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Tunneling characteristics of high- T, superconductor junctions are strongly influenced by surface degra-

dation effects. A simple theoretical approach to the problem is developed for an arbitrary normal region
near the oxide interface. It is shown that the zero-bias conductance value of a normal-metal — supercon-
ductor contact together with the low-frequency, near-zero-voltage shot-noise spectrum can serve as a
diagnostic tool to probe directly the gap symmetry of a superconductor. On the base of the model, some
criteria to distinguish between s- and d-wave pairing states are proposed and recent experimental findings
for high-temperature superconductor contacts are critically analyzed.

1. Introduction

Tunneling spectra of high-temperature superconductors (HTSC) usually exhibit highly
anomalous conductance features that have not been frequently observed in the corresponding
curves for conventional superconducting metals. Up to now, it is not clear whether these fea-
tures are related to the intrinsic characteristics of the oxides, or they appear as a result of spe-
cific electrical properties of non-ideal HTSC interfaces. In particular, it concerns the inner-gap
conductance peaks that have been repeatedly observed in HTSC-based junctions [1,2] and re-
ceived a great interest since it was recognized that their appearance in the HTSC ab-plane tun-
neling spectra can be interpreted as an impact of the anisotropic d-wave orbital symmetry of
the order parameter [3]. Now the main question concerning zero-bias conductance peaks
(ZBCP) is if they can be understood within the ordinary s-wave pairing symmetry, or the only
possible explanation is that related to the d-wave scenario. As it will be shown below, the
anomalies can appear in the first case too if to take into account the complicated electrical
properties of HTSC surfaces. In many cases they are covered by a thin non-superconducting
(N") region greatly influencing their contact characteristics [4]. Mainly, it arises due to degra-
dation processes in the upper atomic layers forming an oxygen depletion region on the cuprate
surface [5]. In this paper we develop a simple theoretical approach to the ballistic charge trans-
port in the heterostructure formed by a normal-metal injector and a superconducting bulk cov-
ered by a thin non-superconducting layer. The model captures the essential physics of the con-
tacts and follows the main lines of the previous publications on the same subject [6-8] extend-
ing them to the case of an anisotropic order parameter and the magnetic-field effect. The main
goal of this work is to obtain some general results that are independent on the nature of the
transitional layer and to elaborate simple criteria that would be useful to distinguish between s-
and d-wave pairing states.
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2. Formalism

Let us consider a superconducting heterogeneous structure shown in Fig. 1. An elastic-
scattering nonsuperconducting N’ part of the system is connected to a normal-metal (N) reser-
voir. The superconductor (S) with the pair potential depending on the direction of the traveling
quasiparticle is connected to a superconducting reservoir. We assume the usual step-function
approximation for the superconducting order parameter [9,10] and ignore the self-consistency
of its spatial variation. The Fermi wave numbers k, and other electronic parameters will be

equal in the normal and superconducting regions of the mesoscopic system. The applied volt-
age V shifts the chemical potentials in both reservoirs and causes the current / in response to
V. For simplicity, we shall focus solely on the near-zero-voltage, zero-temperature, two-
dimensional conductance G(V) = dI/dV . For voltages corresponding to energies below the

minimal value of the superconducting energy gap it is given by the well-known Landauer-type
formula [11,12]:
2 M
4e
GV)=—
h
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where Rr','e(s) is the scattering amplitude for an electron in the n-th mode with an excitation

energy € (¢ is measured with respect to the Fermi energy) incident from left in the normal

region and reflected back as a hole; M is the number of the propagating modes that will be
characterized further by an initial wave vector ke; e is the elementary charge. The amplitude

R:e(s) can be expressed entirely in terms of scattering and transmission characteristics of an

N’ region, as well as those of the N'/S interface. It has to be emphasized that in our model
these parts of the system are separated spatially (see Fig. 1). For oxide superconductors the
corresponding distance of the order of the superconducting coherence length &(k) is very
small in comparison with the width of the degraded layer and its effect may be ignored.
Consider now in detail the scattering characteristics mentioned above. An electron with an
injected wave vector ke transfers the

