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The paper consists of two parts: (1) “As a foreword: A tiny miscellany of reminiscences” - the
dedication to K.B. Tolpygo and V.A. Telezhkin; and then (2) Algebraic Invariants And Quantum
Mechanics, where a program for constructing the nonclassical algebraic structures and a quan-
tization scheme are proposed by analogy with the Klein geometric program. In this context the
group of affine canonical transformations is considered in detail. An application to theory of
nonlinear wave equations represented as a pair of 'p"-polynomials on a nonclassical algebraic
structure is outlined.

As a foreword: A tiny miscellany of reminiscences

The destiny happily has disposed in such a manner that K.B. Tolpygo (KB) was the
first actively and successfully working professional physicist who to me could be seen.
During the first meeting with the professors of the university, even before departure
again of baked students of the faculty of physics to agricultural work and up to an actual
beginning of educational process, KB has acted with introductory speech in which he
has made an emphasis on practical value of physical education - its universality and
flexibility allow the graduates with diploma in physics successfully to work both in
various branches of science from mathematics to biology and in a national economy,
now he would say, in business and management. The life completely has confirmed cor-
rectness of the affirmation. Now, after particular social vicissitudes, the graduates of
physical faculty of the university can be seen everywhere (hardly pertinently to enumer-
ate where exactly, everyone can make it and in such a manner that it will reflect his/her
social position). Further, some years ago when I became the post-graduate student of
Prof. A.A. Borghardt of the department of theoretical physics, I has experienced this
universality and flexibility in action. In the department of theoretical physics everybody
were rather nonpredatory symbiosed that generally was possible at that time. And in all
that KB took part with lively interest and activity. It were both proper theoretical phys-
ics, and solid state physics, and biology, and it is a lot of what even to term definitely
with difficulty, and plus to all the pointed, numeric and visualization methods in various
applications. In connection with the last branch and not only with, Dr. V.A. Telezhkin,
who tragically left us last year, deserves especially kind remembrance. He was assignee
of KB at the head of the department of theoretical physics. In contrast to KB, who for
me was the professor of general physics at the university, with Dr. Telezhkin it was
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fortunately enough to prepare one scientific work (unpublished) on ultrasonic clearing
of semiconductors, perhaps, first technological application of the stochastic resonance
phenomena. I think this work is more actual now then four years back, but, unfortu-
nately, at present it is only my trouble to prepare a final draft.

In remembrance of the beautiful days, - The paper below has been discussed at the
time of the well-known KB's seminars.

Algebraic Invariants And Quantum Mechanics

A program of constructing nonclassical algebraic structures and quantization by
analogy with the Klein geometric program is proposed. In this context the group of af-
fine canonical transformations is considered in detail. An application to nonlinear wave
equations is outlined.

1. Introduction

The development of the old quantum theory was carried out in the direction: The re-
alization of observables of the classical mechanics and their algebra remained without
modification and only realization of states was changed. As a result, the theory has been
presented a wealthy of material [1]. However, the (new) quantum theory was setting off
by the other way: It was constructed in such a way that the theory remained the alge-
braic structure of classical mechanics but fully renounced an idea of phase space and of
observables as smooth functions on phase space [2,3]. Nevertheless, the idea of phase
space has appeared in quantum mechanics already at a relatively early stage of its de-
velopment [4,5] and then has taken clear form in the work [6], then in the theory of de-
formational quantization [7,8] and in a number of other works [9-12] (see [12] for fur-
ther references). The Weyl-Wigner-Moyal (WWM) representation has attracted the
main attention. Besides the WWM representation there are other representations of
quantum mechanics in phase space including rare representations [13-16]. However, the
WWM representation occupies a special position among them: In its basis lies a maximal
group (more precise definition will be given in what follows). For this reason the WWM
representation is the most appropriate initial point for algebro-geometric speculations.

