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A computer model of a strain of polycrystals based on the concept of cellular automata is developed.
The model allows one to investigaie polycrystal as a multilevel hierarchical system and to study singu-
larities of this system behavior depending on structure of material, strain mechanisms at the lower
levels, program of loading and/or deformation at the upper level, temperature and other parameters.

1. Introduction

The traditional description of arbitrary strain of materials is mostly phenomenological. It
is based upon the relationships connecting values of stress with the magnitude of residual
strain; parameters of these relationships are determined in test experiments. For definite pur-
poses connected mainly with the calculation of pressure treatment force conditions such de-
scription is quite satisfactory. However, as soon as there appear problems connected with the
prediction of physical and mechanical properties of materials, with the research of stability
of plastic deformation, fracture of materials, the phenomenological descriptions become un-
suitable, as all indicated processes are essentially determined by a modification of an interior
structure of material. For this reason per last 10-20 years there have been essential devel-
opment of works lying on the joint of a mechanics and physics of a solid body. In these
works the attempts of development of the deformable material models which take into ac-
count its microstructure are carried out. The known approaches of such kind belong to
R. Hill, J.R.Rice [1], RJ.Asaro [2], Mokhel’ A.N., Salganik L.R., Khristianovitch S.A. [3].

In the present work we propose a variant of such model based on the cellular automata
[4,5]. The idea of cellular automata was independently introduced by John von Neuman and
K.Tsuse at the end of 1940’s. Both of them considered cellular automata as a universal
computing environment for the construction of algorithms equivalent, by the indicative pos-
sibilities, to a Turing machine. The essence of cellular automata concept is that the area of a
research is represented by a uniform grid, with each cell containing some bits of data; the
time going forward by discrete steps, and the laws of a system behavior expressed by a
unique set of rules (for example, small reference table) by which every cell at each step cal-
culates its new state according to the state of its close neighbors. Thus, the laws of a system
behavior have a local character. By means of numerical experiments the cellular automata
allows one to study a behavior interdependence of the whole ensemble of cells on the local
microscopic laws defining evolution of each cell. Therefore, the cellular automata represents
a surprisingly appropriate tool for a computer research of a dependence of the response of

5



®duH3UKa ¥ TeXHUKA BbICOKHX Aanienuit 1997, tom 7, Ne3

material for exterior action on mechanisms of plastic deformation.

Original authors’ solution is the self-similar structure of cellular automata permitting at
once to reflect in a model a fractal structure of real materials (it is known, for example, that
the structure of actual steels represents fractal [6]). Besides, the self-similar structure can be
adequately represented by methods of object-oriented programming for numerical experi-
ments, that has allowed to use the latest developments of the programming languages pro-
viding high speed and economic distribution of computer RAM, obviousness of program-
ming, possibility of easy modification to new mechanisms of strain and structure of materi-
als.

2. Model description
2.1. Model of a polycrystal structure

According to modern views the deformable polycrystal has a multilevel hierarchical
structure. There are 4 basic scale levels [7]:

— Microscopic (atomic) with a characteristic size /;;=1+30 a, where a — lattice constant;

— Mesoscopic (level of dislocational substructures) with a characteristic size Iy, =
=0.1+3 um;

— Structural (grain level) with a characteristic size [y = 20+200 pm;

— Macroscopic with a characteristic size [ya>10 L.

Within the framework of mesoscopic and structural levels a polycrystal has a fractal
structure [6], the distinctive feature of which is the self-similarity at the change of view
level.

The described above structure of real polycrystal is simulated with the help of 3-D cel-
lular structure. The cells can be simple and complex. The simple cells do not have an inner
structure, the complicated cells consist of the simple and/or complicated ones. As a compo-
nent, the complex cell may contain ones similar to itself. This allows to simulate fractal
structures.

In the present work the complex cells having structure of cubic lattices and consisting of
27 (3x3x3) smaller cells (see fig. 1) are considered. In the general case other spatial struc-
tures and other amounts of components are possible.

