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Local coordination numbers can be estimated from liquid structure factors by a number of
routes. Here, we keep as close as possible to the liquid structure factor S(q) data, determined
by diffraction experiments. For the expanded fluid heavy alkali metals along the liquid-vapour
coexistence curve towards the critical point, the coordination number varies linearly with num-
ber density. Here attention is focused also on the melting curve of Rb under pressure, the re-
sults being compared and contrasted with the predictions of the one-component plasma model
(OCP). Such liquid alkali metal behaviour is then compared and contrasted with that of some
highly directionally bonded fluids including B,C and Si, in the latter two of which liquid-liquid
phase transitions occur in very different regimes of thermodynamic state.

Finally, some structural integrals involving pair potentials and the pair correlation functions
they generate are used to define a characteristic 'structural length'. In turn, this is compared
with a 'thermodynamic length' which is defined as the ratio of surface tension to the deviation
of the pressure P from its perfect gas value pkgT . Some numerical results are given utilizing

pair potentials and corresponding structure factors for Be and B.

I. BACKGROUND AND OUTLINE

Winter et al. [1,2], in pioneering neutron diffraction studies on the structure factors
S(g) of liquid metallic Rb and Cs, considered a number of thermodynamic states along
the liquid-vapour coexistence curve towards the critical point. One major finding of
their studies was that the high coordination numbers just above the freezing point,
compatible with the local coordination in hot bcc crystals, were progressively reduced
as these two heavy alkali metallic liquids were highly expanded. From the same ex-
perimental structure data, it was found for liquid Cs that the near-neighbour distance
was relatively constant, as the density is lowered, which lends support to the view that
a chemical bond is the basic building block in these expanded fluid states [3]. For lig-
uid Rb, however, the near-neighbour distance remains constant only up to 7 =
= 1200 K. Both the experimental results [4] and results from molecular dynamics
simulations [5] can be fitted by the linear relation
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where z denotes the number of near neighbours or the main coordination number and
p is the number density. Depending on the formula used to derive z from the pair cor-
relation function g(r), this relation predicts values for z at the critical point ranging
from two [4] to about 4.5 [5].

Subsequent to the experiments of Winter et al. further studies of Rb have been re-
ported, but now along the melting curve under pressure. These will be the focus of
section two below, where some insight is gained into the changes in liquid structure
factors with pressure in Rb by invoking the one-component plasma (OCP) model
[6,7]. Section three will then be concerned with comparing and contrasting the prop-
erties of nearly free liquid metals with those of some highly directionally bonded flu-
ids, including liquid B and C. In particular, liquid-liquid phase transitions (LLPT) in
both liquid C and Si will be one focal point. Some brief discussion of the melting
curve of Ar will also be reported, where a comparison will be made with a model of
such melting curves derived from inverse n-power repulsive pair potentials. Two
lengths, one thermodynamic and one structural will be defined and discussed in Sec-
tion 4 while Section 5 constitutes some suggestions for possible future studies.

II. STRUCTURE AND COORDINATION OF Rb
ALONG ITS MELTING CURVE UNDER PRESSURE

A. Comparison with bare OCP model

In a recent paper by Shimojo et al. [8] the effects of pressure on the structural and
electronic properties of liquid Rb were studied along its melting curve using ab-initio
molecular dynamics (MD). Simulations were carried out for three different thermody-
namic states along the melting curve for which the values of density and temperature
are given by (0.010 A-l, 350 K) near the triple point, (0.015A1, 520 K) and
(0.020A4-1, 570 K) corresponding to pressures of 0, 2.5 and 6.1 GPa, respectively.
Over this pressure range good agreement with experiment was found.

