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The characteristic representation (CR) developed by the authors (see [1] and references therein)
is used to study the problem about the moving of a relativistic spinless particle in a constant
electric field E. New solution which is the eigenfunction of square transverse momentum opera-
tor is found. It is shown that the eigenvalues of this operator depend on the metric of Mincowski
space M. Namely, the eigenvalues are complex and discrete in the M ) Space and the eigenval-
ues are continious in the space M +) Using this new solution the total charge and current of the
particle in the constant electric field are calculated.

1. Introduction

F. Zauter (1931) [2] was perhaps the first who have described the problem of moving
a relativistic spinor particle in a constant electric field E. Till now an opinion exists that
this problem is the argument against the application of one particle Klein-Fock-Gordon
(KFG) equation in a strong electric field. It is relevant to remark that apart from the
Sauter problem there exist the Klein paradox (1929) and the motion of relativistic parti-
cle in an external scalar field [1]. In all these problems there are unstable solutions in-
creasing with time 7. There are no the unstable increasing solutions for the moving par-
ticle in a constant magnetic field H. If the above problems are considered in so-called
CR (or Goursat problem) then some regularity is observed. Namely, the Cauchy prob-
lem solutions which increase with the time correspond to the appearance of space-like
solutions of Minkowski space Y ) We demonstrate this in detail.

From the CR viewpoint the free solution of Klein-Fock-Gordon (KFG) equation has
the form [3]

W(x1,X,2,1) = S(z,1)|in) = Jo(ﬂzﬁ —22)k3 -A)) )m) , (1)

where the evolution operator S should satisfy the Riemann condition along the charac-
teristics clf| = |z|

A

S

=l re=1>

and ‘in) is the initial value of the wave function along the characteristics c|tf| = |z|.
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We recall that in the CR in contrast to the Cauchy problem only one value of wave
function is given on the characteristics.

The operator Ay in Eq.(1) depends on the transverse coordinates

2 2
AJ_=a—2+—a—2, andk0=E.
ox; ox3 h

The operator A1 has the eigenfunction which can be either plane wave
A [expi(kix; +kyxy)] =~k expilkyx) +koxy), kT =ki +k3,

or normalized MacDonald function, i.e., A | Ko(k; x| )= kiKO (kyx;) and

[xdxK3 (kx) =1/2k2.

0
The MacDonald function K, (kx) with m # O is not normalized because it has the strong
singularity at x = 0.

We have shown earlier [3] that the fundamental solution of the wave equation in the
M (+) Space (where Cr - 0) can be constructed from plane waves and the funda-
mental solution in the A () space (where = < 0) can be constructed from Mac-
Donald functions. The fundamental solution (1) has discontinuity on the characteristics
c|t| = |z| which separate M (+) space from M (-) Space.

We recall that the free causal Feynmann propagator consists of the sum of two solutions
as well as. One solution belongs to M4(+) (or M (+))- The other belongs to M4(_) (or Ve ©

The aim of the present paper is to consider the Sauter problem from CR viewpoint (or
Goursat problem viewpoint) [1]. We show also that in a constant electric field the states
are classified by eigenvalue of square transverse momentum operator i.e. operator Ay is

the symmetry operator. The eigenvalues of this operator take discrete values in the 1Y [
space and continuous spectrum in the space Y (+) We demonstrate that the moving of the
particle in the constant electric field £ is the transition from the initial bound state with
discrete spectrum into the finite state with continuous spectrum of transverse momentum.

2. Charged particle in a constant electric field

Let us consider a particle with the charge e and the mass [ in the constant electric
field £ determined by potentials

A =—~ER)ct, Ay=—ER). )

We choose the axis z along the electric field.
KFG equation with the potential (2) has the form

2 2 . 22
a—z— J +Al—k(%+ﬂ zi+cti ——e—ZE—z(CZZZ—Zz)
0z% 232 hce | oct 0z | 4h%c
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Classification of states in Eq.(3) is over the eigenfunctions of the symmetry operator
A) because the variables x;, x, are cyclic. From the CR viewpoint we seek the solution
of Eq.(3) in the form

‘P(xl,xz,z,t):.g‘(z,tXin>,
where the evolution operator .§'(z,t) must be equal to 1 along the characteristics

|f| = |z}/c and the initial state ‘in} is the eigenfunction of the symmetry operator Aj.