1% level cell = 27 smaller 2™ levél cells

Fig. 1. Cellular automata structure
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Let's consider the neighborhood of a cell which we understand as a group of its nearest
neighbors. We assign a coordinate (m,n,k) to each cell that defines its position (m,nk — inte-
gers from 1 up to 3). The central cell in fig. 1 has a coordinate (2,2,2), its neighborhood is
formed by all remaining 26 cells. To define a neighborhood for boundary cells we assume
that the system of cells in fig.1 is enclosed from different directions by ones similar to itself.
This is the so-called periodic boundary condition. According to it the neighborhood of each
cell out of 27 cells is formed by the remaining 26 cells.

Here we finish the exposition of a structure of our model and start reviewing its func-
tioning. In summary we only state that the proposed model of a structure of polycrystal al-
lows one to take into account a heterogeneity of a material at each scale level; to reflect a
fractal nature of mesoscopic and structural levels; to describe easy interaction between proc-
esses happening at different scale levels.

2.2. Model of the stressed and strained state of polycrystals

The loaded polycrystal is characterized by inhomogeneous stressed and strained state
(SSS). With the purpose of its description we will consider the stress tensor ¢” and plastic
deformations tensor eg for each cell from the structure suggested above. The index n in

these terms specifies a level to which the considered cell belongs. It is assumed that the
largest cell, which simulates representative volume of a macroscopic level, belongs to level
1; its component 27 cells belong to level 2; components of each from these 27 cells belong
to level 3, etc. It is obvious that at the level with number » there are 277! cells.

As the plastic deformation of a cell of level n is stipulated by plastic deformations of its
component cells of a level (n+1), we suppose

6 = (g, (1)

where the angular brackets mean averaging by volume of n level cell.

We assume that the stress tensor and plastic deformation tensor of a cell of level n and
its component 27 cells corresponding tensors of level n+1 are connected by a K r 6 n eeld-s
tionship

n+l _ ~n _ n _ sn+l
o — o = Mlen - ent), @)

where M, in the common case, is a tensor of the 4™ rank. In the present work we substitute
M by scalar magnitude. Below it is referred to as the parameter of accommodation. The
sense of the title will be clarified during the discussion of the computer experiment out-
comes.

The last relation shows that the difference between the plastic deformation of any cell of
(n+1) level and an average value of this strain in limits of the corresponding cell of the n
level leads to the inner microstresses which seek to level these strains. That’s why there
happens the redistribution of stresses in limits of a cell of level n and the inhomogeneous
SSS arises inside the complicated cells.

The relation (1) allows one to calculate plastic deformation of complicated cells through
plastic deformation of their components. The plastic deformation of simple cells is deter-
mined by the mechanism of a strain operating in them.

In particular, for plastic deformation realized by means of a sliding of dislocations, the
velocity of plastic deformation is calculated by toting components, stipulated by all systems
of sliding operating in cell. In this case, for small elastic-plastic deformations the magnitude
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e s is calculated by the formula

. 1 :
= ol o0 a0
ep—ZZy (sm +ms), 3)
[0}
where m® and s® are vectors of normal to the plane of sliding and vector of direction of
sliding in system o; y* — velocity of shear strain in system a.
The magnitude of y% is determined by tangential stresses 7* operating in system o. The

magnitude of 7% is calculated in a usual way by the tensor of stresses of the corresponding
cell:

R TR O (4)

The relations connecting y* with 7* for various mechanisms controlling the dislocation

migration can be found in a number of publications on physics of plastic deformation, in
particular according to M.F.Ashby [8]
q
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where AF is the energy of activation necessary for overcoming of obstacles in a lack of ex-
5 i - j .
ternal stresses; t¢ - critical tangential stress for system o; p and g — parameters depending

on the mechanism controiling the dislocation migration (0 < p <1, 1 £ g < 2); k - Boltsman
constant; T — temperature; yJ — some parameter describing system o..

According to the cellular automata concept the process of SSS forming is researched in
discrete time 7, with a step of discretization At (t,, = mAt, where m is the integer value). At
the upper level we set the dependence of operating stress on time o' = o'(tm). At an initial
moment of time (m = 0) we suppose that the plastic deformations eZ are equal 0 at all lev-

els.
Relation (2) will be written in a modified form

c"*l(tm) - coc"(tm) = M(e;(tm_l) - e;;“(tm_l)) . (6)

This allows us to calculate cell stresses at ty, by the plastic deformations in the previous
instant ;.