The main Klein’s idea [17] lies in the correspondence to any geometry of a group
which acts in its space. In general, every group of transformations determines its own
geometry. This geometry studies properties of figures which are invariant under the ac-
tion of a given group transformations. By Klein, a group is the first notion of geometry
and it can be interpreted as group of symmetry for geometry which is arising from. All
that is well known [17,18]. The Euclidean geometry is a typical example for the group
which has the structure of semidirect product of a group of orthogonal matrices and an
additive group of vectors (in an n-dimensional space).

In this work we propose an application of the basic idea of geometric Klein program,
which is understood in a wide sense, to the problem of constructing nonclassical alge-
braic structures on the set of classical observables. The starting points are the WWM
representation of quantum mechanics in phase space and the group of affine canonical
transformations of this phase space.

This work has by the first purpose a statement of the program in the so simple terms as
far as it is possible. At least it means that we shall be limited to systems with one degree of
freedom. Certainly it is not an exhausting statement. It is an occasion for discussion.
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2. Classical and quantum mechanics in phase space

This section is devoted to a brief reminder of the concept of phase space in contexts
of the classical and quantum mechanics [1,4-6,10,19].

2.1. Classical Mechanics

Let x=(g,p)e M =R* be a point of the phase space M and (g,p) are identified

with canonical variables of a classical mechanical system, and let A be a set of smooth
functions on M. The observables of a classical system are identified with elements
f.g,---€ A and A is equipped with two algebraic structures: the pointwise multipli-
cation (the Jordan product),

(/-g)(x)=f(x)g(x),
and the Poisson bracket operation,

= -2 2.1
dgdp dpIq Y an N

which makes A into a Lie algebra. Here and in the following the notation ® is used for
the symplectic matrix.
The states of a system of the classical mechanics are probability distributions on M.

2.2. Phase Space Representations of Quantum Mechanics
As the basic example we shall remind the WWM representation of the quantum me-
chanics in phase space [5,6,21]
Let M and A be the same as in Section 2.1. For each integer k£ >0 define bilinear
partial Moyal bracket of the k-th degree

(kY gy dp i akf akg
s =00 0" — - - — . 2.2
1.e} O -0 O - (22)

For k=0 itis usual pointwise multiplication and for £ =1 it is the Poisson bracket (2.1).

It is useful to note that the {f ,g}(k) has a form similar to the k-th transvection op-

erator of the invariant theory [20,21].
The basic algebraic structures of the WWM phase space representation of the quan-

tum mechanics, the Jordan-Moyal product and the Poisson-Moyal bracket, are of the
form:

o DAY en
f g_g;(zn)!(zl {r.e}", (2.3)

and

& (=) (nY (2ns1)
{f,g}M—"Z:O (2n+1)!(2) {f.g} (2.4)

Here (-o-) is a genuine structure of the Jordan algebra and {-,-}M is a genuine structure
of the Lie algebra on A, and # is the Planck constant.
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This representation differs from the usual operator formulation of the quantum me-
chanics [2,3] in form (and only in form) but is closest under the form to the classical
mechanics. The algebraic structures of the classical mechanics are a limiting case of the
algebraic structures (2.3) and (2.4): the pointwise product and the Poisson bracket may
be derived from the Jordan-Moyal product and the Poisson-Moyal bracket by passing to
the limit #— 0. The case of quantum states is not so simple with respect to limit
7 — 0 but it is the case of particular importance which lies outside the paper.

The algebraic structures of standard operator formulation of the quantum mechanics and
the WWM representation are connected by the Weyl-Wigner correspondence rules [4]:

—lrelo{reh:  jlrel - ree.

Here [f,g|=fg—gf and [f,g] =(f+g) -f*-g’

There is a lot of correspondence rules and for every correspondence rule there is the
associate phase space representation. Among them there are rare phase space represen-

tations [13-16]. For example, the representation which relates to so called Blokhintsev
bracket,

_ )T S e i
U8k, 21 T a(x') a(x") -

It is necessary once again to note that in reminders of this section nothing was told
about states of the mentioned mechanics as it makes a subject of other program [22] and
our basic object of consideration are the algebraic structures. However, in the context of
what follows, for example, it is easy to find the relation between the basic group and
coherent states notions.

