hydrostatic extrusion ¢ :
1-0=0,0=10722-0=2103,a=10%3-0,=4102,a=10%4-0;=6103, a =
=102 5-0=61073, a = 21072, 6 -©,= 8.1073 , & = 2:1072

Fig. 2. Deformation producing maximum loosening of metal €,, as a function of the billet porosity
O :l-a=102%2-a=15102%3-0=201072

[t is clear from this figure that the hydroextrusion shows three versions of dependence of
the extrudate porosity on the deformation degree: porosity growth with the increase in the
deformation degree; decrease in porosity with the deformation degree growth; dependence at
the porosity maximum.

All above cases are implemented in practice. The first one is typical of the
hydroextrusion of metals with small initial damage [11], the second case is observed at the
hydroextrusion of billets with a great amount of microdiscontinuities [7]. The third case is
realized at the hydroextrusion of tol steels when at small and great deformations the
extrudate quality is high whereas at average deformations plasticity drops down to the axial
destruction of the extrudate [11].

Now let us determine the deformation degree at which the extrudate porosity is the
maximum one. For this purpose we find the derivative d®/de. Eq. (8) yields

d@Q - ) /“
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where 1= l+§8 . At € = g, where
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the number of defects in the extrudate is maximum. Fig.2 presents the plot g, = g, (O) at
various values of a.
The proposed mathematical model allows one to write the condition at which the

hydroextrusion will result the formation of axial cracks in the extrudate. Thus according to
Eq. (8) this condition has the form:

2y exp{— ; 2(2 i 38)} + 2ae\1/r73t:- {q{ﬁ (1 + %eﬂ 4 cp(nﬁ)}«ac, (11)
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Let us consider the case of ®, = 0. Thus Eq. (11) yields the following equation to
determination of the critical deformation g..

I \

r 3, 1 (5. O 3
@) 42 O{2) ="
[‘/_\ 2%) | 72)= 50512
Fig.3 shows the curve of the dependence of the left-hand side of Eq.(12) on the
magnitude €. Using this curve one can easily find the magnitudes e, Thus at o = 0.02 and

®,. = 81073 the right-hand side of Eq.(12) is equal to 7.2-1072 and the critical deformation
g, ~ 0.5.
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The proposed model of metal failure is illustrated by an example of the hydroextrusion
process. In this case the model makes possible to explain the reduction in the extrudate
plasticity at the average deformation degree and to determine the most unfavorable
deformation (g,,) from this point of view. On the basis of this model the condition for
hydroextrusion without the axial fracture of the extrudate is obtained {(Eq.(11)).
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