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The purpose of these notes is a supplement of our recent findings [1] by theoretical con-
structions, which are important both for the theory of dynamic ensemble control tools and 
for derivation of new thermostats and their application. It is shown that the principle is 
applicable to dynamical systems that go beyond the Hamiltonian systems considered in 
the cited article. We pay special attention to gradient dynamical systems, for which we 
have obtained a new promising theoretical result. 
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Introduction  

In our paper [1], we presented a dynamic principle that was aimed to construction of 

ensemble control tools applied to Hamiltonian systems in contact with a thermostat and 
allowing deterministic and stochastic sampling schemes of the canonical ensemble. 
This new method was based on the fundamental laws of statistical physics, with repro-
duction of the known ones, as well as derivation of new dynamic thermostat equations. 

Hamiltonian system consisting of N particles in d-dimensional space is de-
scribed by the equations of motion ( )x H x J  , where H(x) is the Hamiltonian 

function, ( , )x p q 
2dN

, {p} are momentum variables, {q} are position vari-

ables, and J is the symplectic unit. In article [1], we have shown how these equa-
tions should be modified if the Hamiltonian system is in contact with the thermal 
bath. In these Notes, we extend this theory so that it allows construction of a 
wider range of thermostats, deterministic and stochastic, which can also be used 
for gradient systems (in addition to Hamiltonian). Since this paper is a supplement 
to [1], it would be wasteful to reproduce here the corresponding definitions. We 
simply refer to [1] for details of notations and definitions. In short, the definition of 
temperature expression and the dynamic principle scheme are the same as in [1]. 

Equations of motion 

Key properties of Hamiltonian equations of motion allowing their modification 
according to the dynamic principle with the canonical density being invariant are 
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( ) ( )H x H x  J  ∇( ) ( )H x H x   (х) = 0, 

  (J( ) ( )H x H x   (х)) = 0,  

that is, H(x) is a first integral and J( ) ( )H x H x   (х) is an incompressible vector field. 

To generalize the theoretical scheme of [1], we set the probability density (x) 
in the form 

1
( ) exp ( )x V x

 
   

 
, 

x M 
n
 (phase space is not necessarily even dimensional) so that ( ) :V x M   

is a coercive function, that is, ( )V x    as x   . It is also assumed that 
2( )V x C . Alternatively, we can set the potential function, V(x), in the form 

( ) ln ( )V x x   , 

where 0   is a parameter. 
Consider a pair of vector fields, namely, a potential field ( )V x , and an in-

compressible one G(x), that is, ( ) 0x G  for all x M , such that 

( ) ( ) 0V x x G  

for all x M  (in other words, ( )V x  and G(x) form a cosymmetric pair as de-

fined in [2]). Then we relate to system S the unperturbed equations of motion 

( )x x G . 

Thus, we arrive at the following properties, 

( ) ( ) 0V V x x  G  , 

 ( ) ( ) 0x x  G , 

in other words, V(x) is the first integral and density (x) is invariant for the dy-
namics ( )x x G . 

Examples of cosymmetric pairs  ( ), ( )x V xG   include, but are not limited to: 

( ) 0x G  (trivial case), 

( ) ( )x V xG  , 

where   is an antisymmetric constant matrix; in particular  J  (symplectic 

unit) in even-dimensional phase space, 

( ) ( ) ( )x x V xG   , 

where ( )x  is a linear antisymmetric operator (matrix) depending on x, for example 

an antisymmetric operator ( )x  satisfying the Jacobi identity (Poisson system). 

Vector fields ( )xG  are incompressible in all these cases. 



Физика и техника высоких давлений 2020, том 30, № 4 

 51 

When S system (please refer to article [1] for designation details) is in contact 

with the environmental reservoir \S S      then since we do not aim to use 
the most general temperature expressions ( -expressions) and their properties, 

for the purpose of simplicity and clarity of presentation, we take the following 
particular  -expression as a basis, 

( , ) ( , ) ( ) ( , )x xx x V x x            

(as defined in the article [1]) and modify the equations of motion according to the 
dynamic principle, that is, 

( ) ( ) ( , )xV x x x   G , 

assuming the validity of the ergodic hypothesis. Note that it is always possible to 
expand ( )xG  into two parts, first, 1( )xG  associated with cosymmetry of the po-

tential vector field ( )xV x , namely 1( ) ( ) 0xV x x G  for all x M , and sec-

ond, 2( ) ( ) 0xV x x G , that is vanishing on average only. Explicitly, 

1 2( ) ( ) ( )x x x G G G . 