3. The problem

This section is organized as follows. Having begun with a brief reminder of the Di-
rac problem then, as a preparation to the following, we determine the invariance group
G (a group of phase space transformations) of the algebraic structures of the WWM
phase space representation. Then we pose a question on the solution of the Dirac prob-
lem by means of introducing into consideration of new algebraic structures on A4 in-
stead of the algebraic structures of the classical mechanics. More precisely, these new
algebraic structures are subject to definition by means of the required property due to
invariance under the action of the basic group G of the phase space transformations.
Then these new algebraic structures on A are subject to use for solution of the Dirac
problem by means of the Weyl-Wigner correspondence.

In such way, after obvious generalization, the basic concept of quantization is the group
of affine phase space transformations. The quantization amounts to the construction of rele-
vant nonclassical invariant algebraic structures on the set of classical mechanical observables
A . It is a clear analog of the Klein geometric program [17,18].

3.1. The Dirac problem

The Dirac problem (quantization) can be formulated as a correspondence problem in
the following manner [22,23]: To establish ab initio a mapping Q which is defined on

the algebra of classical observables f,g,---€ A, takes values in the algebra of quantum
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observables f,g,---; (self-adjoint operators acting in a Hilbert space H [2,3]), and has
the following properties:

Q1) OV +ug)=A0(f)+uQ(g), A.peR;
@)  olif.e)=5le(N-0()]

2

@3) o(r)=(e(s)) ;
(Q4) 0o(1)=1,

It is known that such correspondence problem leads to a lot of difficulties [22,23].

3.2. The basic group of the WWM representation

We take as a starting point the set of partial Moyal brackets (2.2). The Jordan-Moyal
product (2.3) and the Poisson-Moyal bracket (2.4) are the linear combinations of the par-
tial Moyal brackets. It has been outlined above (Section 2.2.) that the partial Moyal brack-
ets are in a way connected with transvections of the classical invariant theory. Hence, we
may ask the question: If the set of partial Moyal brackets is a set of bilinear invariant alge-
braic structures on the set of classical observables, what should be the appropriate group
of the phase space transformations? The answer to this question is almost obvious: It is
group of affine canonical transformations (the general form of an affine canonical trans-
formation is: x — Cx+§& , where C is a linear canonical transformation, and {€ M ; as a
group it has the structure of semidirect product of the symplectic group and the group of
vectors M: G.=Sp(M)® M . We can find this answer in the classical invariant theory

(see [20,21]).

3.3. The program

A program for the solution of the Dirac problem can be formulated now in the fol-
lowing manner.

For a given group G of affine transformations of the phase space M and for a given
system of observables A, it is necessary first of all to construct a set of bilinear maps
AxA — A invariant under the transformations of G . Then, from these maps it is nec-

essary to construct bilinear multiplication operations of Lie {-,-}g and Jordan (-o-) - If

it is possible to construct these operations in a sense uniquely, then we can use them
instead of classical operations of the Poisson bracket and the pointwise multiplication in
the Dirac problem:

(q1)  g(M+pg)=rg(f)+ug(g), MueR;
(@2)  q({/.e}) —[q(f)q(g)]

@) q((fof),)=(a(f))
(q4) g(1)=1,.

It is known that at least in the case of the algebraic structures of the WWM phase
space representation the mapping g is well defined [24].
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In such way, this program will be indeed the quantization program if at least it is
possible to construct in a sense uniquely the multiplication operations of Lie {-,-}M

(2.4) and Jordan ( o-) (2.3) starting from a set of bilinear maps which are invariant un-

der the action of the group G. of affine canonical transformations. When this test case

will be verified then it will be possible to consider other basic subgroup of the affine
transformations.