These conditions are satisfied if the evolution operator S (z,7) is
Se = exp(z%(cztz ~z? )F(&,l,—%(cztz - 22)), 4)

here o.=|e|E/hc and F(4.1,7) is degenerate hypergeometric function with operator pa-

rameter a=1/2—i/2k> (kg —A|).We drop the second linear independent solution of
Eq.(3) because it contains the factor 1n(c2t2 — 22). It diverges along characteristics || = |z|/c.

When E — 0 then the evolution operator (4) tends to free evolution operator in the
two-dimensional Minkowski space M [3]

S’(z,t)E—_)O>J0(\/(czt2 —22)(k§ —Ay) ) (5)

where J|, -is Bessel function of first kind with index zero.
To prove Eq. (5) we use the definition of degenerate hypergeometric function and
the asymptotic of I'- function
I'(x + n)/T(x) - x" at x| — oo.

In our papers those relating to the CR we have repeatedly indicated that from CR
viewpoint we must consider two regions [1]: the region M (+)> Where P -2>0 (or
|| > |z|/c) and the region 1Y (-) Where P2 <0 (or |f| < |z|//c). We consider first the
region M (+)- As an initial state we take plane wave exp(ikyx| + ikyx;), which is the ei-
genfunction of operators —ifid/dx; and —ifid/dx,. On the states of plane waves the
operator parameter a of degenerate hypergeometric function becomes the number:

a—a=1/2-i/ Za(ki + kg ) , and the solution from CR viewpoint in space M (+) 18

‘I’(+)(x1 ,X5,2,1) = const expi(kjx; + kpx, )S(z, 1), (6)
where the form of S(z,7) (see Eq.(4))

o D .2
S(z,t)=exp[lg:—}F{a,l,—la; ], @)

here ©° = ¢** — 2° is the square of 2-D interwal of the space M +)
The function (7) can be expanded over the eigenfunctions of 1-D wave operator [1]
. 97 1 9
L=—5-7573
0z° ¢~ ot
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oo 2 .2 oo
exp[%}“[a,l,— ’“; ]: jJO( (2% - 22)0? }D(Q)QdQ,
0

where (I)(Q) = exp(in /a)F(a,l,—Zin /oz).

Thus, this problem has a symmetry of the oscillator potential. The particle in the constant
electric field can be regarded as the oscillator with the complex (imaginary) frequency.

The solution (6) do not lead to the new result. The solution in the plane wave form is
well known. (See [4], page 131 and references therein).

Next, we consider the evolution operator S in the space M e where 2% - &£ > 0,

(or || < |zl/c). In this case we take the initial state |in) as the superposition of Mac-
Donald functions K [3]. The operator a becomes also the number and is equal to

d—a=1/2+i/20(k] +k{). Thus, the solution in space My is
(2 202 :
‘I’(’) =const K (k 11X )exp[ﬂ?)}f(a,l,%(zz — )]. ®)

As regards of MacDonald function K|, it (as has been stated in the introduction) is the
eigenfunction of the operator j)i =-n%A | because A | Kg(k x))= kJZ_KO (kixy)

(where x| = x12 + x% ) and it obeys to the normalizing integral

n(k? /¢%)

o 1
(j)xdeo(kx)Ko(qx) oy End® 9

provided that
Re(k+ gq) > 0. (10)
The condition (10) can be satisfied if we require that the parameter a of hyper-
geometric function in Eq.(8) is whole negative number that is a =-—# or

B =kl = 0xiv,) 1, =(E/EHQn+1), an

where n=0,1,2... and E = u2c3/eh is the constant Schwinger field.
Taking into account (11) we rewrite the normalizing integral of Eq.(9)

2nfx, dx; Ko(k$Px Ko (kS )x | ) = marctgy, /kay,, (12)
0

where

k) =ko(1+7;)"  exp(¥(i/2)arctgy, ),

argk,(,i)‘ <m/4.
There are two linear independent solutions here
W(5) =const Ko (k§x )S5(z.0), (13)

where

SE(z,0) = exp(¢ iot/ 4(z* —-cztz))F(— nlt(io/2)(2% -t ))- (14)
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These solutions can be associated with the different sign of the electric charge of the
particle (antiparticle).

