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A theoretical description of the fractal string model using the mathematical formalism of the fractional
calculation is given. The fractal properties of such model are investigated. The anomalous behavior of
the plastic subsystems of fractal string is analyzed on the basis of the given model.

1. Introduction

Lately the scientists actively try to explain different anomalous properties of physical
object [1] on the basis of the definition of the fractal string (first introduced in Geometry
[2]). At investigating the meso- and microscopic nonuniform real structure of magnetite [3]
clusters have been discovered which can be classified as fractal objects. In high-temperature
superconductors in the region of superconducting transition [4] on the lines of the
temperature absorption spectra (in the maxima) there were “shifts”of different width and
depth where the magnetic susceptibility behaves stochastically. There are anomalies in the
form of singularities such as plateau and tightened “tails” (fractal properties) on the
temperature dependencies of the absorption coefficient, velocity of sound pulses propagation
[5], linewidth of the nuclear magnetic resonance [6] near the orientational phase transitions
in orthoferrites. Adequate descriptions of the anomalous behavior of physical parameter near
phase transitions in real samples of magnets, ferroelectrics, high-temperature superconductors
require the model of the nonlinear lattice with the spontaneous deformation to be further
developed on the basis of qualitatively new representations on the nature of fractal and
stochastic properties of the lattice. For the theoretical descriptions of fractal objects it was
proposed [7,8] to use the theory of fractional calculations [9]. In [7] the connection between
Cantor fractal quantity and fractional integral has been established, that makes it possible to
propose the evolution equations with fractional time derivatives for a series of model
physical systems. In [8] equations with fractional space-time derivatives have been
introduced to describe the kinetics of particles and anomalous transport. The aim of this
paper is to introduce equations with fractional space-time derivatives for the description of
fractal string model dynamics.
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2. The basic equations of the fractal string

Let x be the coordinate of a point on a fractal string in a moment of time t . In a process
of evolution the point of the string turns from the state (x',/') to the state (x,z). In this

case displacement u’ depends on states(x,7)and (x',') in a non-local way. It is necessary
to express u'by means of u, depending only on current state (x,). This can be achieved

with the help of expansion of #' in the fractional series of Taylor under the conservation of
the first elements of expansion

!
u'=cyDyu+cyFu DlleV; Dtvuzl‘(ll—v) o, ju(x,'c)lt-'r!'vdr; 0
P
v/ . ‘ e/ . a
cz=‘t—t F(]+v), c3=1x—xl F(1+a), =D, ,

where v, are indices of order (0 <v <1, 0 <a <1} of fractional partial Riemann-Liouville
D ,V,D_(\’.‘ derivatives operators (left-side, if 7>t',x>x"; right-side, if r<t',x<x')
according to variables ¢, x; I' is gamma-function; 0,, 0, are operators of usual partial

derivatives. Using (1), for a speed v’ we get

v =0 = v +vy +v3; v =CppPr; Pr=Diu; k=12,3;

2
cy= vit—t’lv—lsign(t—t’)/l"(Hv); D,=D"V; Dy=D%3,, =

where v,v,,v3 are speeds of plastic, elastic and creep shifts, respectively, of fractal string.
For distortion B’ we find

B =0 =By +By+B3; Br =grdx: dk =Fuu F, =D 3)

gy = u{x—x'ia—l sign(x—x")/T(1+a); gy =c3; g3 =c; F3=D3,,

where 8,8 ,,B 3 are plastic, elastic and creeper distortions of fractal string. It follows from
(2) that for v, the anomalous dependencies on ¢ near ¢'close to a type A -point or an

occurrence of "jump" because of sign(z—t') multiplier availability are typical. Similar
anomalous dependencies on x close to x' for B, follow from (3). For v;, v3,B5, B3

anomalies of "a soft mode " type (at t=1"or x=x' are zero) are typical. Then we get for
energy density W of fractal string and receive action J

W =W +Wy; 2W|=pinVkVp =QinPikPpn> J = ”(Wl ~Wy )dxdt; @

2W) =K inBiBn = biknidn,
where W), W, — density of kinetic and potential energy; py,, K, — tensors of density

and force parameter of string. Non-diagonal components of tensors describe relations
between plastic, elastic and creep subsystems of fractal string. An action J is a functional
of py,qy, that's why the necessity of fracticnal variation calculation appears. We have

attempted to solve the problem for the functionals of a specified type and have got the

29



@du3MKa ¥ TeXHHKA BbICOKHX namyieHuii 1997, tom 7, Nel

required equations
Dy(anDpu) = Fy (b Fr), )

where summation with respect to index »n is meant. Under v=a=0 from (5) a wave

equation for an ordinary string follows. A particular type of a combination of the operators
with the right or left - hand derivatives in pairs D, , D, or F, F, in (5) depends on

choice of boundary conditions.