N’ layer (the corresponding amplitude

s is equal to te(ke,a)) without any

energy losses and reaches the N'/S
interface with a wave vector k; and

Ik

the same energy €. Then it retrore-
flects as a hole (see Fig. 1) with a
scattering amplitude [10]

Fig. 1. Sketch of the two-dimensional heterostructure con-
sidered

ek g) = exp(—iarccos(a/ {A(k;)]) —ip(k!) + iy(k))). 2.2)

Here A(k’e) and (p(k;) are direction-dependent modulus and phase of the order parameter,
respectively; w(k)) accounts the effect of a surface current in a superconductor. Without a
surface current (k') =0 but it is not so for a stationary magnetic field B applied perpen-

dicular to the plane of Fig. 1. For the field penetration depth A much greater than &(k), as in

the HTSC compounds. the width of the layer with a depressed pair potential is of the order of
§(k;) in the direction considered. Inside the layer the vector potential A that can be chosen

perpendicular to the field direction is constant and equals to BA . Then the additional magnetic-
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field dependent part of the phase shift occurring by a charge after its scattering from the super-
conductor is given by the following relation

y® = [as[+ eA/n] = +2nB/B (K’ )cosar, (2.3)

where B (k') = (DO/(Mé(k;)), D, = h/(2e), o is the angle between the k! and A vectors,

the sign of the phase shift W(B ) is defined by the field orientation and does not depend on the

charge sign.
After the Andreev-scattering process a hole with a wave vector k, and energy € transfers

through the non-superconducting transitional region with an amplitude th(k' ,E) Or scatters

from it with an amplitude k! ,€). In the last case it experiences the backscattering from the
N’/S interface into an electron state with a wave vector k’' and energy € that for & near zero
scatters back into an electron with a wave number k'e. For a scattering event when a hole is

retroreflected as an electron we obtain an equation similar to Eq. (2.2)
rh (k7€) = exp(~i arccos(s/lA(k;;)l) + ig(K /") + iy(K!) . (2.4)

In principle, we have a cascade of processes resulting in a hole going back with the wave
vector k, . It consists of Andreev-like scattering events when an electron is retroreflected as a

hole or a hole is scattered into an electron state with the same mode index (an outgoing particle
traces back along the path of the incoming charge) and reflections from the N’ layer when an

electron (hole) is scattered only in electron (hole) states. Summing the contributions, we arrive
at

ke (kL) (K v €)
1= rfe k! e)r (ke ke (k) e)
e(h)

R¥(k &) =

2.5)

Here the amplitudes *M and r include all phase shifts accumulated during electron (hole)

traveling through the normal transitional region. For a given mode with an initial wave vector
ke we obtain

e 2 h ’ 2
4 " (ke,eV)i ‘z (kh,eV)I
Gk,,V) = — - ; i (2.6)
i re(k'e',eV)‘ Ir”(k' ,eV)} ~ 2Re{er (k" eV)rt (k! eV))
with
¢ = —arccos(e/lA(k;;)l) = axccos(s/[A(k;)b + oK) = o(k.) + w(k!) + y(k’) . Q.7

The corresponding normal-state conductance depends only on the transmission properties of
the interlayer between two reservoirs and is equal to

2

2e

gk, V)= =—

Let us analyze the formula (2.6). The nominator consists of the product of two transmission

amplitudes. In the presence of time-reversal symmetry, i.e., in zero magnetic field, electrons

and holes at the Fermi energy can be considered as each other's time-reversed particles with

2
te(ke,eV)l . (2.8)