Since the structure factors S(g) and pair correlation functions g(r) of liquid alkali
metals have highly symmetric peaks, the method of 'symmetric main maximum’ [2]
was used to define the local coordination number z:

Rm
z=2p Jg(r)41l:r2 dr 2)
0

with R,, the position of the first maximum of g(r). It must be noted explicitly, how-
ever, that there is a degree of arbitrariness in the definition of z. An alternative for-
mula which is frequently used [9] is
Rpyin
Z=p Jg(r)4n:r2 dr 3)
0

where R,, now denotes the position of the first mininum after the first peak of g(r).
Inspired by eqn. (1) we rewrote eqn. (2) as follows
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4 4R2 T .
7= 2(§nR;§1)p+—ffﬂf(S(q)— il RJada (4)

with ji(gR,,;) the first-order spherical Bessel function. This formula has the obvious
merit that starting from e.g. an experimental S(g), only one integral needs to be evalu-
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Fig. 2.1. gocp(r) and gyp(r) for liquid Rb
along the melting curve under pressure
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ated, plus, however, determination of
R,,. From the experiments of Winter
et al. R,, = 5.2 A along the liquid-vapour
coexistence curve of Cs and inserting
this value into the first term of the right-
hand side of eqn. (4) gives a coefficient
of about 636 A3. However using eqn. (1)
to fit experiment gives a value for o of
about 1177 A3. This reveals still a con-
siderate density dependence of the inte-
gral on the right-hand side of eqn. (4)
along the
curve.
Shimojo et al. found that liquid Rb is
compressed uniformly up to 2.5 GPa, the
local coordination number z remaining
constant at its solid bcc (the structure
from which Rb melts under atmospheric
pressure) value of 8. In going from 2.5
to 6.1 GPa the local coordination number
increases to about 11, indicating a struc-
tural change to a denser structure. They
then decomposed the electronic density
of states into its angular momentum ei-
genstates D(E) and found that, as the

liquid—vapour coexistence

pressure increases, the d-component near
the Fermi level becomes gradually more
important (at the cost of a decrease of
the s-component), going from a very
small contribution near the triple point to
the main contribution at 6.1 GPa.

The effective ion-ion potential in
monovalent metals such as Na is known
to be rather soft compared to polyvalent
metals such as Al For this reason the
OCP-reference system has proven to
give a lower variational bound to the
free energy and a better fit to the ex-
perimental structure factor of liquid Na
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and Li [10] than does the hard-sphere fluid. Liquid Al, however is found to be de-
scribed better by the hard-spheres reference system. The focal point here therefore is
to examine how well the OCP pair correlation function gocp (r) generates the main
features of the MD pair correlation gmp(r) for liquid Rb at atmospheric pressure and
how this evolves as one goes to higher pressures. More specifically we have examined
the OCP predictions for the local coordination number z and the position of the first
peak of the pair correlation function.

The values for the coupling strength I" for the three thermodynamic states with in-
creasing pressure are approximately I'= 167,126 and 128. The gocp(r)'s at these val-
ues for I were obtained by interpolating between the gocp(r)'s that Hansen [7] cal-
culated from MD-simulations of the one-component plasma for a different set of
I" -values. Figs. 2.1, a, b and ¢ show the gmp(r)'s for the three states respectively
compared with the relevant gocp(r)'s. Good overall agreement is found although that
the first peak is better reproduced than the second one.

We notice from Fig. 2.2,a, which shows the position of the first peak in g(r) as a
1

%
function of [VT , Vo being the equi-

4.8 2

A

librium volume at atmospheric pres-
sure, that up to 2.5 GPa the OCP
curve and the Rb curve run closely
parallel, confirming that Rb is com-
pressed uniformly. For pressures be-
04 tween 2.5 and 6.1 GPa there is a clear
° deviation from uniform compression,
0.8 0.9 1.0 the two curves now crossing each
other. Using definition (2) to calculate
a the coordination number z we find

that z remains roughly at a constant

value of about 7, close to 8, the value
114 - for the bcc-structure from which the
Rb-MD classical OCP melts at I'=(155%10)
-

