PACS: 72.80.Tm, 72.25.-Dc, 62.23.Pq

Л.А. Сайпулаева¹, Ш.Б. Абдулвагидов¹, М.М. Гаджиалиев¹,

А.Г. Алибеков¹, Н.В. Мельникова², Е.А. Степанова², Д.О. Аликин²,

В.С. Захвалинский³, А.И. Риль⁴, С.Ф. Маренкин^{4,5}, З.Ш. Пирмагомедов¹

ВЛИЯНИЕ ТЕМПЕРАТУРЫ НА ВОЛЬТ-АМПЕРНЫЕ ХАРАКТЕРИСТИКИ Cd₃As₂ + MnAs

¹Институт физики им. Х.И. Амирханова ДНЦ РАН, Махачкала

²Уральский федеральный университет, Институт естественных наук и математики, Екатеринбург

³Белгородский государственный национальный исследовательский университет, Белгород

⁴Институт общей и неорганической химии им. Н.С. Курнакова РАН, Москва

⁵Национальный исследовательский технологический университет «МИСиС», Москва

Статья поступила в редакцию 11 июня 2019 года

Показано, что электрофизические свойства гранулированного нанокомпозита Cd₃As₂ + 44.7 mol% MnAs обусловлены спиновой поляризацией собственных электронов в матрице Cd₃As₂ спин-поляризованными электронами, инжектируемыми в нее из ферромагнитных нанокластеров MnAs. С ростом намагниченности всего образца угол между намагниченностями отдельных нанокластеров уменьшается и спин-поляризованный ток возрастает. Кроме того, повышение концентрации собственных носителей в матрице приводит к увеличению спин-поляризованного тока. Эта кониепция подтверждается и измерениями вольт-амперных характеристик (BAX) при напряжениях до 5 V при температурах как ниже критической температуры образования кластерного стекла $T_{c,g} = 241 \text{ K}$ (при 77 и 172 K), так и выше нее (при 272 и 372 К), которые обнаруживают отклонение от омичности, возрастающее с напряжением. Это означает, что чем больше спиновая поляризация собственных электронов в Cd₃As₂ вследствие увеличения инжекции спинполяризованных электронов из MnAs с ростом напряжения, тем больше ток. Описанное поведение впервые обнаружено в объемном нанокомпозите с наноразмерными ферромагнитными включениями. Последние синтезируются по химической технологии, относительно дешевой в сравнении с гетероструктурами, выращиваемыми с помощью метода молекулярно-лучевой эпитаксии из слоев ферромагнетика и полупроводника, где ранее подобное явление было обнаружено.

Ключевые слова: нанокластеры, вольт-амперные характеристики, спин-поляризованный ток, температура, электросопротивление

© Л.А. Сайпулаева, Ш.Б. Абдулвагидов, М.М. Гаджиалиев, А.Г. Алибеков,

Н.В. Мельникова, Е.А. Степанова, Д.О. Аликин, В.С. Захвалинский, А.И. Риль,

С.Ф. Маренкин, З.Ш. Пирмагомедов, 2019

Введение

В работе [1] были получены композиты с высокими значениями магнетосопротивления, в которых в качестве матрицы использовали полупроводниковые соединения арсенида кадмия, а в качестве ферромагнитных нанокластеров – MnAs. Было показано, что электрические и магнитные свойства гранулированного нанокомпозита Cd_3As_2 + MnAs определяются нанокластерами MnAs, что и делает его перспективным материалом для использования в различных приборах.

В настоящей работе исследованы электрофизические свойства композита Cd₃As₂ + 44.7 mol% MnAs: BAX и удельное сопротивление.

Методика исследований

При изучении температурных зависимостей ВАХ образец с контактами помещали в герметически плотную камеру, заполненную газообразным гелием. Вначале камеру опускали в сосуд с жидким азотом для измерений в области температур 77–300 К, а затем помещали в термостат для измерений в интервале 300–372 К. Электродвижущую силу на образце и показания медь-константановых термопар измеряли потенциометром Ш-300. При определении зависимости ВАХ от температуры показания напряжения и тока снимали с помощью прибора Keithley 2000.

Исследование намагниченности $Cd_3As_2 + 44.7 \text{ mol}\%$ MnAs проводили с помощью СКВИД-магнитометра (Magnetic Property Measurement System-XL-7 EC) с чувствительностью при измерениях магнитного момента $1 \cdot 10^{-8} \text{ G} \cdot \text{cm}^3$. Масса образца составляла 67.09 mg. Образец охлаждали без поля до температуры 10 K, затем нагревали до 350 K, измеряя намагниченность в поле 100 Oe.

