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There is a considerable amount of interest in the high-pressure phases of transition metal di-
oxides because these phases quite often exhibit high bulk moduli and thus are good candidates
for hard materials. Here, we report the results of first-principles electronic structure calcula-
tions of the equation of state and volume-dependent bulk and electronic properties for a number
of such oxides. A full-potential linear muffin-tin orbital method (LMTO) has been employed
within the local density and general gradient approximations for exchange-correlation effects.
The rutile-type and fluorite-type phases of these dioxides have been investigated. It was found
that fluorite-type phases possess high bulk moduli, which is a result of a strong covalent bond-
ing between d-states of transition metal and oxygen p-states. The possibility to stabilize these
high-pressure phases at ambient conditions, for instance by epitaxial growth on a cubic sub-
strate, could open new avenues for hard materials to be used in technological applications.

Introduction

In the last decade the search for candidates for new hard materials has been carried
out experimentally, as well as theoretically, by employing new methods developed in
computational solid-state physics. Initially this search was concentrated on covalent
compounds, where directed covalent sp3-bonds between atoms of C, B, and N can
provide strong binding with a very rigid and hard structure, and the deformation of
these bonds requires a substantial energy. Examples of such hard materials are dia-
mond, the cubic BN, and the hexagonal WC [1-3]. Recently a new class of hard ma-
terials, namely transition metal dioxides MO», has been proposed [4—6]. Some phases
of these compounds presumably possess high bulk moduli and therefore are candidates
for hard materials.

A strong correlation between hardness and a bulk modulus value has been con-
firmed in a number of recent papers [1,7-9], indicating that the bulk modulus is re-
lated to the stiffness of the lattice. Strictly speaking, a high bulk modulus does not
imply hardness in every case, and the shear moduli have to be high as well. Then a
stress is not easily transferred in different directions, what prevents an unsymmetric
distortion of the crystal lattice. Thus for noncubic compounds the shear moduli can
serve as more reliable measure of the hardness, whereas for cubic compounds the bulk
modulus should be a quite good indicator of hardness, since it is related to an iso-
tropic deformation [4]. In the present work no attempts were made to obtain any
quantitative values of hardness based on the calculated bulk moduli. The only as-
sumption, used in evaluation whether a given compound is a good candidate for being
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hard material, was a proportionality between hardness and stiffness.
Structural transitions have been observed in RuO» [4] from the rutile phase to an

orthorhombic distorted rutile phase at a pressure of 8 GPa and then to the cubic fluo-
rite phase at 12 GPa. This fluorite phase appeared to be metastable and having a very
high bulk modulus, 399 GPa [4]. In order to reveal trends favourable for obtaining
such hard materials, ab initio calculations of electronic structures and bulk properties
are performed for a number of 4d- and 5d-transition metal dioxides. In this study we
restrict our attention to dioxides with the ground state rutile (or distorted rutile) phase,
and consider a possibility to stabilize the high-pressure cubic fluorite phase at ambient
conditions.
Method of calculations

A full-potential linear muffin-tin orbital method [10] (FP-LMTO) has been em-
ployed to calculate the total energy as a function of volume for transition metal diox-
ides. The Kohn—Sham equation is solved for a general potential without any shape
approximation. A unit cell is divided into non-overlapping muffin-tin spheres, sur-
rounding each atomic site. Inside these spheres, where the charge density varies rap-
idly, the basis functions are Bloch functions built up of the radial functions times
spherical harmonics. In the interstitial region, the charge density is slowly varying,
and a basis function in the interstitial is defined by the Bloch function of solutions to
the spherical Helmholtz equation with nonzero kinetic energy %, or a linear combina-
tion of such solutions for different kinetic energies. A basis function in the interstitial
is therefore expressed as a Bloch sum of Hankel or/and Neuman functions, which in
turn is represented as a Fourier series. The Fourier representation of this basis func-
tion is taken from the Fourier series of a function matching the basis in the interstitial
region but not inside the muffin-tin (MT) spheres, a so-called pseudowave function,
whose exact shape inside the MT is of no principal importance for the final solution
as long as it is continuous and differentiable at the sphere boundary and matches the
true basis function in the interstitial. It must also have zero slope at the origin of each
sphere.