[7]. Fig.(2.2, b) shows and contrasts
the predictions for the coordination
number from the MD-simulations of

rpeak

4.4+

coordination n°
©
i

8] OCP - liquid Rb and those for the OCP.
74 PR i Thus we conclude that the change
of state of the electrons does not in-
6 08 085 090 095 10 fluence .sxgmﬁcant.ly the values of the
( 1/3 near neighbour distance between the
W/ VO) ions although it does cause a slight
b change in slope indicating a departure

Fig. 2.2. Comparison between OCP predictions  from uniform compression. Also the
and results from MD simulation of liquid Rb. (@)  height of the first peak, although this

for the position of the first peak of g(r) and (b) height, contrary to that of the first
for the coordination number z ’
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peak of S(g), does not have a very direct physical interpretation, is reproduced quite
accurately. That the change in coordination number is not reproduced correctly by the
OCP should occasion no surprise since we know that in the real liquid the change in z
is driven by an electronic s-d transition while the electrons in the OCP are simulated
by a uniform background.

B. Electronic effects incorporated into OCP model

We now discuss briefly how we can incorporate those electronic effects to go ana-
lytically from the OCP-structure factor Socp to the real structure factor S(g). Since the
pair correlation function g(r) is essentially the Fourier transform of (S(g)-1) this
should give information of screening effects on local coordination. The simplest pos-
sible inclusion of screening effects is the random phase approximation (RPA) which
assumes that the interference of all correlations with third particles in the liquid is
destructive, not only at large distances but also at small and intermediate distances. In
this approximation the following general formula is obtained between the structure
factor and the assumed pair potential ¢ [31]:

1
polg)
S 1+ : 5
(a)= [ KT (5)
In sp-bonded liquid metals the effective pair potential in g-space ¢(q) can be written

as the sum of the direct Coulomb repulsion between the ions plus an indirect term
coming from the screening correction i.e.

olg) = = +9(9) ©)

vla)= 4:512(/ )~ [$— IJ “

S(q)being the Lindhard dielectric function and V,i(q) the Fourier transform of the

with

electron-ion pseudopotential. Inserting the decomposed expression (6) into eqn. (5)
and applying the RPA in the OCP as well as in the metal leads to the following for-

mula
5858 (q)

pvig
120 e

S(q)=

(®)

One can now insert into this equation a structure factor obtained from computer ex-
periment on the OCP in order to (hopefully) get a better approximation for S(g) then
if one would use only eqn. (5). Obviously, because of the underlying physical as-
sumptions eqn. (8) is only valid in the small-angle scattering region and unfortunately
already gives meaningless results for the first peak of S(g). As Senatore and Tosi [11]
pointed out, this can be remedied by introducing an empirical cut off of the screening
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correction V(q) at the first node of V,i(g), a procedure which can be reconciled with

the optimized random phase approximation (ORPA). However these formulae start
from the assumption of a spherical Fermi-surface and weak scattering, assumptions
which are unjustified when the valence electrons start to occupy (partly) directional
and resonant d-states as is the case in liquid Rb under pressure.

We conclude by noting that the behaviour of liquid Rb under pressure is in sharp
contrast with that of liquid Na for which, as the experiments of V.A. Ivanov et al.
[12] pointed out, the coupling strength I" along the melting curve under pressure
tends to the value of 155, the value of I" for which the classical OCP melts [7]. This
shows that, up to the measured pressures, Na remains a nearly free electron metal, in
fact becoming more uniform as one goes to higher pressures. So in contrast to Rb,
screening effects which change the interatomic potential become less important as we
go to higher pressures.

