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Based on the analysis of the dispersion relation for the low-frequency collective modes in the metals elec-
tron plasma, a nontraditional point of view on the nature of the anomalous skin-effect in the presence of a
static magnetic field is proposed. It is shown that the last is the result of specific coupling of the electro-
magnetic modes, corresponding to the roots of the dispersion equation, and depends on the concrete elec-
tron energetic spectra’s shape. '

1. A concept of the anomalous skin-effect [1,2] is the classic one. Its theory has been elabo-
rated in detail [3-5]. As a rule, a complicated boundary problem is solved, and field distribu-
tion inside the metal and metal's surface impedance are calculated. But this paper does not deal
with these aspects of the problem and concerns only with the analysis of the dispersion equa-
tion and spectra of the collective electromagnetic modes in metal. In the situation studied here,
a simple, but realistic model of noncompensated metal is considered. Nevertheless, the general
character of our consideration is not limited. As a result, a nontraditional point of view on the
nature of the anomalous skin-effect in the presence of a static magnetic field H has been pro-
posed. Our findings may be summarized briefly as follows. At high magnetic field, if the con-
ductivity depends on the wave number, the skin-effect is a result of the coupling of collective
excitations. In the case considered here, these are helicon [6-9] («correct» mode), doppleron
[10-13] («wrong» mode) and damped helicon.

2. Let us consider the spectrum of the electromagnetic modes in noncompensated metal in
the range of frequencies and fields limited by inequality ® << v << o for the case of a Fermi

surface (FS) with axial symmetry about the direction of k Il H Il z. Here k is the wave vector;
o is the wave frequency; v is the collision frequency; w. = eH/mc is the cyclotron frequency.
The dispersion equation for the circularly polarized components of the electric field E, = Ey +
tiEy is o

B = 4niwo,(k), (+ polarization), )
where 6,(k) = Oxy * iGyy is the conductivity.

Let us approximate the noncompensated FS by electron surface being given by [8]
(«corrugated cylinder»):

S(py) = So + i cos(npzlpo), |p;| < po, )

where p; is the cqmgponentvof. electron momentum parallel to the H; S(p;) is the cross-section
area of the FS on a plane of constant p,; So, S1 < Sp and py are the model parameters. Here and
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later on we imply that m and v are independent of p,.

The model (2) exhibits realistic properties: (i) there are the cross-sections with extreme
S(py) (GS/apz = 0) values; (ii) there are the cross-sections with extreme BS/apz values. So, the
las/apzl value continuously varies from zero to the maximum value.

It is convenient to introduce dimensionless parameters:

q = kvplog, & = mgcz/mf,wv?,, Y = (v — i) o, 3)
where vy, = | 8/6p, | max/27m is the maximum electron velosity along H; @p = (4nNe*/m)'? is

the plasma frequency; N is the electron concentration. Using the known expression for the con-
ductivity (see e.g. [8,9]) we rewrite the dispersion equation in the form

T g8 =FJ g, @)

- Fd =[(1 i) - T )

Here F,(q) is the nonlocal multiplier at the conductivity: o, = + i(Nec/H)F..
It is most easily to see the nature of the roots of equation (4) by solving it graphically in
the collisionless limit (y—0). This is done in the insert of Fig. 1, Fp = FiI'Y 0. In the local

(g—>0) limit Fy = 1 and (4) has a real root G, (helicon) for «—» polarization and an imaginary
root Gz, (damped helicon) for «+» polarization for any values of &. Spectra of these modes are

shown in Fig.1: qéL =& qé,L = &7 (curve L).
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3r -1 0 7 1 2 ductivity (5) (the roots of Eq. (4), Fo =
=Fi|y=0) G, G and D are the helicon,
g=1 damped helicon and doppleron solutions,
[Re(q£)| respectively. G, and G'; are helicon and
2} -~--- Im(gf) D . damped- heélicon in the local limit.: The po-
larity of circular polarization is indicated in
. squares; &?n = (27/4)"2. Insert: graphical
GLGL solution of (4), (5). The curves.a, b and ¢
| _ are the left-hand side for ‘«—» polarization
T G for progressively larger vahies'&: The curve
| g L d is the left-hand side for «+» polarization.
Tl G The curve L is the function Fy in the local
.Y . (g—>0) limit
0 1 g - 2 EocH /(.01 n3

The non-local effects result in the following important consequences:

(i) At q2—>1_0 the value of Re Fy—>®. As a result, for «—» polarization there may be either
no real root (curve a) or two, roots (curve c): G (helicon) and D (doppleron). The critical value
of &, £ = £,y = (27/4)"® (helicon edge), separates these regions (curve b).