: 2 2
opposite energy signs and thus Ith (k! ,e)l = |te(ke,—8)| . Because of it in the case of an en-

ergy-dependent interlayer transmissivity a ZBCP appears independently on the superconducting
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pairing state. It seems to be just a reason why such anomaly has been detected in the tunneling
characteristics of ordinary s-wave superconductors. Another source of a ZBCP is the denomi-
nator of Eq. (2.6) that defines the energies of the quasi-bound states formed by scattering proc-
esses from the N’ layer and the N'/S interface. Their positions in energy depend on the phase
difference (p(k;")—(p(k;). If we are dealing with an isotropic s-wave superconductor where

the effective pair potential does not change with the wave vector direction, i.e.,
o(k;) = o(k’), then in the absence of a magnetic field ¢ is equal to —mn at € = 0. It means

that the denominator is maximal at zero voltage and hence without an impact of the nominator
we obtain a dip in the conductance spectrum at V = 0. Taking into account that at the Fermi
energy electron and hole excitations coincide we find the following expression
4 4
e e
1 [0 12 [0
G,(k,0) = —f—l—; == e 2.9)
(1+ -0 )?

2
ka0 ? " e

From Egs. (2.9) and (2.8) it follows that for any ballistic normal-superconducting junction
the ratio of conductance values in the normal and superconducting states (it is known as the
normalized conductance) at zero voltage bias cannot exceed the factor of two that is reached

2
only for an ideal situation when Ite(k F’O)| =1.

For anisotropic superconductors this result changes dramatically. Let us illustrate it for a

d , o-Wave superconductor with A(k) = A d cos(2®k) (the angle @k is measured relative
x-=y

to the crystalline axis along which the d-wave order parameter reaches maximum). In this case
we have a situation when the order parameter can be of the opposite sign for k;" and k;

directions. Without magnetic fields for such a mode we obtain (p(k;;) - (p(k;) = n . From Eq.

(2.6) for an specular-scattering interface between a normal injector and a d-wave superconduc-
tor we arrive at

4
2 té(k ,0)
4 |
Gd(k ,o)z_e___e.’__:
e h e \2‘2
a-|ece, o)

The formula looks like an expression for a normal metal — s-wave superconductor junction

4¢?
— 2.10
p (2.10)

with a clean interface and appears as a result of the constructive interference for scattering
quasiparticles. The last statement concerns only the conductance in the superconducting case. If
to transfer a d-wave superconductor into the normal state we obtain the same result (2.8) as for
the s-wave symmetry. It means that for small transparencies of the N’ interlayer the mode con-
tribution into the normalized zero-bias conductance value may be huge. As a result, the whole
normalized conductance spectrum defined by summation over all modes can exhibit a giant
ZBCP. The fundamental difference in the ¢ value reveals itself also in the magnetic-field de-
pendence. If the magnetic field penetration depth is much greater than the typical width of the
normal interlayer (as in the HTSC compounds), the main impact of the field arises from Eq.
(2.3) and its effect on the charge traveling inside the N’ region may be ignored. For low fields
we obtain an increase of the zero-bias conductance value for an s-wave superconductor and a
decreasing function of B in the case of a d-wave superconductor.

Above we have been dealing with the average current [ = (I(t)). In the presence of the

charge transport an electrical shot noise (time-dependent fluctuations of the current around /)
arises due to the discreteness of the charge carriers. Its measurement can provide an additional
information about the nature of the phase-coherent transport in a heterostructure [13]. The usu-
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ally used characteristic of this process is the Fourier transform of the current-current correlator
S(w) = I dr exp(imt)(AI(t)AI(O)) , where (Al(t)) =I(t)- (I(t)) is the current fluctuation away

from its average. In the low-frequency limit the correlation spectrum can be expressed in terms
of the R:e(e) scattering amplitudes [14]. At 7 =0 and for low-voltage biases, this quantity

for a normal-metal - superconductor junction is equal to
8e’|v| M 2 2
5,(0) = %ZIR:e(eV)I (I—IR":e(eV)l ). @.11)
n=1

In ordinary s-wave superconductors with uncorrelated electron transmission the shot noise is
twice the Poisson value for the corresponding normal junction that is known to be equal to
2e|1|. But it is only the maximal noise power that can be reduced as a consequence of noise-

less open scattering channels [14]. In a d-wave superconductor every n-th channel producing a
2
giant contribution to the zero-bias conductance corresponds to IR:e(eV)l =1 and thus is com-

pletely noiseless. It means that in this case the shot noise has to be strongly suppressed and the
effect will crucially depend on the junction orientation.