C. Inverse power pair potentials: melting of Ar and K

A more general class of reference systems, of which the bare Coulomb force and
the hard spheres are special cases, are the inverse power pair potentials proportional to

1
—,- It is of interest in the light of the above discussion of the melting curve of Rb

r

under pressure to briefly record results on the corresponding curve of Ar. The experi-
mental melting curve is shown in Fig. (2.3). For comparison we have plotted the Si-
mon melting curve [13]

]+%

6 - P-PF =a (1) -1 9)

| Ar melting curve 1,

5 4

4; which has been proved to be ex-
s act for inverse power repulsive
O 31 potentials.  The  experimental
sz ] curve is reproduced exactly
| choosing a = 0.23 and n = 6. The
1 best possible fit, obtained by
T forcing n to be equal to 12 is
0 0 " 500 400 | 600 800 also shown in the plot. Though
T.K the repulsive part of the potential

Fig. 2.3. Melting curve of Ar: experimental values . .

[14] (dots) compared with Simon melting curve for 10 AT is roughly like —5 pre-

n =6 and n = 12 respectively (solid lines) r
sumably the better fit with n = 6

is mimicking a compromise between pure repulsion and Van der Waals attraction.
Using eqn. (9) to fit the melting curve of Rb leads to an unphysical value for n of
0.34. For Ar we conclude that although the hard sphere phase diagram already has a
melting curve, the attractive term does influence the shape of the melting curve.
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II1I. COORDINATION NUMBER CHANGES
IN CHEMICALLY BONDED LIQUIDS: B, C AND Si

The experiments of Tsuji [15] pointed out that the high pressure behaviour of co-
valently bonded liquid metals or semiconductors differs substantially from that of the
nearly free electron metals considered in the previous section. Application of pressure
to covalently bonded liquid metals causes existing bonds to break and new bonds to
form and, as a consequence, the position of the first peak of g(r) can remain constant
or even shift towards larger values, in spite of the compression. These facts inspired
us first to look at theoretical predictions of similar changes in covalent bonds and the
possible change in coordination numbers associated with them.
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) Fig. 3.1. Carbon phase diagram:
p Citioa] point 1 The solid lines present the simula-
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Eh ’.’ T tions. The diamond-graphite line
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A K by F.P. Bundy [18] (redrawn from
I / ref. 17)
4
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Ferraz and March [16] suggested in connection with the phase diagram of C the
possibility of a liquid-liquid phase transition (LLPT) into a low-density liquid with sp-
hybridization. Pioneering work of Glosli and Ree [17] using atomistic simulations
with a bond-order potential has proved the existence of a first-order LLPT in C.
Fig. (3.1) shows the carbon phase diagram now including the new phase line which
starts at a triple point on the graphite melting line and is terminated by a critical
point. They found that the phase change is associated with a change in density and in
local structure; while the high-density liquid is mostly sp3 bonded with little sp char-
acter, the low-density liquid is predominantly sp bonded with little sp3 character [18].

Following this discussion of different hybridization states in different thermody-
namic states of liquid C, we note also recent work, both experimental diffraction using
containerless techniques involving electromagnetic levitation plus computer simulation
studies. Continuous interest in the development of containerless techniques involving
levitation has recently made it possible to gain access for the first time to materials
with extremely high melting temperatures and high reactivity such as B in the liquid
and supercooled state [19]. Pure boron melts at (2360% 10) K from the isolating B-
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rhombohedral phase to a metallic liquid of which the precise structure is unknown.
The structural unit in the solid phase is a 12-atom regular icosahedron which is posi-
tioned at the center and the vertices of a pentagonal pyramid giving rise to an average
coordination number of 6.6. Both experiment [19] and MD simulations [20] agree on
the fact that, in the liquid, boron has a relatively open structure with a coordination of
about six, a number which remains fairly constant when the temperature is changed,
except when going into the supercooled region when it rises to a value of 6.2.

The main question remains, however, whether the icosahedral units survive the
melting transition. This was not the case in the MD-simulations from Vast et al. [20]
but these calculations only simulated 48 atoms. According to Krishnan and Price, one
of the indications that the icosahedrons survive is the surface tension of B, which is
found to be low.