(ii) At q2 > 1 the value F, becomes imaginary. A complex value Fy indicates that the wave
is severely damped. Hence, ¢° = 1 defines the position of a damping edge (Kjeldaas edge [10]).
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The mechanism responsible for damping edge is well known as the Doppler-shifted cyclotron
resonance (DSCR). In the case considered here, the existence of the damping edge is caused by
the above-mentioned property of surface (2): 0 < |8S/6p, | < |aS/6p, | max.

3. It is impossible to obtain complex solutions of (4) at § < &,, for «—» ‘polarization by the
graphical method. However, we can easily obtain exact analytic solutions of the equations (4).
The full spectrum of the electromagnetic modes corresponding to these solutions is shown in
Fig. 1. Here g§ ~ ko', & ~ H/o'? are universal coordinates [11].

Fig. 1 shows the spectra of lightly damped waves propagating only along the positive di-
rection of axis z (Im(g€) > 0 and group velosity vg, = do/dk > 0). In collisionlessilimit (y’——)O)
from (4) one obtains

Vgr= 2Vph(§3 = aFO/a(qz))/§3- Fayd (6)

A glance at Fig. 1 (insert) shows that for doppleron < 6F0/6(q2) (vgr >0, vpp < 0; «wrong»
mode) whereas for helicon &3 > 6F0/8(q2) (vgr > 0, vpp > 0; «correct» mode). Therefore, at
§ < &, Fig. 1 gives not one but two solutions of (4) for «—» polarization corresponding to the
modes with equal, but oppositely directed phase velocities. For «+» polarization the solution is
purely imaginary. For high q2 in the essentially nonlocal limit (q2 >> 1) we have F, = i/q and
equation (4) becomes ¢q§3 =i =F imf, u)/czvm). This equation has three solutions, which
are valid for relatively low values of & (see Fig. 1). Solutions for «—» polarizaﬁon coincide
with the known solutions corresponding to the «classic» anomalous skin-effect regime. Hence,
we have reasons to suppose that at £ < &, Fig. 1 describes the anomalous skin-effect in the
magnetic field presence.

4. The used model of FS allows one to analyse the obtained spectra from the nontraditional

point of view. This is in the first place connected with the simplicity of function (5). We see
that equations (4), (5) may be written as

2 2 2 2 2 2 2/:6
(q —qGLIq —qGrLXq —qD)= -°/°, M
where q%) = 1.
It is seen that the dispersion equation can be interpreted as the equation of three coupled
modes. Because qéL and qé,L are solutions of (4) in the local limit (curve L in Fig. 1), we

have the reasons to identify two of the modes as helicon and damped helicon. The third solu-
tion of (7) is a straight vline q2 = 1, which corresponds to the damping edge of waves due to
the DSCR (Fig. 1). So, corresponding mode can be called the DSCR-mode or doppleron. Fig. 1
shows that at relatively high values of &, far from the point of the modes degeneracy (§ = 1)
the coupling can be neglected. With & decrease the coupling constant qz/ Zj,é in the righthand
side of (7) is growing, and G and D branches of the spectra are bending, becoming hybridized
in the vicinity of &,,. As a result, in the interval £ < &, «a gap» arises and solutions of (7) for
«—» polarization in this region become complex. It should be noted that the both modes have
positive phase velocity whereas doppleron has negative group velosity («wrong» mode). They
propagate one towards another. Namely this circumstanse leads to the binding of respective
spectral branches and formation of the «gap». In the opposite case the dispersion curves of
both modes split rather than bind and the «gap» does not arise. Helicon-phonon coupling (both
modes are «correct») illustrates this point well enough [12].

As was shown above, all three solutions of the dispersion equation describe the anomalous
skin-effect in the presence of the external magnetic field. Hence, the anomalous skin-effect can
be treated here as the result of coupling of helicon, damped helicon and:doppleron modes. Un-
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like the case of the helicon-phonon coupling, all these modes are collective excitations of one
and the same subsystem of metal, i.e. the electron plasma of metal. However, there is the
mechanism of their coupling. These are the nonlocal effects resulting, first, in the appearance
of a doppleron solutions of the dispersion equation and, second, in the hybridization of spectral
branches. '

5. Above (see 2. (ii)) it was shown that the existence of the anomalous skin-effect is due to
the collisionless damping (at ¢* > 1 function Fj is imaginary). However presence of the damp-
ing is not so essential as it seems at a first glance. Let us consider the FS model: § = Sy(1 -

- | pz/po ! ), | pz] < po («parabolic lens» [13]). The function Fy (y—0) for this model is given by

Fo=(1-¢)" ®)