The radial part of a basis function is constructed from the numerical solutions
07 (Ey,r) of the radial Schrédinger equation in a spherical potential at the fixed energy
Ey and their energy derivatives, d¢;(Ev,r)/dE. Here, the index L stands for a collec-
tion of quantum numbers: the principal quantum number 7, the orbital quantum num-
ber [, the azimuthal quantum number m, and the kinetic energy k2. The tails of the
basis function outside their parent spheres were linear combinations of Hankel or
Neuman functions with nonzero kinetic energy. Further, a so called «double basis» has
been adopted, where two different orbitals for the same principal and angular quantum
number are connected at the sphere boundaries, in a continuous and differentiable
way, to Hankel or Neuman functions with different kinetic energy %2 in the interstitial
region. The spherical harmonic expansion of the charge density, potential, and basis
functions were carried out up to a cutoff in angular momentum, / = 8.

The potential used for solving the radial Schrudinger equation is obtained from the
charge density by solving Poisson's equation. The exchange-correlation potential was
treated in both local density approximation (LDA) [11] and the generalized gradient
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approximation (GGA) [12] of the density functional theory. In the present calculations
the spin-orbit coupling was included at each variational step, although the calculations
were carried out in the scalar-relativistic approximation as well. Together with the
variational principle, this reduces the Kohn—Sham equation to a generalized eigen-
value equation, which can be solved by matrix diagonalization. In the first iteration,
the overlapping atomic charge densities were taken. A new charge density is then con-
structed from the eigenvectors obtained through the variational procedure, and a new
solution is obtained. The procedure can then be repeated until some criterion for self-
consistency is met.

The electrons of the transition metal were divided into core, pseudo-valence and
valence states. In the present calculations the basis set included the 4p, Ss, 5p, and 4d
orbitals for 4d-transition metals, correspondingly the 5p, 6s, 6p, and 5d orbitals for
Sd-metals, and also 2s, 2p, and 3d orbitals on the oxygen site. All states were con-
tained in the same energy panel, with the low-lying p-orbitals on the metal site treated
as a pseudo-valence states, i.e. as itinerant electrons but with considerably lower tail
energies. In this way hybridization between the valence and pseudo-valence states is
taken into account. The integration over the Brillouin zone was performed using the
special point sampling and with a Gaussian smearing of 10 mRy. After achievement
of self-consistency, the tetrahedron method was employed to get the density of states
(DOS) on a fine energy mesh.

The electronic structure calculations were performed for a number of lattice pa-
rameters for both fluorite and rutile structures. The fluorite structure has a FCC Bra-
vais lattice with a metal atom at (0,0,0) and two oxygen atoms positioned at
(1/4,1/4,1/4) and (—1/4,—1/4,—1/4) in units of the lattice constant. The transition metal
atom has an octahedral environment with eight oxygen atoms as nearest neighbours,
while the oxygen atoms are positioned at a tetrahedral site with four metal atoms as
nearest neighbours. In the tetragonal rutile structure, the metal atoms are positioned at
(0,0,0) and at (1/2,1/2,1/2) sites while the four oxygen atoms occupy =*(u,u,0) and
+(u+1/2,1/2-u,1/2) sites, with a typical value of 0.3 for the internal parameter u. There
are the oxygen octahedra surrounding each M atom. The experimental values of c/a
and u parameters were fixed in our calculations, with the lattice parameter a varying
in a wide range.

Results and discussion

For the rutile phase the calculated lattice parameters appeared to be in agreement
with experimental ones to within 2%, which is a rather normal underestimation when
LDA is used in combination with FP-LMTO method. A large part of this underesti-
mation is therefore probably due to the overbonding tendency of LDA, which gives
slightly overestimated bulk modulus. By contrast, the GGA approximation often -over-
estimates the lattice constants when compared with experiment, and the bulk moduli
become smaller than the LDA and the experimental ones. In this work, however, we
are interested mainly in revealing of general trends in the calculated electronic struc-
ture and bulk moduli. Therefore we present results obtained within LDA, in order to
compare them with earlier calculations, which were performed within the same ap-
proximation.
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The bulk moduli were evaluated for both the rutile and fluorite phases from the
calculated total energy E as a function of volume V, which was fitted to analytical
parametrizations for the equation of state, such as the Murnaghan and recently pro-
posed universal [13] equations. As an example, the evaluated equations of state for
rutile and fluorite phases of RuO; are presented in Fig. 1. In this case the calculated
E(V) values were fitted to Murnaghan integrated equation of state. The universal
equation [13] has given almost the same E(V) curves and bulk moduli for all com-
pounds studied. The bulk moduli, B, calculated within LDA are listed in Table. The
effect of the spin-orbit coupling, included to the Hamiltonian, appeared to be almost
negligible for the calculated bulk moduli, even for 5d-transition metal dioxides.
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Fig. 1. The calculated equations of