Table 3.1.
Changes in coordination z with thermodynamic state of liquid boron
Phase T.K Z
Liquid 2600 5.8+1
Liquid 2400 5.8+1
Supercooled Liquid 2090 6.2+1
Liquid (MD-result) 2600 6.0

Liquid Si is metallic [21,22] and has a coordination number near to six, thus hav-
ing also a relatively open structure compared to other liquid metals near their freezing
points. The indication from this is that some directional bonding characteristics persist
above the freezing temperature. This view is supported by studies of supercooled lig-
uid Si [23]. The point to be stressed about Si in the present context, however, is that
there is a significant but continuous lowering in local coordination number z with su-
percooling. Such a change in z found from diffraction measurements is consistent with
MD-simulations [24]. These simulations, however, also reveal a LLPT in Si near the
bulk supercooling limit from a metallic phase with coordination number 4.6 to a semi-
conductor phase with four-fold sp3 coordination.

Then going into the inversion of the structure factor obtained from ab-initio MD by
Vast et al. [20] at one thermodynamic state, following Reatto et al. [25], has led to
the effective ion-ion pair potential shown in Fig. (3.2). For comparison, the electron

0.010 1 |
0.008 Fig. 3.2. Pair potentials for
= 1 & specific thermodynamic states
< 0.006 B of liquid B and Be. The for-
~ ; ~ mer was obtained by Vast et
= 6004 al. [20] by inversion of a
< ] N Be structure factor. The striking
0.002 g / similarity between the attrac-
R Vb S _ tive first minima and the sub-
0.000 VL N e . sequent and larger repulsive
T 2 ﬂ ‘4. 6+ .8 — 10 1o 14 hump is the point to focus on
| R L"" - h
-0.002- ! r.a.u. ere
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theory plot of the high conductivity divalent liquid metal Be calculated by Perrot and

cos(2k Pl 8)
March [26] is shown. An asymptotic tail of the form ——————— was fitted to both
y
potentials to extend their range. Remarkable qualitative similarities are in evidence,
both materials having a repulsive hump which is higher than the depth of the first
minimum. The possibility that Be has, just as B, a degree of directional bonding was
clear from the early diffraction work of Brown [27] and from the theoretical work of
Matthai et al. [28].

Inspired by the remark on the low surface tension ¢ of B, we attempted to use the
pair potential and pair correlation function of Vast et al. to calculate ¢ by using the
simplest possible formula, namely Fowlers formula (see eqn. (10) below). Using this
formula we obtained however a negative value which is obviously incorrect, but a
pointer towards a small value of . Before accepting this result three points need
making. First of all, as Freeman et al. [29] noted, a straightforward calculation of
structural integrals requires a very precise knowledge of the pair correlation function
g(r) and is therefore not the most appropriate way to proceed. Secondly, although a
central pair potential is of course the best one can get from inverting a one dimen-
sional structure factor, it is questionable how useful this is in a directionally bonded
fluid such as B. And lastly, in the derivation of Fowler’s expression for the surface
tension, no explicit account was taken of contributions to the pressure in liquid metals
coming from the volume dependence of the pair potentials and the volume-dependent,
structure independent term. This leads us in the penultimate section to look further
into some physical properties related to structural integrals.

IV. TWO LENGTHS

In early work, Fowler [30] derived the following (approximate) formula giving the
surface tension o in terms of a pair potential ¢(r) and the liquid pair correlation func-
tion g(r):

2
o= [,2% )43, (10)
For comparison, we next write the virial equation of state
2
) 3
P=pkBT—%_[ra—Tg(r)d°r. (11)
Such structural integrals, generalized to
0
s, =_[r”a—(i)g(r)d3r (12)

are of continuing interest in elemental fluids such as Ar and K, where pair potentials
are known to afford useful starting points even in dense fluids near their triple points.

. .S . . .
Plainly the ratio —* has dimensions of length, which may be termed a 'structural
1

length' <r>g . In essence this formula can be interpreted as an expectation value of r.