Graphical solution of (4), (8) is shown in the insert of Fig. 2. The function Fy is purely real
for all g* which evidences the absence of collisionless damping of waves. Indeed, for this FS
model the DSCR condition is fulfilled only at q2 = }. Newertheless, the helicon (G) and dop-
pleron (D) branches for «=» polarization bind together and at £ < &,,, £, = 4'°, a «gap» arises.
As a result, the solutions of the dispersion equation become complex (Fig. 2). It is evident that
these solutions as well as solution G’ for «+» polarization describe the skin-effect. This is not
the classical anomalous skin-effect (compare Fig. 1 and 2), but it is important that the skin-
effect exists, though the damping edge and the region of collisionless damping, continuous
along the g*-axis, are absent.
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6. So, in this paper, we have analysed the nature of the anomalous skin-effect in metals in
the external magnetic field. From the classical point of view the anomalous skin-effect is due to
nonlocal effects and existence of the region of collisionless damping of the waves. The func-
tion Fy = i/qg when q2 >> 1, and for low maghetic fields (o = const) the roots of the dispersion

equation are almost independent of H (Fig. 1). We suggest that the anomalous skin- effect can
be interpreted as a result of hybridization of coupled electromagnetic modes. It is important that
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one of these modes, the doppleron, has positive group velocity and negative phase velocity
(«wrong» mode). Indeed, using (4), we find

_|d &+ 20r/(q)’
dlqg /o = ’ aFo/a(q)z—Ff .

Now from (9), it is seen that for helicon alqél /GE_, < 0 (vgr > 0, vpp > 0), whereas for doppleron

®

qg /0 > 0 (vgr > 0, vpp < 0) and Qg§/0 P — to when £ — & . The mechanism responsi-
8 p G m

ble for the coupling is the same, i.e. nonlocal effects.

The proposed point of view is confirmed by the analysis of the electromagnetic modes
spectra in metal with conductivity (8). As is mentioned above, for this model the DSCR condi-
tion is fulfilled only at q2 = 1 and collisionless damping is absent at q2 > 1. However, in this
case the nonlocal effects also produce the regime of coupling modes and for £ <€, there are

three roots of the dispersion equation describing the anomalous skin-effect. But, because the
function Fy = -1/ q2 when q2 >> 1, the roots of (4), (8) for low magnetic fields (® = const) are
strongly H-dependent (Fig. 2).

The «parabolic lens» is unsufficiently realistic model, as for this model the value of
|8S/8pz| is independent of p,. Real FS has extreme cross-sections S(p;) = S, (8S/dp, = 0).
Now expand S(p;) about p,,, a point of extremum S(p,). For small (p; — p,,) the cross-section

can be written as S(p;) *a + b | Pz — Pm | ", where n > 1. Using expression for the conductivity
we can easily show that the «skin» roots H-dependence is model dependent. The anomalous
skin- effect disappears for low magnetic fields in the iimit n—o (cylindrical FS). When n—1,
we have «parabolic lens» model. The classical anomalous skin-effect regime arises for the spe-
cial case n = 2. See e.g. the model (2) and free-electron model.

The work has been supported’ by the Foundation of Fundamental Research of Ukraine,
Grant N 2.4/211.

. A.B. Pippard, Proc. Roy. Soc. A191, 385 (1947).

. G.E.H. Reuter & E.H. Soudheimer, Proc. Roy. Soc. A195, 336 (1948).

. M.Ya. Azbel & M.I. Kaganov, Dokl. Akad. Nauk SSSR XCV, 41 (1954).

. A.B. Pippard, Rep. Progr. Phys. 23, 176 (1960).

. EA. Kaner & V.L. Falko, Zh. Eksp. Teor. Fiz. 51, 586 (1966).

. R.C. Alig, Phys. Rev. 165, 833 (1968).

. LF. Voloshin, 1LA. Matus, V.G. Skobov, LM. Fisher & A.S. Chernov, Zh. Eksp. Teor. Fiz. 74, 753
(1978).

8. D.§. Falk, B. Gerson & J.F. Carolan, Phys. Rev. B1, 406 (1970).

9. R.G. Chambers, Phil. Mag. 1, 459 (1956).

10. T. Kjeldaas, Phys. Rev. 113, 1973 (1959).

11. V.P. Naberezhnykh, D.E. Zherebchevskii, L.T. Tsymbal & T.M. Yeryomenko, Solid State Commun. 11,

1529 (1972).
12. E.A. Kaner & V.G. Skobov, Adv. Phys. 17, 605 (1968).
13. R.G. Chambers, V.G. Skobov, J. Phys. F1, 202 (1971).

N NN AW -

37