Результаты и обсуждение

Гранулированный нанокомпозит $Cd_3As_2 + 44.7 \text{ mol}\%$ MnAs представляет собой сложную систему, состоящую из ферромагнитных гранул MnAs, расположенных случайным образом в полупроводниковой матрице Cd_3As_2 . Такая морфология обусловливает неравномерное распределение электрического поля в объеме образца. Электронно-микроскопическое исследование $Cd_3As_2 + 44.7 \text{ mol}\%$ MnAs позволило установить, что размеры нанокластеров MnAs варьируются в пределах 10–50 nm (рис. 1).

ВАХ композита, измеренные в двух направлениях приложенного напряжения в интервале температур 77–372 К, представлены на рис. 2. Характеристики симметричны при обоих направлениях тока. При малых напряжениях ВАХ подчиняются закону Ома.

Основная цель статьи – объяснение природы обнаруженного нами отклонения от омичности зависимости тока от напряжения в гранулированном нанокомпозите $Cd_3As_2 + 44.7 \text{ mol}\%$ MnAs. Можно предположить, что основной причиной такого отклонения является спин-поляризованный ток носителей заряда, инжектируемых из ферромагнитно-упорядоченных кластеров в межкластерную среду Cd_3As_2 . По-нашему мнению, этот механизм поляризации является макроскопическим аналогом *pd*-механизма и механизма обменного взаимодействия Рудермана–Киттеля–Касуи–Иосиды (РККИ) в ферромагнетике с тем лишь отличием, что в качестве магнитоактивного иона выступает сам макроскопический кластер MnAs, а в качестве поставщика свободных электронов проводимости – полупроводниковая парамагнитная матрица Cd_3As_2 . Причем механизм РККИ-обмена, присущий магнитным полупроводникам, здесь даже более вероятен, чем *pd*-обмен. Важно отметить, что двойной обмен и основанный на нем ферромагнетизм в манганитах и мультиферроиках также относится к разновидности *pd*-обменного взаимодействия.

Рис. 1. Снимок скола образца $Cd_3As_2 + 44.7 \text{ mol}\%$ MnAs, полученный с помощью сканирующего электронного микроскопа MERLIN (Carl Zeiss)

Рис. 2. Вольт-амперные характеристики композита при различных температурах *T*, К: • − 77, 0 − 172, ▲ − 272, ■ − 372

Электронно-микроскопические исследования, проведенные с помощью силового сканирующего электронного микроскопа (СЭМ) MERLIN фирмы «Carl Zeiss», подтвердили наличие наночастиц MnAs с характерными диаметрами от 10 до 50 nm внутри матрицы Cd_3As_2 [1]. Как видно из рис. 1, в своем большинстве характерные диаметры нанокластеров MnAs составляют 20–30 nm. Отдельные экземпляры с размерами более 50 nm, по нашему мнению, могут находиться только в приповерхностных областях, а не в объеме композита, поскольку последнее привело бы к существенному повышению энергий деформации как матрицы, так и ее вкраплений. Следовательно, вполне обоснованно можно считать, что объемные физические свойства исследуемого нами композитного материала обусловлены нанокластерами MnAs с диаметрами от 20 до 30 nm. Рентгенограмма нанокомпозита $Cd_3As_2 + 44.7 \text{ mol}\%$ MnAs (рис. 3) подтверждает, что он состоит из двух фаз: Cd_3As_2 и MnAs (некоторые рентгенограм-мы дают минорные пики, относящиеся к $CdAs_2$). Микроструктура образца свидетельствует об эвтектическом разде-

лении расплава при отвердевании на два вещества: Cd_3As_2 и MnAs. Причем последнее представлено в виде сфероподобных гранул, что может указывать на то, что такое разделение имело место еще в расплаве. Это напоминает образование суспензий из несмешивающихся жидкостей и также свидетельствует о качественном различии физических характеристик компонентов, в частности электропроводости, решеточных и магнитных свойств. Отличительная особенность системы $Cd_3As_2 + MnAs -$ наличие значительной области несмешиваемости расплавов Cd_3As_2 и MnAs, что отражается и на структуре сплава. Такое практически регулярное расположение ферромагнитных нанокластеров почти одинаковых диаметров в немагнитной матрице является технологическим преимуществом при производстве из них магнитных носителей информации, поскольку упорядоченное расположение магнитных частиц в матрице происходит естественным образом.