But eqns. (10) and (11) lead us to focus on the thermodynamic length which we shall
define by

92




Pdu3nKa ¥ TEXHHKA BbICOKHX JaBjaennii 2000, tom 10, Ne 4

®m=( ° (13)

pkpT - P)
that is the ratio of the surface tension ¢ to the 'deviation ' (large for dense liquids) of

the liquid pressure from its ideal gas limit. It is the definition (13) that is the focus of
the present study. It is now instructive to introduce into eqn. (4) the relation

CKT:L (14)

which has proved widely useful in dense liquids, K7 being the bulk isothermal com-
pressibility and L having dimensions of length [31]. Introducing also the so-called

compressibility ratio Z = into eqn. (13) one readily obtains the result that

pkpT
L

U
But from fluctuation theory [31] one can re-express pkzTK; as the long wavelength

15)

limit (g—>0) of the bulk liquid structure factor S(g) (essentially the Fourier transform
of g(r) — 1) to find
L
= SoN-2)
For a variety of liquid metals, S(0) is known from experiment at the melting tem-
perature T, and this quantity ST,,,(O) is recorded in Table (4.1) for some 20 such lig-

(16)

uids. It is seen to range from 0.005 for Ga to 0.047 for Be, but for the 5 alkali metals
Li—Cs it is almost contant (=0.025). Also the length L in the numerator is rather con-
stant through the metals, ranging from about 0.15 to 0.5 A. Taking therefore an aver-
age value for L of 0.3 A in eqn. (16), then since Z7;,, << 1 for these alkali metals,

<r>,h|TszOfA indicating that the length concerns intermediate range order. Taking

eqn. (14) to define L, we have also entered some values of L from ref. [32] in Table

L
(4.1), along with some values of (?0)] . Both liquid Be and liquid Hg, the ele-
T

m
ments with respectively the smallest and the largest value for <r>th have a relatively
long ranged order in the liquid because of a large repulsive hump after the first mini-
mum in the effective pair potential. We assume that it is due to interference effects in
the integral expression for the structural length, which is approximately equal to the
thermodynamic length at triple point conditions, both elements end up at different

sides of the value spectrum for <r)th.

V. FUTURE DIRECTIONS

As to future directions, the dynamic structure factor S(q,m) is an obvious candidate

for future work. And indeed, for Rb, the liquid metal considered in most detail in the
present study, the dynamic structure of this metal, under expansion (compare sec-
tion 1) has been investigated by means of a molecular dynamics simulation [33]. The
pair potential obtained by inverting the measured structure factor clearly emerges as
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Table 4.1

Values for <r>;, calculated from experimental results for S(0) at melting temperature
and results for L taken from ref. [32]

Liquid L
metal L A 5(0) () = S0)’
A
Li 0.45 0.031 14.5
Na 0.37 0.023 16.0
K 0.42 0.023 18.2
Rb 0.42 0.022 19.1
Cs 0.48 0.024 20.0
Be 0.26 0.047 5.5
Mg 0.29 0.025 11.6
Ca 0.38 0.035 10.9
Sr 0.39 0.031 12.6
Ba 0.45 0.036 12.5
Cu 0.19 0.021 9.0
Ag 0.19 0.019 10.0
Zn 0.19 0.015 12.7
Cd 0.19 0.011 17.3
Hg 0.18 0.005 36.0
Al 0.21 0.017 12.4
Ga 0.16 0.005 32.0
In 0.17 0.007 24.3
Ti 0.18 0.010 18.0
Sn 0.15 0.007 21.4
Pb 0.16 0.009 17.8
Sb 0.19 0.019 10.0
Bi 0.16 0.009 17.8

favoured over its pseudopotential alternative, the former potential being able to repro-
duce quite well the dynamic structure factor of Rb over a wide range of densities up
to near the critical density.
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APPENDIX A

Local coordination number as an approximate constraint
on the Ornstein-Zernike direct correlation function

