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It has been shown that in a nonlinear chain the soliton organization of thermal field at
high temperature, arising at the cost of absorption of background vibrations is possible.
At some stage the intensive waves are formed and give energy distribution distinguished
from the Maxwell-Boltzmann’s one.

A phonon (the extended mode) delocalized in the coordinate space, but lo-
calized in the wave space is the fundamental quasi-particle in crystal reality.
Since any of a number of phonons occupies the entire space of the crystal, each
individual particle takes part in the motion of all the phonons. In the result of
accidental phase combination of some phonon groups the multiphase and single-
phase waves may arise with spatial localization of the order of the lattice spac-
ing. In consequence of disperse features of the lattice they will be scattered
prior to their wave properties are exhibited. With nonlinearity, phonon groups
may form a long-lived bound states and in this situation the wave properties
will be exhibited in full measure. The soliton-like excitations of two types, such
as kinks and bell-form solitons [1-5], on the one hand, or breasers (gap soli-
tons, intrinsic localized modes and so on) [5-9], on the other hand, observed in
computer experiments for different nonlinear lattices, directly confirm this fact.
The former may exist below the linear phonon band, the latter ones above the
upper harmonic phonon band edge, that is inside the gap [6] or inside the self-
induced gap [7].

Nonlinear waves of different nature manifest a series of common properties
including suppression and absorption of small waves by larger ones. In Ref. [9]
such phenomenon was observed for small and large exact breasers. In Ref. [10]
the chaotic breasers were observed in the numerical experiment for the FPU-
chains, which manifest the effect of energy concentration by separate excita-
tions. As the initial condition the m-mode was taken. It is shown that the
n-mode decays into local excitations with chaotic behavior. In the initial stage
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the concentration of energy by separate breasers grows. Later on, these excita-
tions vanish and the system approaches the equipartition state. The authors state
that the pumping of energy from the high-frequency m-mode to the low-
frequency region of phonon spectrum takes place in this way.

After relaxation the chaotic breasers die out because of «starvation». This
brings up the question: is such behavior of a system, when the chaotic breasers
do not die out and rest after the relaxation, possible? To achieve such regime it
is necessary, that the mean energy per one particle, that is, temperature, be high
enough. The localization modes are regarded also for FPU-chains in numerical
experiment of Ref. [11].

The aim of this paper is to investigate similar effects for kink solitons at
high temperature and their influence on thermal field by means of computer
simulation. To minimize the non-equilibrium pumping effect here the «white
noise» distribution is used as the initial state. The «white noise» is energy dis-
tribution closest to thermodynamic equilibrium state. One may expect that the
relaxation passes fast enough.

It should be noted that a FPU-chain is a very idealistic model for atomic
systems and it deviates from realistic ones to a greater extent with the vibration
amplitude increase. In our case such a situation presents the main interest for
the investigation. It follows that one of the realistic potentials containing non-
linearity of all orders must be used for such system at high temperature.

All simulation was performed for a chain built up of 200 particles interacting
via the most popular 6—-12 Lennard-Jones’ potential, that is
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where r; = \/(Xi —Xj)2 + (Yi = Yj)2 — 1s the distance between particles with
numbers i and j, and Cartesian coordinates X;, Y;, Xj, ¥}, ro — is the equilibrium
distance for two-particle systems, up,;, — is the binding energy. For the sake of
simplicity the reduced units of length and time as 7; =r; /ry and 7 =1t/T, re-
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spectively, are defined. Here 7 = 21tm/U ;i(0) is the period of small vibrations,
m is the particle mass which equals unity thereafter. The binding energy in the

reduced units turned out to be equal to 2(1t/6)2. A smaller than T conventional

unit of time must be introduced for the description of wave phase. We take it to
be equal to 7con = 0.005 (time step in the computer experiment). For calculation
the sixth-order Yoshida’s symplectic algorithm is used [12]. The law of conser-
vation of energy is fulfilled to a relative accuracy of 1070.

The equilibrium state is determined by coordinates X *, ¥,(”:
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X;O) = 1y, Y,.(O) = const. (2)

The initial distribution of particle velocities is chosen in the form of white
noise with amplitude 4.078 for X-polarization only. The initial disturbances
along Y-direction was not preset, however, for additional control over computer
errors the movement in this direction was permitted. The average additional en-
ergy per one particle contributed by white noise turned out to be equal to
2.6895 of reduced units. This value is 4.9 times as much as the binding energy.
Such correlation of energies corresponds to high enough temperature of the
chain which is much higher than the melting point.

The evolution of white noise in time for a chain built up of 200 particles is
presented by four graphic fragments. Every fragment is composed of 46
constitutive spatial profiles reflecting the square of particle velocity or kinetic
energy versus its number in the chain. In its turn, every constitutive profile is
formed, by graphic superposition, of ten elementary profiles taken during ten
time steps. Such display permits one to improve the tracing of waves for a long
time.

Really, as would be expected, the early stage of evolution (the lower frag-
ment in Fig. 1) is very close to homogeneous distribution. Nevertheless, at this
stage the local excitations with size of the order of lattice spacing are traced
already. These local objects conserve their shape both at free spreading, and
after interactions in between for a long time. Their velocities determined by
slope of traces vary from 10 to 16 of reduced units and they turn out to be pro-
portional to wave amplitude. A consequence of the above is the fact that we
deal with the soliton-like waves.

From general considerations it is quite evident that they are the soliton-like
objects of kink kind. Really, if spreading of excitation is presented as consecu-
tive frontal collisions of particles, then in the result of a separate collision a
moving particle stops and the resting particle starts to move with the same ve-
locity. In the next collision this moving particle stops too in a new position, and
so on. As a result, we have the switching wave of the kink type. Evidently, in
our case we have a multitude of such waves, interacting, in addition, with each
other.