4. The basic group G. : nonclassical algebraic structures

The purpose of this section is the construction of nonclassical Lie and Jordan opera-

tions in A on the basis of a set of the partial Moyal brackets {{-,-}(k) , k=2 O} which are

the G.-invariant bilinear operations. It is easy to see that for £>2 there is no any

k =m such that {-,-}(m) is Lie or Jordan product. Hence, for a construction of nonclas-
sical algebraic structures it is necessary to use an infinite linear combination of all

{1, k=0}.

4.1. Lie structure

Let us consider a series { f, g}g with coefficients ¢, £=0,1,2,---;

{f’g}gc =ch {frg}(k) ‘
k=0
The operation {f,g}. will be a Lie product if

{f.e}, =—{e.r} @.1)

and the Jacobi identity,

{1 tehe], +H{mlr.ek ), +elhrl, ), =0 42)

is satisfied for all the observables.
Now we shall test the hypothesis that the conditions (4.1) and (4.2) determine the
coefficients {c,} in a sense uniquely. First of all, it is evident that

{7,&Y =(-1)"{g. £} for all k and it follows that

{f’ g}gc = Z c2n+l {f’ g}(2n+1)
n=0
Let us now consider the observables in .4 having the Fourier representation
f(x)~ [ 7 (o)exp (iox(x))dor,

where a(x) is 1-form on M . It is easy to see that

{exp(io2)), xpBNY,, = Y. v explian+B)(~{o 1) )
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Define a function F(z) as formal power series,
F(@)=Y 6z, F(-2)=F(2), (4.4)
n=0

where {c,,,,} are the coefficients to be found. Substituting equations (4.3) and (4.4)
into the Jacobi identity (4.2), we derive the following functional equation,

F(z,+2)F(2,)+F(-2,—2,)F(2)+F(z; -z )F(-z,)=0.

After formal manipulations we find that

F'(z)F'(z)-F"(z)F(z)=0,
since F(0)=F"(0)=0. This equation for F under the relevant condition (4.4) immedi-
ately leads to

F*(2)=-d2F (2),

and then to

F(z)=d, sin(d;z)= dz (2 +1 )" 22, (4.5)

where d, =d,d,. The obtained function F(z) (4.5) determines all the coefficients
Co s n=0,1,2,---. Hence, the corresponding G -invariant Lie product has the form

= (-1) 2 2n+1
{f’g}gc =d22 ( ) (dl) {f9g}( )' (46)

= (2n+1)!

The coefficient 5 is unessential for the bracket {-,-}g as a Lie product. The opera-

tion (4.6) will be the same as the Moyal bracket (2.4) in the case that we put 4, =1 and
d =" .
4.2. Jordan structure

s . oo k .
Now we consider the series Zk:O e 1fs g}( ) once again and also we use arguments

similar to the arguments given in the previous section with the purpose to construct a
nonclassical Jordan product.
Let

(f g ch {f g }
The operation (fog) 5, Will be Jordan product if

(fog), =(g°f)g @.7)

and the Jordan identity,

(oo oo ) ~{7o(e= 1)), ) =0 43)

'C
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is satisfied for all the observables [25].

We shall test now the hypothesis that the conditions (4.7) and (4.8) determine all the
coefficients {c,} in a sense uniquely. First, it is easy to verify that the condition (4.7)
leads to

(fog); =i{f g1

Define function G(z):
G(2)= ez,  G(-z)=G(z). 4.9)
n=0

To be repeatedly applied the procedure that was already tested in the previous section
here results in the following functional equation

G(z,)G(z,+2)-G(z,+2,)G(z;)=0. (4.10)

After simple formal manipulations we find that the function G(z) satisfies the equation
G'G'-G"G=0,

similar equation for the function F(z) from the previous section but under the other

condition (4.9). Last results in other form of the function G(z):