Reatto et al. [25] have tabulated the direct correlation function ¢(r), the pair corre-
lation function g(r) and the liquid structure factor S(g) for a Lennard-Jones fluid with
a pair potential ¢, ,(r) given by

¢u(r)=—46{($]6—(g)2] (A1)

under conditions at the triple point given by

kgT 3

poj =0.84; T::Z (A.2)
5 - The structure was determined by
04 e molecular dynamics, with the po-
=] c(r) Reatto_:i' tential cut off at 4c. g(r) however
N was extended by Verlet's algo-
<107 = .\ rithm [34] in order to obtain c(r),
= 15 .’ -(I)(r)/kBT which is plotted in Fig. (A.1). For
© 200 : comparison we also plotted the
254 [ results obtained from a model

304 - |' potential for Al in Fig. (A.2).
35 I Bhatia and March proposed the

40 . |' I | ' approximate result

0.0 05 1.0 l.:'r/_GZ.O 25 3.0 :C(a)Tm = (E(q — 0)_
- ! —c(r=0)-1) (A3)
c(r) where ‘z” and ‘a’ refer to local
0 5 W e WL TN coordintion number and near-
o A neighbour distance in the hot solid
= i\ near T,. The argument given was
R E -0 (") /ksT appropriate to an insulator such as
{ Ar. However, the removal of the
sl i conventional pair potential in fa-
! vour of the direct correlation
. function makes it tempting to ex-
3+ : , — ——— plore the applicability of eqn.

06 08 10 12 14 16 18 2.0

(A3) also to metallic systems.
Taking ’a’ as the position of
2 the first maximum in g(r),

Fig. A. Plot of Ornstein-Zernike direct correlation g = (.18 ¢ at which value c(a) =
function c¢(r) (dots) from computer simulation by  _ . :
Reatto et al. [25]. 1) of a Lennard-Jones fluid 2) of — 1.215. Inserting a local coordi-

liquid Al The solid lines give in both cases the nation number of 12 for a typical
asymptotic result at large r Lennard-Jones solid yields a value

r/r,
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of about 14.4 for the left-hand side (LHS) of eqn. (A.3). But also from the Reatto

S(0)-1
5(0)

value of the right-hand side (RHS) of about 11 thus confirming that the Lennard-Jones

c(r) under the above conditions satisfies the Bhatia-March constraint (A.3) approxi-
mately.

Following the use of this model with pair potentials given by eqn. (A.1) consider
next the RHS of eqn. (A.3) for liquid Ar near the triple point. Bernasconi and March
[35] give then, from diffraction measurements c(r = 0) = —33 and ?(q=0)=—17,
which then gives for the RHS of eqn. (A.3) the value 15. With z taken to be 12, this
gives c(a)‘Tm from eqn. (A.3) as 1.25 which is gratifyingly close to the model value

data, c(r = 0) = — 35 and S(0) = 0.041 so that Z(g=0)=

=-23, leading to a

discussed above for the Lennard-Jones fluid.

Now turning to metallic systems we examine the results by Reatto et al. [25] ob-
tained using a model potential to simulate liquid Al. Inserting the values they obtained
for the relevant quantities into eqn. (A.3) gives for the RHS (49 — (-38) — 1)=-12
while the left-hand side, taking z = 10 gives approximately —1.8.

Table A.1

Values of the Ornstein-Zernike function at the origin, both in r- and in g-space. All values
are obtained from currently available X-ray or neutron diffraction experiments

Liquid metal —c(r =0) —c(k=0)
Na 43 41
K 42 40
Rb 45 42
Cs 50 38
Cu 60 47
Ag 51 53
Au 35 38
Me 31 39
Al 45 54
Ga 34 200
Pb 44 110
Sn 40 140
Fe 46 48
Ni 41 50
Co 35 50