By virtue of white noise proximity to the equilibrium state it may seem that
the relaxation will pass sufficiently fast. However, the next, second fragment on
the bottom of Fig. 1 testifies that the system approaches equipartition state, but
deviated towards even greater inhomogeneity of the spatial distribution of parti-
cle velocities. In the chain the high-amplitude waves arise, concentrating a sig-
nificant part of system energy. As the law of energy conservation is fulfilled
with high precision, this can be traced at the cost of energy re-distribution
among the excitations, namely, high excitations have captured the energy of the
low ones. This phenomenon is analogous to the decay of the m-mode into
the chaotic breasers [10]. The surprising thing is that almost identical effect ac-
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Fig. 1. Evolution of white noise: reading of time along vertical axis goes in reducing
units

companies the breakdown of white noise. Next two fragments (Fig. 1) show that
the level of inhomogeneity of the velocity field varies in time, however, in any
event, it is considerably above than that at the starting stage (the uppermost
fragment). This inhomogeneity doesn’t vanish at high time of system evolution
and, it is obvious that it doesn’t vanish at all. Thus, while in the Ref. [10] cha-
otic breasers were an interface at system relaxation and they vanished after the
achievement of thermal equilibrium, in our case the soliton-like excitations are
the main objects of the equilibrium thermal field. This permits one to conclude
that solition organization of thermal field takes place in such situation.

To support this conclusion let us correlate «real» distribution of particle en-
ergy with theoretical Maxwell-Boltzmann’s one. In Fig. 2 the curves with cir-
cles correspond to «real» data of the numerical experiments, solid ones corre-
spond to theoretical distribution: Descending curves describe a distribution of
particles by energy n;, determined as number of particles with energy

(i — 1)Ae £ € < [Ag, where i — is the number of interval. The curves with one or
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many peaks are the energy spectra E;, determined as total energy of particles in

the same interval. Theoretical equilibrium distribution of this quantities are of
the form:

n; = ngyexp(—¢;/0),

(3)
E,' = gn;
with the fulfillment of laws of conservation for particles and energy:
N = Zn,-,
- )
E= ZS,-n,-,

i=1

where ng — is the number of particles with minimum energy, 6 — is temperature
in the energy representation of reduced units.
From the last relations the expressions for ng and 0 follow:

0=E/N,

5
nO=N2/E. )

All graphs built with numerical experiments are obtained by means of aver-
aging over 460 time steps and they correspond to fragments in Fig 1. Energy
interval Ag used at building of graphics was taken to be equal to 1.6 of reduced
units.

One can see from the first graph that the white noise deviates from Maxwell-
Boltzmann’s distribution to a greater extent than any in Fig. 2. On the energy
spectra for real data the peak has higher value than for theoretical ones at the
cost of a fraction of low-energy excitations. The particles with high energy are
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Fig. 2. Real and theoretical distributions of particles and energy spectra versus the en-
ergy
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absent in the system at all. With the evolution of white noise the energy is
pumped from the second graf in Fig. 2 that the first peak has decreased below
theoretical value while additional peaks have arisen in the high-energy region.
In this region the energy curve lies markedly higher than the theoretical one.
With later evolution (the third graph in Fig. 2.) a peculiar kind of returning is
observed, namely, real distribution achieves the theoretical one. Additional have
vanished. It should be noted that such equilibrium deffers in the nature of its
organization from a phonon variant [10]. Really, in our case (see the third
fragment in Fig. 1.) local excitations continue to exist during all the time. This
is the principal new finding.

One may expect that the system having achieved, finally, the thermal equi-
librium, well rest in this state for a long time. However, the further evolution of
the system (see the fourth graph in Fig. 2) shows that with time the system re-
turns to the state with additional peaks again. At the same time the returning
can’t be considered as simple fluctuation, since it develops directly and sequen-
tially during a long time of about 300—500 reduced units of time. Later on, both
of these states alternate in time.

The departure of equilibrium distribution from the Maxwell-Boltzmann’s one
is marked in Ref. [3] for chock waves in one-dimensional chains. If g is the
initial temperature and 0 is the final temperature ahead and behind of the chock
front, respectively, then the equilibrium distribution of the particle velocities is
determined by the following expression [3]:
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n; = %(21(9)—”2 exp| — i + exp| — (6)

where © = 6 — 0y, y; — is velocity of a particle, or with regard of potential en-
ergy contribution

n; =7 exp(- /09 )h(2¢;0) ', 7

where 7= noexp(— 1‘}/290), no= (211:60)_1/2 — is the same ng as in expression
(3).

One may see that at >0 #n< ng is true, that is, the number of particles
with minimum energy is less then that for the Maxwell-Boltzmann’s distribu-
tion. At the same time, ‘owing to factor ch(2$,-19)1/2 a share of the high-energy

particles grows. The same is true for energy spectrum.

From third graph in Fig. 2 one can see, that the «real» distribution being
qualitatively described by expression (7) is formed in the system. However, no
peaks in the spectra in Fig. 2,b,d are described by this expression. The emer-
gence of the ones is a quantitatively new peculiarity of a nonlinear system at
high temperature. Its emergence is obviously connected with the long-living lo-
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cal high-energy excitations.

Thus, the described computer experiment has shown that the fundamental
soliton organization of thermal wave field is possible at high temperature. Such
phenomenon has led to spontaneous production of intensive nonlinear waves,
which can be considered as a peculiar kind of self-organization of the thermal

field. Investigation of this phenomenon is important to gain a better under-
standing of the break of a solid.
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