G(z)= dz((zl)), "z

As a consequence, the G -invariant Jordan product (f o g) ;. takes the form

(fog), = Z 2"{f g1, 4.11)

=0

It is directly visible that the structure of the Lie product (4.6) is similar to structure of
the Jordan product (4.11) but the factors d,and d, formally in any way are not con-

nected. That is, the real compatibility of the Lie and Jordan products taken into account
it is necessary to add the appropriate condition [25]:

((re g)cc°h) (f (g2h)g )C~{g’{f’h}cc}gc

Now it is obvious that our program has resulted in the Section 4 in the algebraic op-
erations which essentially coincide with the algebraic operations of the WWM phase
space representation.

For a further consideration it should be kept in mind that the algebras may be complex.

5. Blokhintsev's conjecture and nonclassical algebraic structures

This section gives a little bit greater than one more example. Actually it demonstrates
that it is convenient to get start for construction of nonclassical algebraic operations of Lie
and Jordan, proceeding from (in a sense complete) a set of partial brackets rather then
from a basic group. A set of partial brackets will be refered to as complete if on its basis it

129




Du3uKa U TeXHHKa BbICOKHUX AaBJienuii 2001, tom 11, Ne 4 (cneuBbInyck)

is possible to construct the algebraic operations having as a limiting (particular) case the
appropriate classical operations of pointwise multiplication and Poisson bracket.

It is lot of years back Blokhintsev has proposed (however, both in the context and
under the form distinct from ours) [13-15] to use structurally very simple sequence of
the following bilinear operations,

"f J'g
(0x")" (ox”)"

} where i # .
n=0

We accept here the Blokhintsev proposition and take as starting point for construction
of the nonclassical algebraic operations the following set of brackets on A (these
brackets will be called the partial Blokhintsev brackets)

o’ g"fn gn;g" it n=2k+1
fel™= (f) ():) (5.1)
ot Of g o
(0x')" (ox’)"

n=0

The nonzero elements of ¢’ are 6'° =c”' =1. The lowest partial Blokhintsev brackets
are correspondingly the pointwise multiplication and the Poisson bracket.

Certainly, (5.1) is a subset of the set of partial Moyal brackets and this circumstance
can not be a surprise. Really, (5.1) can be characterized by the affine group of hyper-
bolic rotations, h(M)®M (semidirect product) which is a subgroup of the affine
group of canonical transformations (Let us recall that the hyperbolic rotations in M set
transformations, xl' =A%, - =7C’x2, A#0; at a hyperbolic rotation the representing
point slides on hyperbola xx, = x,x, .)

Further in this section the nonclassical Lie and Jordan algebraic structures are con-
structed on the basis of the set of partial Blokhintsev brackets (5.1). In summary of the

section a general rule of constructing the nonclassical Lie and Jordan algebraic struc-
tures on the basis of an affine group is outlined.

5.1. Lie structure

Define a bilinear operation {f, g}hb on A by linear combination of the odd order
partial Blokhintsev brackets (5.1)

(.8} =3 e {81 52)

It is necessary to note that for construction of Lie operation we have chosen from the
very beginning an expression containing only odd order derivatives. If it looks com-
pletely naturally in the case of partial Moyal brackets then in the case under considera-
tion the inducing reason of physical character was implicitly used. Namely, Lie opera-
tion in physics is connected to generation of time evolution of a system. If this evolution
is reversible it must contain only partial brackets with odd order derivatives by mo-
mentum (the equations of motion are invariant under the transformation

(t,p) <> (—t,—p). This is a general remark and in any case it should be meant.
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First, it is evident that the operation {f ,g}hb is antisymmetric since all the partial

Blokhintsev brackets {7, g}B(ZkH) are antisymmetric (by definition),

{f’g}hb =_{g’f}hb >

then it is necessary only to require the operation {f, g}, to satisfies the Jacobi identity,

{f’{g’h}hb }hb +{h’{f’g}hb}hb +{g’{h’f}hb }hb =0 (5:3)

for all the observables.