The relations (1)—(6) enable one to determine the SSS of polycrystal under the given
program of the upper level loading.

If the program of the deformation of material at the upper level is set, that is the tensor
of total strains e' = e’(tm) is known, the magnitude of cl(tm) is determined under the law of
Hooke

c'(ty) =E: e;(tm) @)

1

in dependence on the elastic strain e,

(tm) , where E is the elasticity modulus tensor.

Magnitude of elastic strain is calculated by the formula

ei(tm) = e‘(tm) - e},(tm_l). (8)
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The relations (1)—(8) enable one to determine the SSS of polycrystal under the specific
deformation program at the upper level.

3. Computer realization of the model

Basing upon the described above model of polycrystal deformation we have created a
software package. During the creation of this package the object-oriented programming ap-
proach was used, where the cell of the cellular automata unit is an object of a programming
language. In the given work as such language we used Delphi programming environment
working under the control of Windows-95 operating system. It conveniently combined the
object-oriented programming approach and visualized construction of programs both from
standard and user-designed programming components.

The RAM volume is critical for work of the program. For instance, during simulation of
4-levels system with a possibility of only one sliding system in cells of the lower (4-th)
level the program required about 5 Mb of RAM. In that case it was desirable to use a com-
puter with more than 8§ Mb of RAM, so that the Windows memory distribution system
would allow program to use real RAM instead of swapping to the virtual memory (hard
drive). Otherwise the execution speed of application will be low, that will not allow to carry
out real-time numerical experiments. Program was executed on the Pentium-166 MMX
computer with 32 Mb of RAM. Under such conditions the calculation of an average pro-
gram of complex arbitrary loading of polycrystal takes about 3-5 minutes of computing
time.

4. Outcomes of computer experiments

As an example we describe the results of experiments on simulation of complex de-
forming of o-Fe polycrystals. The parameters of formula (5) are taken from Ashby’s book
[8]: AF = 0.5/10})3 b = 248107 - module of a Burgers vector; 1 = 6.4-10"° Pa — shear
modulus; 7= 1.7-107 g, T=293 K.

In fig.2 the calculated curve of hardening according to the program of polycrystal de-
forming (tab. 1) is shown.

Table 1
Program of complex deforming
Step No €xx eyy € exy ey, e
1 0 0 0 0 0 0
2 0.005 -0.005 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0.005 0 0

Tab. 1 contains e; components of a complete strain tensor for material macrounit (cell
of the 1% level). The following facts are interesting. At the unloading and loading in the op-
posite direction (step 3) the Baushinger’s effect is observed. At the deforming by a shift on
a step 4 the temporal unloading of a material happens, then the curve of hardening goes as a
prolongation of a previous step curve. In such a way the known effect of a uniform curve of
hardening is exhibited.
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Fig. 2. Hardening curve and number of plastified elements at complex loading
of a~Fe polycrystal.

In fig. 3 the outcomes of calculations of deformation in direction of the 2™ step of tab. 1
under the various values of parameter M of formula (2) are shown. According to this for-
mula the physical sense of M is in the accounting of ability of the structural elements to
accommodate to each other. The higher M, the less the ability to accommodation, i.e. there
is a stronger reaction of the environment to a «stranger». From fig.3 it follows that the
higher is the magnitude of M, the higher is a curve of hardening under the same remaining
conditions of experiment.

Fig. 4 shows the influence of the number of acting sliding planes on the shape of mate-
rial hardening curve. It is clearly seen that hardening curve lowers with the growth of the
number of planes involved.
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Fig. 3. Influence of accommodation factor M on the hardening curve
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Fig.4. Influence of the number of acting sliding planes on hardening curve

5. Conclusion

The computer model of a strain of polycrystals based on the concept of cellular automata
is developed. The model allows one to investigate polycrystal as a multilevel hierarchical
system and to study singularities of this system behavior depending on a structure of mate-
rial, strain mechanisms at the lower levels, program of loading and/or deformation at the
upper level, temperature and other parameters. It allows one to connect in the uniform sys-
tem the outcomes of research carried out at various scale levels, and to approach to the so-
lution of a problem dealing with the prediction of properties of a material subjected to plas-
tic deformation.
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