Similarly, we relate to the system S
*
 the equations of motion, 

( ),y y y M  G , 

the equilibrium probability density, 

1
( ) exp ( )y V y  

   
 

, 

and the -expression, 

( , ) ( , ) ( ) ( , )y yy y V y y              . 

When the S
*
 system is involved in a joint motion with the system S and an in-

fluence of \ S  on the dynamics is ignored (in the general case of an infinite 

reservoir, it has to be stochastic by necessity), then, following the procedure de-
scribed in [1], we arrive at the particular case of the thermostatted stable determi-
nistic dynamics among others, 

   1
( )

( ) , ,l l
l

x x y x    G  , 

   1
( )

( ) , ,k k
k

y y x y     G  , 

under reasonable conditions on vector fields   ,k x   and   ,l y  . One can 

verify that the density ( , ) ( ) ( )x y x y     is invariant for the dynamics. This 

form of deterministic equations of motion, that is a deterministic thermostat, cov-
ers a wide range of thermostats we can find in the literature. It is also evident that 
the expression 
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     
( ) ( )

, , ( ) ( , ) , ( )l l x k k y
l k

y x V x x y V y                     

is zero on average as required. The proof is by direct calculation. 

Stochastic dynamics 

Following procedure described in [1], we consider a particular -expression of 
the form 

    2

0

, ,
L

l
L l

l

x x


       

for all L ≥0 , where 

 , ( ) ( ) ( ), 0,1,...,l l lx x V x x l L          , 

and   0
( )

L
l l

x


  is a set of vector fields on M such that ( ) ( ) 0l x x   as x   , 

then introduce the set of independent vectors of white noises,   
0

;
L

l
l t


ξ , L ≥0  

such that 

 ; 0l t ξ ,        ; ; 2i j l ij lll t l t t t          , 

where   0

L
l l

  is a set of constant parameters, and also the set of vector fields, 

  
0

;
L

l
l x


ζ , L ≥0  such that 

 ; 0l x ζ  

for any 0l  , where « » denotes the component-wise product of two vectors (the 

Hadamard product). 
Starting with the relationship 

    2
2

0

( ) , ,
L

l
l l

l

V x x x


      G , 

and then strictly following the procedure outlined in [1], we arrive at the follow-
ing stochastic dynamics: 

     2
1

0 0
( ) ; ( ) ; ;

L L
l l

l
l l

x x l x V x l x l t
 

      G ζ ξ    ,              (1) 

where ( ) ( ) ( )x x x ζ ζ . One can verify that the density σ(x) is invariant for the dy-

namics as required. As for the stochastic dynamics, it is very likely that it is ergodic. 

Deterministic dynamics 

Utilizing the notations from [1], we consider the S
*
 system in the phase space 

M
*
  with the probability density function 1( ) exp ( )y V y     

 
, y M  , and 

the equations of motion, ( )y y G , where the vector field ( )yG  is cosymmetric 
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to the potential vector field ( )yV y  on M
*
. When the S

* system is involved in a 

joint motion with the S system and they are in a contact with the reservoir then, 
following the procedure described in article [1], we arrive, among other things, at 
the following deterministic dynamics 

 

 

2

0

2

0

( ) , ( ),

( ) , ( ),

L
l

l l
l

L
k

k k
l

x x y x

y y x y





 



    

    

G

G









                (2) 

where 

 , ( ) ( ) ( ), 0,1,...,l l y y ly y V y y l L             , 

and  
0

( )
L

l
l

y


  is a set of vector fields on M such that ( ) ( ) 0l y y     as 

y   . One can verify that ( , ) ( ) ( )x y x y     is invariant for the dynamics. 

However, the ergodicity of these equations of motion is generally unsolvable. For 
specific systems, the expected answer to the question of their ergodicity will be 
rather negative than positive. Nevertheless, numerical simulation of a system can 
demonstrates its ergodicity from a practical point of view. This last point under-
lies the use of deterministic thermostats in molecular dynamics. 

Thus, it is obvious that, following the dynamic principle presented in article 
[1], we obtain various stochastic as well as deterministic thermostat equations of 
motion. In the next section, we will expand the use of the dynamic principle by 
considering an important case of a gradient dynamical system. 