From Eq.(11) it follows that the value of transverse momentum is complex one and
takes discrete values in the space M (-) (When |f| < |z|/c). It should be noted that the so-
lution (13) is new. It was unknown earlier.

If in the integral (12) the strength E — 0O then this expression is equal to 1 (in terms of

12) and if E — o then wave functions of the particle (antiparticle) are not overlapped.
ko

3. Physical statement of the problem

Let at |7| <|z|/c there is a free particle in the constant electric field with charge +e and
with the discrete momentum k,(,+) .
This state (according to (13)) is described by the wave function

) = B,Ko (k,(,+)x ) )9,@ (2,1), (15)

where the form of §{") was taken from Eq.(14) and the constant B, is the normalizing
constant determined by integral (12). When |f| > |z|/c there is the state of the particle with
momentum k (ky,kp) which is described by superposition of the plane waves

Y™ = [dky dkyc, (ky.ky ) expi(kyx; +kyxy)S(k | ,2,1) (16)

where we take the form S(k | ,z,¢) from Eq. (7).

We recall that from the CR viewpoint the only continuity condition of wave function
is required along the characteristics |¢| = |z|/c, therefore

B, Ko (kD x| )= [dky dkyey (ky Ky ) expi(kyxy +kaxy) . (17)

Here c,(ky,k,) is the amplitude of transition from the initial state of the space M, (2_) into
the finite state of the space M (+)

cnlkiky) = (1/2m)B, (K> —ik3Y,), K> =ki +kj

and, respectively

2
2 1 B
len (ko) =— 4' "‘4 = (18)
4n” (K™ +kgyyy)
Integrating Eq.(18) over transverse momentum we obtain
[dky dkye, (ky ko) = (1/4n%)nB,, [ arctgy,, /A3y, =1/47°, (19)

since from the normalizing integral (12) it follows that 1t|Bn \2 arctgy,, / kg Y» =1, therefore

the transition amplitude 2nc,(k;,k,) is the probability amplitude and the value |27tc,,(k1,k2)l2
is the density of the transition probability. The total transition probability is equal to 1. This
result is not a surprise, it follows at once from Eq.(17) using Purceval equality.

Taking into account the solution (16) with ¢, (k;.k,) determined by (18) let us calcu-
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late the total charge Q of the particle and the total current J. It can be shown that the
current component J, is different from 0 only

. clt| *
ie * OV oY
=L ldxdx, [ df ¥ T -w : 20
0=Clandn [ [ = at] (20)
and
—c|t
J.==28 Ih[dxdx, [ dz4,|¥f . @1)

=

In Eqgs.(20),(21) the odd terms with respect to z are omitted because after integration
they are equal to zero. Let us note that integration limits (20),(21) for the variable z are
finite. This variable satisfies the inequality ‘z\ <clt

,0F — c|t| <z< c‘t‘ .
We perform the calculations when oc(czt2 - zz) >> 1, and use the asymptotic of hy-
pergeometric function

F(a,1,7) ~ UT(a)(t) " Pexpr, |argt < m/2.
Substituting Eq.(16) into Eq.(20) we get

Q=e0£(t){l+2 i [E,-(_EES(I_iY"))—Ei(M)]}’ J,=c0, (22)

arctgy, E E
where £(¢) = [f|/t is sign function, e, = eZ; is the true renormalizing charge of particle

1
including the infinitesimal logarithmic factor Z; = [du/1- u® . Ej(7) is the integral
=1
exponential function with the asymptotic Ej(z) ~ e’/z if |z] >> 1.
In weak external field (E/E, << 1) the total charge Q is ey€(?), and in the strong field
(EE; >> 1) the recharge of the particle takes place

0= —%eoe(t)S,- (r2n+1))  S;i(z)= _z[dusinu/u : (23)
0

The changing or the deformation of the total charge by an external field was predicted many
years ago (Dirac (1934) and others). This phenomenon is called the vacuum polarization [5].

It is difficult to compare our results with Schwinger’s [5] and other results because
we use another initial states. This is similar to comparing the two energy values with
respect to different energy levels.

We express gratitude to Dr. A.S. Zhedanov for his useful comments.
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