Now we shall test the hypothesis that (5.3) determines all the coefficients {c,} in a
sense uniquely by the same way as in the Section 4. In order to test the above hypothe-
sis we shall use the same procedure as in Section 4.

First of all we have at hand the following expressions,

) - ) ] = 2k+1 _
{em ,e” }hb = 2 Coka {em 2" }B(ZM) =0’ Z Sy I:' (aiBj ) ' ] e
=0 =0

where o and B are linear functionals (on M).

i B iy oy =2 _ 2k+1 o
{e‘ ’{el € hb }hb =o' kzzoczkﬂ [ (a‘Bj ) ]{el e hb
s 2k+1 = 2n+l 5 vspyin
=’ z Coks1 l:" (aiBj ) ]mlm zczm [_(Yl(xm +v,8,.) ’ ]emﬂﬁm .
k=0 n=0

All the brackets in the Jacobi identity can be derived by the cyclic substitution of the

triple (o.,B,y).
Define a function F(z) as formal power series in z,

F(2)=Y ez, F(=2)=-F(2), (5.4)

Under such a definition, the Jacobi identity can be rewritten as a functional equation for
the function F(z) or as formal power series in six variables,

[F(zl)—F(yl)][F(zz+y3)—F(y2+z3)]
+|:F(zz)—F(y2)][F(z3+y1)—F(y3+zl)]
[F(z3)—F(y3)][F(zl+yz)—F(y1+zz)]=0.

It is natural to set F(z) # 0.
Differentiating formally the last functional equation one time with respect to z; and

twice with respect to y3 and then setting z; = z; = z, y, = y3 = 0; we obtain the follow-
ing equation,

F'(z)F'(z)—F(z)[F'(z)] =0,
where conditions F(0) = F”(0) = 0 have been used.

The simplest way to determine the coefficients {c,,., }: _, 1s to solve the above formal

differential equation. Under this aim, let us rewrite it in another form
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[F(Z)F’(Z):l, =0, and immediately conclude that F'(z):—dle(z), where d; is a

number. Then, it is easy to find out the formal solution of the last equation under the
relevant condition F(—z) = —F(z). Explicitly,

2k+1
) 2k 2k+1

F(z)= dE

7 (2k+1)
Finally, it is obtained that

()"
d, , k=0,1,---
Coks1 = (2k+1) 1

Here d; and d; are some constants. In such a way, we have constructed the Blokhint-
sev's Lie algebraic brackets. It only still remains to verify that these brackets really sat-
isfy the Jacobi identity. It is not a hard problem and we can justify the result using the
same trick with the function F as in the proof above. The verification is omitted here.

5.2. Yet another product is possible to construct

Let us here ask the question: Is it possible to construct a bilinear product satisfies Ja-
cobi identity and involves the even order partial brackets only? The answer to this
question is “yes”. But at the same time it is almost evident because we can in the rele-
vant construct procedure directly follow the above scheme.

Formally, starting from the following definition of the auxiliary function ¥

F(z)= icz,g” 5
k=1

we derive the same equation for the function F as in the previous section, but now
F(0)=F’(0)=0, and it is natural to set that F”(0)=2c, # 0. Differentiating formally

the functional equation one time with respect to z; and twice with respect to y3 and then
setting z; =z = z, y, =y3 = 0; we obtain the following equation

F'(z)F"(z)-F(z)F"(z)-F'(z)F"(0)=0,
where conditions F (0)=F"(0)=0 have been used. Let us rewrite this equation in the form

F'(2)[F"(z)-F(0)]-F (z)[F"(z)-F’(0)] =0,
and then conclude that
[F"(z)-F"(0)]=—-dF(z),
where d is a number. The solution of this equation, in a form of power series, is
F(z)= 4sin(d,z)+Bcos(d,z)+d,"F"(0),
and then, under conditions F (—z)=F(z), F(0)=0, it leads to the final expression,