Gradient dynamical systems 

A gradient system on phase space M = 
n
 is described by the dynamical equa-

tions of the form 

( )x V x   ,                               (3) 

where x M 
n
, ( )V x , is the potential function of the gradient system (it is 

assumed that ( )V x  is twice continuously differentiable) such that ( )V x    as 

x   , or of the form 

( ) ( )x x V x Ω  , 

where ( )xΩ  is a symmetric positive definite operator (matrix) so that ( )xΩ can be 

regarded as a Riemannian metric, and the scalar product has the form 

 ( ), ( ) ( ) ( ) ( )x x x x x A B A Ω B . In both cases, potential ( )V x  is a Lyapunov func-

tion rather than a first integral, that is, 

( ) ( ) ( ) ( ) 0V x V x x V x   Ω   , 
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and ( ) 0V x   if and only if ( ) 0V x  . The gradient system has the properties: 

(a) gradient flow is perpendicular to the level set ( ) constV x v  ; (b) the equa-

tion ( ) 0V x   defines the equilibrium points; (c) an isolated equilibrium point is 

asymptotically stable (for example, [3]). 
It is worth noting that, if the dynamical equations have the form of the general-

ized gradient system, 

( ) ( )x V x x  G  ,                                             (4) 

or ( ) ( ) ( )x x V x x  Ω G  , where ( )xG  and ( )V x  form a cosymmetric pair, 

then ( )V x  is still a Lyapunov function, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0V x V x x V x x V x V x x V x        G Ω Ω      . 

The vector field ( )xG is tangential to the level set ( ) constV x v  . 

An important property of the generalized gradient system concerns the equilib-
rium condition. Let us assume that 

( ) ( ) 0V x x G .                                    (5) 

Then it follows that 
( ) 0V x  . 

The proof is simple, multiplying equation (5) by the potential vector field ( )V x  

and taking into account that ( )xG  and ( )V x  form a cosymmetric pair we arrive 

at the relationship 

2
( ) ( ) ( ) 0V x V x V x      , 

which is the only possible if ( ) 0V x  . The converse is not true, that is, from 

( ) 0V x   does not follow equation (5). 

It was shown [2] that the existence of a cosymmetry, that is, a vector field 
( )xG  such that ( ) ( ) 0x x F G  for all x M , provided that 0x  is a non-

cosymmetric critical point, that is, 0( ) 0x F , but 0( ) 0x G , leads to the equilib-

rium point 0x  being an element of a one-parameter continuous family of solutions 

of the equation ( ) 0x F  (see [2] for details). It can be expected that taking this 

fact into account in one way or another in the equations of motion can signifi-
cantly affect the dynamic behavior of the gradient systems. However, as far as we 
know, there is no systematic method for finding a nontrivial cosymmetry.  

First, let us consider modified dynamical equations with trivial cosymmetry, 

1( ) 0x G , and, for simplicity, but without prejudice to the content, we take 

0L  . Then, for example, as a direct consequence of equation (1), we arrive at a 

modified gradient system which is given by the stochastic equation 

( ) ( ) ( ) ( )x x V x x t   ζ     ,                                   (6) 
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Which is none other than the Smoluchowski stochastic equation (in a slightly gen-

eralized form). Probability density  1( ) exp ( )x V x    is invariant for dynam-

ics (6), the proof is by direct calculation, as well as the ergodicity property is very 
likely expected. It should be noted that equation (6) is a stochastic equation with 
additive noise so that its appearance should not be misleading. 

In the case of deterministic dynamics, we get a diverse thermostatted equations 
of motion in depends on the form of configuration temperature expression. For 
example, assume that 

( ) ( )x V x   , 

then we get equations of motion 

 

 

, ( ),

, ( ),

x y V x

y x y





  

  








                                      (7) 

which the vector field ( )y  and the temperature expressions ( , )x   and 

( , )y   are as defined above. Probability density ( , ) ( ) ( )x y x y     is invari-

ant for the dynamics. However, if we attempt to sample the probability density 
with dynamical equations (7), then we immediately arrive at a wrong result. The 
reason is simple, dynamics (7) is not ergodic. Indeed, at an equilibrium point 

( ) 0V x  , the evolution comes to halt and no longer fluctuates, irrespective to 

time dependence of  ,y  . For initial conditions with ( ) 0V x  , equations 

(7) define a gradient flow and all trajectories move along paths in x with equilib-
rium point at either end. That is to say, the dynamics (7) is not ergodic. 