3. On commutation relations and semigroup properties of fractional derivatives
operators

In the theory of the fractional calculation the semigroup property for the fractional
integral operators Ig+ is known [9] to be

L0 f(0) =10 1 f(0)=13P f(x); @>0,8>0 (©)

where f(x) pertain to functions, which can be integrated, according to Lebege, of finite
segment [a, b}, i.e. fix) € Ly (a, b). According to definition for the left-side fractional
integral we note

I = [(x-g)*"! dk,. 7

o (%) r(a)i( £)* s(e)dg (7)

From (6) it follows that the fractional integral operator with different (o # B) or equal
B) indices of order are commuted, ie. commutator

[13‘+ ,IB ] (1“ P, 1;1) /(x)=0. The semigroup property (6) is fulfilled also at

< 0, a > 0, if f(x) pertain to functions which can appear as fractional integral, i.e.
f(x)e]t;f5 (Ll). If the pointed condition is disturbed, i.e. f(x)e Ia_f (Ll) , then the
semigroup property (6) is not fulfilled and is replaced [9] by

X=a

e 1P, f(x)=1 e (x ) *(W —~—)(x @)%k, g = ke 1( 7B f) ’ ®)

where n = 1 — [B], « >0, B > 0 ; [B] is integer part of fractional indices of order B;
coefficients 4y are calculated at point x = a+. Further we shall use the composition

formulae of fractional derivatives and the integral operators of type (8) for the case, when 0
<a<1,0<pB<l. These formulae can be obtained with the usage of the fractional derivative

definition DZ, f(x)=08, I;3* f(x) . of the relation I%, f(x)=D;% f(x)at a <0 and of the

expression (8). As a result, we get

DF, 15 f(x)=187% f(x); 15, Dg, F(x)=157% f(x)-01(%);

[Dg+»1£+]f(x)=¢l(x); (P1=b1(¥—a)ﬁ_1/r(ﬁ); b=I;* f(a). ©)
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At a =B from (9) follows the known composition formulae [9]

D IS f(%)=/(x); I8 DY S(x)=£(x)-02(x);  02=bi (x~a)*'/T(a).  (10)

For compositions and commutator of the fractional derivatives operators we find
D, D f=DE® f-3; DR DZ f=DEP f-o04; [D& ,Df+]f=q>4 ~93;
- I
03=hy/(x-a) " T(-a);  @u=h/(x-a)"r(-p):  b=1FPra)

If by = by =0, then ¢3=04=0 and from (11) follows the semigroup property of type (6)

and the fractional derivatives operators with different or equal indices of order are commuted
pg, b, f=Dl. D% /i |D&.DL]f=0. (12)

If o=p,then by=by, 3=¢4 and at b, #0 from (11) follows that the fractional

derivatives operators are commuted, but the semigroup property of type (12) is not fulfilled
and is replaced by (11). This makes it possible to conclude: if for the fractional derivatives
operators the semigroup properiy (12) takes place, then they are commuted; the inverse
confirmation is incorrect.

4. The abnormal behavior of the plastic subsystems of fractal string

First we consider only the plastic subsystems of fractal string, when all components of
tensor ag, , by, are zero except ay;, byy. Then from (5) follows the equation

: 2 2
Dy(ay, Dy)u=F (b Fy)us ayy=pyyeits by=xy8i (13)
where pjy, x;; are density and force parameter of plastic subsystems of fractal string. In

adiabatic approximation, when py; and x;follow the changed u without delay, parameters

ayy, byy can be considered as constants. Then equation (13) is simplified
D' D' u=v} D¢ D%u; vt=bylay . (14)
From (14) it follows that displacement u of a string must show fractal properties as in

the process of time (v # 0), so of space (u # O) evolution. It should be noticed that in [7]

physical interpretation as a part of system states, preserving for the time of evolution ¢’ is
given for the fractional index v.In contrast to work [7] our model also takes into account

the space fractal properties (cx # 0) of a string. By analogy with [7] fractional index o can

be interpreted as a part of system states preserving under the space evolution along the
length x’. The solution of equation (14) can be found with the help of the method of
separation of variables, that is to presuppose u(x, t)=u1 (1) Uy (x) Then from (14) we

receive two ordinary differential equations of fractional order for unknown functions u;, u,
D DY uy(t)=Mu(t); DY DS uy(x)=hyuz(x); Ay=2y of, (15)

where A, A, are constants. Using the composition formulae (11) for the fractional
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derivatives operators from (15) we receive two inhomogeneous ordinary differential
equations of fractional order