F(z)=d,"F"(0)[1-cos(dz)].
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6. As a conclusion

Further, the following case may be considered with use: the group of affine ho-
mothetic transformations. As «use» — we mean the Blokhintsev bracket and the Klein
principle. On the other hand, it is clear that the program is presented here in a germ
form. For example, it looks very much attractive to construct nonclassical algebraic
structures on the base of semisimple Lie algebras. Thus, we can use the corresponding
structure constants A’ as starting point for definition of the following set of the new
partial brackets,

(n) ik ik anf an d"h
, ;h =7\,’J”~-'7L"j”” : - -
/g }X ox"---ox" ox’t--- Yi" " oxh.-.ox™

Under the restrictions for this presentation we are setting here this possibility as an in-
triguing remark only.

In this connection and not only with, it looks useful to consider a possible applica-
tion of nonclassical algebraic structures before to develop the formalism in itself.

6.1. Nonlinear wave equations

The algebraic principle which leads to the correspondence between nonlinear wave
equations and linear operators has been found by Lax in the case of the KdV equation
[26]. First of all we translate Lax's method into the language of the Moyal bracket.

Let L(x), A(x)e A andlet L(x), A(x) are polynomial in p, x=(g,p)e R’. The
Moyal bracket (4.6) (set for definiteness d, =1, d, = %) is a Lie algebra structure on

A . Define an integral curve in A by the equation
o,L+{4,L} =0. (6.1)
In this case
A= J'ML (x,2)W (x)dx = constant ,
as well as all
A= J (x,2)W (x)dx =constant, k=1,2,--;

where W (x) is a Wigner function and

o k
L =LoLo...oL.
- S =

k

Consider the KdV equation as an example. Set
L=p*-u(q.t), A=4p’—6pu(q.t).

In this case the equation (6.1) leads to a nonlinear wave equation - the KdV equation.
Indeed, after simple calculations
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—u, +{4p3 —6pu ,p2 _u}M =—u, _4{p3 ’u}M _6{pu ,pZ}M +6{pu,u}M
=—u, +12qu2 =™ —l2qu2 — 6uu,
=0 ()
we obtain

u, +6uu, +u,, =0

— the well-known KdV equation. Here the following notations are used:

u, = ou 5 %= a%q . Thus it is an example of the way in which we can connect non-

linear wave equations with the Lie-Moyal algebra of p -polynomials (in .4). Some

other examples of this procedure can be easity given ( see [27] for a comparison). But
just before let us recall that some known nonlinear wave equations in contrast to the
KdV equation have terms involving even-order partial derivatives, for example the
Boussinesq equation. At first sight it seems as likelihood hypothesis that in this case
even-order partial Moyal brackets may be successfully used. But it is a bad idea because
even-order partial Moyal brackets destroy the Lie algebraic structure of the equation
(6.1). In general, the correct question on using the Jordan algebraic structure (4.11) in
context of nonlinear wave equations we remain here without answer. Fortunately, there
is another way to solve the problem. It consists in considering the p -polynomials L
and A4 involving even number of nontrivial coefficients. To clarify this point we con-
sider a simple example. Set

3
L=-p° +Epu(q,t)+v(q,t), A=p’ —-u(q.t).

Then, after calculations similar to used above, the equation (6.1) leads to the following
set of equations

zut -2v, =0,
2
1 3
v, —Zuqqq —Euqu =0.

Excluding from these equations v(q,t) we obtain

3u, +(uqqq

+ 6uqu)q =0. (6.2)
The equation (6.2) is among the forms of the Boussinesq equation.

Almost evident the generalization is in considering the p-polynomials of a general
form:

N K
L=zun(q,t)p", A=2vk (g.1)p",
n=0 k=0
and the corresponding equations for the coefficients of these p -polynomials.

The next step should be in involving the scattering theory in this frame (for example,
using the reworking of [28]).
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