> -9366.30 7] state for rutile (solid) and fluorite
) i 1  (dashed) phases of RuO; fitted to
-9366.321 7| Murnaghan integrated equation.
r 1 Energies and volume are given in
-9366.34 - atomic units per RuO, molecule
-9366.36} -
L 1 1
150 200 250
I, arb.units
Table
Bulk moduli, Btheory and Bexp, of transition metal dioxides (in GPa).
Lattice parameter, Qtheorys in a.u.
Compound Structure Atheory Btheory Bexp
RuO, rutll.e 8.42 297 270
i fluorite 9.00 345 399
RhO, rutll.e 8.39 249 =
fluorite 9.11 303 =
TcO, rutll'e 8.45 290 =
fluorite 9.05 327 i
050, rutll'e 8.51 271 =
fluorite 8.99 392 =
1rO, I'lltll.C 8.53 266 -
fluorite 9.20 319 =
ReO, rutll.e 8.61 256 -
fluorite 9.26 305 =
ReRhOy rutll.e 8.55 255 =
fluorite 9.13 325 —
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The electronic structure of MO, compounds is governed by a strong hybridization
between the M-d and O-p states. The total densities of electronic states (DOS), N(E),
evaluated for fluorite and rutile phases of OsO,, are presented in Fig. 2 and Fig. 3,
respectively. For the corresponding phases of the isovalent compound RuO,, the be-
haviour of N(E) was found to be very similar. In general features this behaviour is
reproduced qualitatively for other later dioxides: RhO», IrO,, TcO,, and ReO,. As is
seen in Fig. 2, the total DOS for the fluorite phase consists of four groups of bands,
well resolved in energy. The two lowest are dominated by the O-p character with a
small Os-d contribution, while the two higher lying bands are dominated by the Os-d
states with a small fraction of the oxygen p-states. Therefore the two lowest groups of
bands can be considered as the bonding part of the hybridization complex formed by
the nearest neighbour bonding O-p and Os-dy, = states, while the unoccupied highest

lying bands belong to the corresponding anti-bonding part. The third highest lying oc-
cupied narrow peak is formed predominantly by the non-bonding Os- deg states. In

the fluorite phase RuO; and OsOj, analogously to diamond, have an optimal number
of valence electrons to occupy the bonding states, while leaving the anti-bonding
states unoccupied. There is also an optimal energy separation between the O-p and
metal d-states in these compounds to provide strong bonds without having to invoke
any substantial charge transfer. The small charge transfer from oxygen to the bond
between Ru (or Os) and O points to covalent character of the bonds.
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Fig. 2. The total density of states for OsO; in the fluorite phase
Fig. 3. The total density of states for OsO; in the rutile phase

The rutile phases of OsO; and RuOj are metallic, with the Fermi level positioned

in a local minimum of N(E) in Fig. 3. In general features this N(E) resembles the
DOS calculated for the fluorite structure (see Fig. 2), indicating a strong p—d hybridi-
zation. The high peak just below Ef originates mainly from the Os-d;  states,

whereas the lower broad peaks lie in the range of predominantly oxygen p-states.
There is a qualitative agreement of the calculated DOS in Fig. 3 with the experimental
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XPS spectra measured for RuO, [14].

As can be seen in Table, changing from Ru to Os increased the bulk modulus for
the fluorite phase of the dioxide. Substituting Ru (or Os) in the dioxides with a d-
element from another group leads to larger equilibrium volumes and smaller bulk
moduli. For later transition metals, Rh and Ir in MO», the anti-bonding states are get-

ting filled leading, in turn, to weaker bonds. When going to lighter transition metals,
Tc and Re in MOy, the unfilling of the non-bonding d, ~ states has but little effect on

the bonding properties. However, a high value of DOS at the Fermi energy indicates
that the fluorite structure is probably unstable for TcO; and ReO;. For the early 4d-

and 5d-dioxides the bonds are of more ionic character.
Besides studying MO; compounds, the similar calculations were performed for a
pseudo-binary dioxide with rutile-like ground state structure, namely ReRhO4 [15].

The corresponding bulk moduli are given in Table, and appeared to be some lower
than for isovalent RuO; and OsO, compounds both in the rutile and fluorite phases.

In summary, the electronic structure of transition metal dioxides in rutile and fluo-
rite structures has been calculated and high bulk moduli were evaluated for MO; in

the cubic fluorite phase, especially for the isovalent compounds RuO> and OsO;.

These results can be explained by specific favourable conditions for strong covalent
bonds for these materials. The calculated electronic structure and bulk properties of
RuO; are in good agreement with experiments. It seems promising to study a possi-

bility to stabilize more dioxides in the cubic fluorite (or a fluorite-like) structure under
high pressure, or at ambient conditions, for instance by epitaxial growth on a cubic
substrate.
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