2v ) . I-v AL
DY u-Muy =y D% uy—hquy =vp; by =I “uy(r);

Y =by it—t’]"l-vlr(—v); Yo =by ix—x'E-]—a/I"(—a); balzli"uuz(x’). (16)

On the other hand, using the composition formulae (11) at once for equation (14) we
obtain the inhomogeneos equation with the fractional partial derivatives

D,z"u()c,t)-vl2 D,%au(x,t)=w3(x,t)—\u4 (x.0); by (x)=1,l_ Vu(t',x);

_I—V/I“(—v); w4:ba(t)|x—x’i—1_a/F(—a); ba(t)zl_l;“u(t,x’). (17)

y3=by, (x)it—t'

The received equations (13)—(17) are the basis for the investigation of the abnormal
behavior of the plastic subsystems of fractal string.

In this paper we consider only solutions of the Cauchy task for equations (16). Let’s
notice that spectral task about the search of proper significance’s A, , A requires a special
individual consideration. The solution of first equation from (16) with the initial condition

L% u ()=t at 0<2v<l is

w (1) = Ny (1) + N2 (0); N2=},}t-ﬂzv_lEzvyzv(zz)\y](t)dr;

2v-1 1‘2 | 2
Ni=t=t|" " Epyay (@) zn=Mle-11"" =M1, (18)

where Mittag-Leffler function E, g (z) is expressed [9] by

EG,B(Z)=’§Ozk IT (ck+B). (19)

If 1<2v<2, then the solution of first equation from (16) with the initial conditions

thv—lul (I')=b2, IIZ—ZVul (I')=b3 is

20] (I)=b2 N, (l)+b3 N3 (I)+N2 (t); N3 =il—t'|2v_2 E2v,2v—] (Zl)' (20)

The solutions (18), (20) have been obtained by analogy with [9]. First we act to the left
on differential equation with the help of operator 1,2 V. Later the received integral equation

is solved with the help of the method of the consistent approach. The structure of the
solutions of the second equation from (16) coincides with (18) , (20). Therefore at

0<2a<I with the initial condition I~ 2%u,(x')=S; we find

ey ()=s1 Ry (x)+ Ro(x); Ra = [|x=8* " Bz 20 (24) w2 (E)

’

X

,IZG .

,|2Ct.—-l .
" Eyg2a(23);  z3=halx-x

Ry=x-x za=hylx—¢%; @1
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By  analogy with  (20), at 1220<2 with  the  initial  conditions
Dl (x)=S3, o (x)=53 we obtain

s 2a-2

up (x)=s3 Ry (x)+s3 R3(x)+ Ry (x); R3=x-x E2a!2a_|(23). (22)

Then product of the found solutions ul(t) Uy (\) will be the solution of equation (14). In

this case four variants of the solutions can be realized

(B Ny +N2)(S) Ry +R;); 0<2v<l; 0<2a<l;
(by N1 +N3)(Sy Ry +S3 R3+Ry); 0<2v<l;  1<2a<2;

ulxt)= (by Ny +b3 N3 +N,)(S; Ry +Ry); 1<2v<2; 0<2ac<l; =)
(by Ny +b3 N3 +N,)(Sy Ry +S3R3+Ry);  1<2v<2;  1<2a<2.

The analysis of the received solutions (23) shows that by using equations (13)—(17) it is
possible to describe principally new physical effects typical only of the plastic subsystems of
the fractal string.

5. Discussion

At first we show that solutions (23) contain the solutions of ordinary equations as the
limiting case. Under v=1,a=1 from (16), (17) it follows that functions

vi=y,y=y3=y4=0. Then from (17) an equation of the hyperbolic type is obtained

(a wave equation)
02 u(x t)=vf 3% u(x 1), (24)
which describes the behavior of an ordinary string. The system (16) is written as
dlu (1) =2y (1)=0;  d2uy (x)-hquy (x)=0, (25)

where d,=d/dt, d,.=d/dx are operators ordinary derivatives according to variables t, X.
For  limiting case function (19) 1s expressed through elementaries
Eys (z):shzo Iz, Eq (z):ch 20,29 =712 Therefore, using the expressions (18)-(22)

under v=1, a=1 we find

Ny (1)=Tysha;;  Ns(t)=cha;;  Np=0; a=t1-1'Ty ' lek]”z;