Note that when the expression  ,y   is defined by the functions 

1( ) consty Q    and 21
( )

2
V y Qy  , y , that is,  ,y y   , then we 

arrive at a very special case considered in [4,5]. The case of the potential function 

 
1

( ) ,
2

V y y y  Q , y
n
, where Q is a symmetric, positive definite matrix, can 

be considered in the same way. 
If now we try to generate the required statistics by replacing the equations for 

y-variable with stochastic ones, that is, 

 

 

, ( ),

, ( ) ( ) ( ) ( ) ( ),

x y V x

y x y y V y y t



 

  

     ζ ξ



  



  
                     (8) 

where ( ) 0y y ζ  and ( ) ( ) ( )y y y ζ ζ , then we come to the same conclusion 

regarding ergodicity.  
Now, it has to be expected that addition of cosymmetry of the potential vector 

field ( )V x  to the equations of motion can significantly change the dynamic sce-

nario, provided that the probability density ( , ) ( ) ( )x y x y     remains invariant 
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for the modified dynamics. It is also evident that a cosymmetry with cosymmetric 
critical points is insufficient for our purposes. A way to overcome this difficulty is 
to supplement the system with constrain on forces as it described in [4]. However, 
that way appears as an ad hoc trick even if we can give physical meaning to such 
kind of constrain in some cases. 

Since there is no method for finding a nontrivial cosymmetry in its classical 
sense, in order to consider an appropriate analogue of the equations of motion in 
the form, 

 

 

, ( ) ( ),

, ( ),

x y V x x

y x y





   

  

G






                           (9) 

when an extra dynamic variable (phase-space vector) nz M  is added to equa-
tions of motion instead of vector field ( )xG , and then the concept of cosymmetry 

on average is introduced. In other words, we propose an algorithmic method to 
generate the vector field orthogonal a given potential vector field in a wider sense. 

In order to explicitly implement this kind of algorithm in the form of dynamic 
equations, we will use an analogue of the well-proven dynamic principle [1]. For 
the sake of clarity, as for the statistical properties of the dynamical variable z, we 
restrict ourselves to the Gaussian equilibrium density. In a generalized form, this 
theoretical construction will be considered separately. Thus, we assume that the 
equilibrium density of the dynamic variable z M  is Gaussian with zero mean, 

 
1 1 1

exp ( ) exp
2

z b z z z
   

        
    

Q , 

where Q is a symmetric, positive definite operator (matrix), and then we require 
that 

( ) ( ) ( ) 0b z z z V x     0, 

provided that  ( ) ( ) ( ) 0b z z z V x   E    , as described in [1]. A solution of 

the above functional equation is as follows. Let the vector field ( )z  be 

( ) ( )z b z z  Q  , then 

( )z V x   . 

Thus, we arrive at the following equations of motion in the extended phase space, 

 , ( )x y V x z    Q  , 

 , ( )y x y    , 

( )z V x   . 

It is easy to prove by direct calculation that the density 

 
1 1 1 1

exp ( ) exp ( ) exp
2

V x V y z z     
         

       
Q  
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is invariant for the deterministic dynamics above. 
Stochastic extension of these deterministic equations can be made in accor-

dance with the procedure described above, e.g., in the form of following stochas-
tic equations of motion: 

 , ( )x y V x z    Q  , 

 , ( ) ( ) ( ) ( ) ( )y x y y V y y t      ζ ξ     , 

( )z V x   . 

This and other forms of stochastic equations of motion will be considered sepa-
rately. 

Summary 

We have shown that the dynamic principle [1] allows using cosymmetric vec-
tor pairs to construct stochastic and deterministic temperature control tools. We 
have also shown that the dynamic principle is applicable to several systems that 
go beyond the Hamiltonian ones considered in [1]. Special attention is paid to 
gradient systems for which new thermostat schemes were obtained. 
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А.А. Самолетов, Б.Н. Васиев 

НЕСКОЛЬКО ЗАМЕЧАНИЙ О ДИНАМИЧЕСКОМ ПРИНЦИПЕ  
КОНТРОЛЯ СТАТИСТИЧЕСКОГО АНСАМБЛЯ 

Цель настоящих заметок – дополнить наши недавние результаты [1] теоретически-
ми конструкциями, важными как для теории инструментов динамического контро-
ля статистического ансамбля, так и для получения новых термостатов и их практи-
ческого использования. Показано, что динамический принцип применим к систе-
мам, выходящим за пределы ранее рассмотренных гамильтоновых систем. Специ-
альное внимание уделено градиентным динамическим системам, для которых по-
лучен новый перспективный теоретический результат. 

Ключевые слова: инструмент контроля ансамбля, выражение температуры, гради-
ентная система, инвариантная плотность 
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