3. Challenges

Our results show that an appearance of a ZBCP itself is insufficient for proving the uncon-
ventional nature of the pair potential symmetry in HTSC because an enhancement of the differ-
ential conductance in junctions formed by a normal-metal injector and a superconducting oxide
could be in principle explained within the ordinary pairing scenario if to consider a realistic
model with a normal interlayer between normai and s-wave superconducting bulks. To make a
final conclusion about the order parameter symmetry, we need more sophisticated criteria. Be-
low we propose such criteria easily verified experimentally without any detailed comparison
with the curves theoretically predicted:

(1) the amplitude of the ZBCP. As it was emphasized above, the normalized conductance at
V =0 for an s-wave superconductor cannot exceed the factor of two. A narrow ZBCP with a
greater height can serve as a first indication of the d-wave scenario in a superconductor stud-
ied.

(ii) the angular dependence of the ZBCP. The next test relates to the drastic effect of the
junction orientation on the ZBCP for a d-wave situation. First of all, a maximum meeting the
first criterion must be observed only for ab-tunneling curves and, if so, its value must strongly
depend on the injection direction with the most prominent anomaly corresponding to the maxi-
mal value of the traveling modes where the electron and hole states involving in the scattering
process experience phase-reversed pair potentials. This test can be realized, e.g., in STM spec-
troscopic measurements.

(iii) the ZBCP dependence on the interface transmissivity. For a d-wave orbital symmetry
the maximal zero-bias value must not be greatly influenced by modification of the N’ layer
scattering properties. On the contrary, in the s-wave case the conductance spectrum strongly
depends on its transmissivity. The best way to realize this test is to change the tip-specimen
distance in STM experiments.

(iv) the magnetic field effect on the ZBCP. For low fields a ZBCP has to increase for an
s-wave superconductor and to decrease in the d-wave state.

(v) the zero-voltage shot-noise power. For d-wave superconductors the shot-noise power
spectrum has to be highly anisotropic in comparison with the s-wave case and greatly (or even
completely) suppressed for a definite junction orientation corresponding to a maximal ZBCP.
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Now we want to transfer to recent experimental results and compare them with the criteria
proposed. Because shot-noise measurements on the HTSC-based junctions are unknown to us,
we shall discuss only the corresponding transport properties. The main experimental data (even
those invoked to prove the unusual orbital symmetry of the cuprate order parameter) do not
meet the requirements formulated above and thus, in principle, could be interpreted within the
standard theory. But at the same time we have found some results that can be understood only
within the d-wave pairing hypothesis. First of all, it concerns the value of the zero-bias peak in
the normalized conductance that was detected to be about 8 in STM experiments for the (110)
crystal face of YBCO [15] and about 3 for an Ag/BSCCO junction [16]. A ZBCP dependence
on the junction orientation measured in the paper [15] agrees with the second criterion. The
findings of the work [17] well correspond to the third one. For the most prominent zero-bias
peak value in the STM investigations of a LSCO single crystal the authors found no effect of
the tip-sample distance changed in a wide range. There are some observations of the magnetic
field impact on the ZBCP [18,19]. Although in these papers ZBCP amplitudes have not been
greater than the value of_two, their behavior agrees with our results. The anomalies were sup-
pressed by magnetic field application in contrast with the data for a conventional superonductor
as, for example, it was obtained in the paper [20].

To conclude we emphasize that some experimental findings for HTSC oxides cannot be
definitely interpreted in terms of the conventional pairing theory and have to be regarded as
arguments for an unusual symmetry of the order parameter in superconducting cuprates. More
refined experiments are needed to clear up the controversial situation.
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