Ry(x)=lishay; Rs(x)=chay; Ry=0; ay=x-x"I'; | =7\_2”2; (26)
by=d,u(1'); by=uy(1'); Sy=d uy(x'); S3=uy (x').
Substituting (26) into (23) or (18) , (21) , we receive the solutions of Cauchy task for
equations (24) , (25). Using (15) , (26) under A;>0, A, >0 we find /=77, where the
parameter [, v;, 7| mean characteristic limiting length, speed, relaxation time in the plastic

subsystems of the fractal string. If A; <0, A, <0, then from (26) follows
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Nl(t)z(nl_lslna:;; N3(t)=COSa3; a3:0)lt“‘t’; (01=(~}\.l)”2,

27
=), s X X ; i 1/2

RI(X)=(]| sinay ; R3 (x):cosa4, ag=q1'x—x" q1=('—>\.2) §
where ©, = qv; and the parameter gy, ®; mean characteristic limiting wave number,

oscillation frequency in the plastic subsystems of the fractal string.
Now, we consider the partial solutions from (23) for the next points (v,a), where

v,a=1,1/2,0. Using the expressions (18)—(22) under
v =1/2, 0 = 1/2 and formulae E“(z) = expz, Elyo(z) = zEH(z) = zexpz we obtain

N] (I)=6Xp()xlyl—['); Rl(x)=exp(k2 X—X'); N3 Z);!Nl; R3=}~2 Rl; (28)
b|=b2=ul(['); b3=0; Sl:SZ Zuz(X’); S3=0.
As against (26) now the functions N,, R, are not zero
1 X
N, (t)z[\m(r)exp(M:z—‘r:)dr; R, (x)z [\yz({;)exp(kz x—i)dg. (29)

’

# X

They determine the contribution in sclutions (23) from right parts of equations (16). For
the points (v.a):(l/Z,l) or (1,1/2) from (17) follow the equations of the parabolic type

with the partial derivatives of the integer order

8, u(x,t)—vlz 2u (x,t)=-—rl (x)‘t~t’:_3/2 ; n=b, (.\')/27r”2,

8? u(x,z)—v,z B u(x,t)=r (1) x—x' 32, ry=by (l)/27t”2.

(30)
For the point (1/2, 1/2) we obtain an equation containing only the first-order partial
derivatives
6,u(x,t)~'u12 O u(x,t)=ry (1) x—x’ e —n(x)e-r = (31)
Let’s notice, that the right parts of equations (16) , (30) ,(31) appear, if our model takes
into account time (vv¢0) or space (a ;tO) fractal properties of a string. The analysis of the

received expressions (24)—(31) shows that the new physical effects can be observed as the
oscillational diffusion or the diffusional oscillations.

Let’s notice, that the real structure of the lattice of magnets, ferroelectrics, ferroelastics,
high-temperature superconductors is typical of the presence of areas of quasi-one-
dimensional chains of atoms having finite length with local spontaneous deformation in the
ground state (microstrings) or of quasi-two-dimensional formations of cluster type [3]. On
the other hand, it is known [10], that near a series of phase transitions (structural,
ferroelectric, superconducting ones) in narrow temperature intervals there occur the spatially
inhomogeneous states in the form of irregular or regular structures. The proposed in [10]
theoretical model of the initiation and evolution of such structures is based on the striction
mechanism (the connection of elastic deformation with the spontaneous poiarization) and on
representations about the spatial fluctuations of the phase transition temperature. The
numerical simulation method has been used in [11] to investigate the behavior of a quasi-
one-dimensional nonlinear lattice with the spontaneous deformation, also the mechanism of
the regular-to irregular mode transition through different bifurcation sequences have been
found (with the example of the oscillation processes with the attenuation and purely
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relaxation processes). We’d like to remind , that distances from exponential to the side of
power dependence of the relaxational process parameters were experimentally established for
some fractal physical objects [1]. Theoretical approach with the usage of equations with
fractional time derivatives was successfully approved for the explanation of delayed
relaxation processes of polarization of dielectrics in work [7]. The analysis of the received
partial solutions of the equation (13)—(17) shows that our model of the fractal string can be
used to investigate the fractal and stochastic properties of the nonlinear lattice with the
spontaneous deformation in the vicinity of different phase transitions.

6. Conclusion

In this paper the basic equations with fractional space-time derivatives for the description
of the fractal string model are introduced. The obtained results under the research of Cauchy
task for the plastic subsystems of fractal string can be used under the solution of different
boundary tasks. The model of the fractal string can be used to explain the anomalies of a
number of physical parameters in the region of different equilibrium and nonequilibrium
phase transitions.
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