To conclude this Appendix, we note from Table (A.1) [36] that three liquid metals
near freezing, namely Ga, Pb and Sn, show major deviations from the Percus-Yevick
hard sphere prediction that the RHS of eqn. (A.3) is zero (see A.2). Evaluating the
RHS. of eqn. (A.3) for these three metals using again diffraction data for ?(q=0) and

c(r=0) gives ~—170, ~—100 and ~-70 respectively. This predicts large negative val-

ues of c(r) at the near-neighbour distance in the hot solid. It is an interesting matter
for the future to construct c(r) when suitable diffraction data becomes available for
any one of these three metals near their freezing points. What then is the most inter-
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esting consequence of the approximate prediction from eqn. (A.3) is the change of
sign of c(a)lT in going from liquid Ar to the metals Ga, Sn and Pb. Whether

eqn. (A.3) is sufficiently accurate quantitatively to yield coordination numbers seems
less important than its qualitative consequence for the form of the direct correlation

’
function c(r). This, near T, must at large r tend to ——Z(—Y), and it is of considerable
B
interest to know at what value of r this asymptotic formula becomes a useful quanti-
tative approximation for c(r). Comparing Figs. (A1) and (A2) it is in evidence that
this relation

o(r)
dr)= _;B_T (A.4)

at sufficiently large r is less evident for Al than for Ar.

APPENDIX B
Uncharged hard spheres direct correlation function

In order to obtain the pair correlation function g(r) by direct Fourier transform of
the experimental structure factor Sexp(q) one needs values of this structure factor for

sufficiently high g-values. These high g-values are however not always available from
experiment and one is forced to extend the diffraction data (see e.g. Reatto et al.
[25]). It is therefore of considerable interest to examine possible analytic expression
for the large g-behaviour of the static structure factor. In the Percus-Yevick approxi-
mation for hard spheres (HS) the direct correlation function cf,§(r) in r-space can be
obtained analytically [37]. Below we examine its Fourier transform Z,’}g(q) in order to
extract the leading term at large g. The leading term in the structure facor is then
simply obtained using
1

S(Q)=1—j((;) (B.1)

and we expect the expression resulting from this procedure to be appropriate to hard
sphere like liquids such as Al
We start from [37]

3
() =o+ B(%)+)(%J r<o, B
CZ)s/ (r) =0r>0

T
with ¢ the HS diameter. In terms of the packing fraction n=g po, the coefficients

in eqn. (B.2) are given by

—(l+211)2
o=—

: Y=->na (B.3)
(1-n* 2

Defining
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chisla)= 4WPTC‘Z§(7') qu(;]r) rrdr (B.4)
0
we obtain
~sPY. .
ciisla) =—(a+B+7) ——Gcosgcq) +(0+2B+4y) Sm(?Q) +
4TCp q- a
+(2p+12y) cosgcq) _?_24{sins(ﬁg)+ coZ(G;I) B 61 , J (B.5)

q0 q0 q 6~ qC q 0

Terms in q_4 and q_(’ come from non-analytic terms in r and r at the origin r = 0
in ¢(r) in eqn. (B.2). All other terms arise from the singularities of ¢(r) at r = G, as is
evident from the fact that they have multiplicative factors sin(cq) and cos(oq).

Fig. (B.1) shows chE (q) together with its leading term

ocos(og)
~o+B+y)——. (B.6)
2T learding term
T \
0 //A =
/ 7 N~
/ Fig. B.1. Direct correlation func-
= 2T / tion of uncharged hard spheres in
- 1 L/ \ the Percus-Yevick approximation
-4+ \/ c ( q) together with its leading term at
o] HS large r
54
64
-10 f i
0 2 5.1 4 6
g(A”)

Using the above relations (B.2) and (B.3) Bhatia and March [38] prove that
cis(g=0)-cis(r=0-1=0 (B.7)

and hence it follows that hard spheres in the Percus-Yevick approximation obey rela-
tion (A.3) trivially since a=¢ and thus cFE(r) =0. We note however from Table (A.1)
that the alkali metals, which are in section 0 supposed to be best described by an
OCP-reference system, satisfy eqn. (B.7) very well.
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