Рис. 3. Рентгенограмма образца Cd₃As₂ + 44.7 mol% MnAs

Из температурной зависимости электросопротивления исследуемого композита (рис. 4) видно, что для него при температурах ниже критической температуры образования кластерного стекла $T_{c.g} = 241$ К характерен металлический тип проводимости, а выше этой температуры – полупроводниковый. Такое поведение электросопротивления согласуется с СЭМ-картиной скола исследованного образца, из которой видно, что он представляет собой эвтектический сплав из практически не соприкасающихся друг с другом нанокластеров MnAs, внедренных в полупроводниковую матрицу Cd₃As₂. Если бы существовала сколь-нибудь значительная перколяционная проводимость фазы Cd₃As₂, то металлический характер проводимости наблюдался бы вплоть до температуры Кюри 325 К для MnAs. Как видно из рис. 4, при температурах выше $T_{c.g} \approx 241$ К металлическая проводимость сменяется «полупроводниковой». Поскольку двухфазная система из ферромагнитного MnAs и немагнитной матрицы Cd₃As₂ имеет место при температурах и выше, и ниже $T_{c.g}$, такое поведение трудно объяснить. Казалось бы, должно иметь место комплексное поведение, соответствующее сумме металлической и полупроводниковой электрической проводимости. И, как результат их конкуренции, должна наблюдаться некая зависимость, монотонная вплоть до температуры $T_C \approx 325$ К. Реальная картина на рис. 4 наводит на мысль о влиянии нанокластеров на резистивные свойства матрицы. Ключом к разгадке такого аномального поведения электрической проводимости в мезоскопической нанокомпозитной системе является модель двойного обмена по Зинеру, поскольку зависимости электросопротивления в манганитах и нанокомпозите Cd₃As₂ + 44.7 mol% MnAs качественно совпадают.

Рис. 4. Температурная зависимость электросопротивления нанокомпозита $Cd_3As_2 + 44.7 \text{ mol}\%$ MnAs в интервале температур 40–380 K; $T_{c,g} = 241$ K, $T_C = 325$ K

Рис. 5. Температурная зависимость удельной намагниченности $Cd_3As_2 + 44.7 \text{ mol}\%$ MnAs. Величина $T_C = 325 \text{ K}$ соответствует точке перегиба кривой $\partial^2 I(T)/\partial T^2 = 0$

Однако манганиты являются микроскопической атомарной системой, в которой электрон переходит от катиона марганца ${\rm Mn}^{3+}$ через диамагнитный анион кислорода ${\rm O}^{2-}$ к ${\rm Mn}^{3+}$. Причем вероятность обмена существенно возрастает, когда спины электрона и катионов ${\rm Mn}^{3+}$ и ${\rm Mn}^{3+}$ сонаправлены, т.е. ферромагнитны. При этом электросопротивление при $T < T_{\rm C}$ ведет себя в соответствии с металлическим типом проводимости. Когда же спины соседних катионов не параллельны из-за температурной дезориентации, т.е. в парамагнитном состоянии при $T > T_{\rm C}$, электросопротивление имеет полупроводниковый тип.

Таким образом, точка Кюри $T_{\rm C}$ микроскопической системы с двойным обменом (например, манганита) аналогична точке кластерного стекла $T_{\rm c.g}$ мезоскопической системы Cd₃As₂ + 44.7 mol% MnAs. Это, продолжая аналогию, позволяет предположить, что не только диполь-дипольное магнитное взаимодействие между нанокластерами MnAs, но и вызванная их намагниченностью спиновая поляризация тока способствуют их ферромагнитному упорядочению.

На правдоподобность такого сценария указывает аномальное понижение намагниченности с падением температуры после перехода в ферромагнитное состояние (рис. 5). Обычно в подобном случае намагниченность возрастает вследствие уменьшения разупорядочивающего действия температуры. Действительно, с понижением температуры концентрация собственных носителей в матрице Cd₃As₂ уменьшается, что приводит к снижению спинполяризованного тока между нанокластерами MnAs. Это, в свою очередь, приводит к снижению намагниченности системы, обусловленной упорядочивающим действием спин-поляризованного тока. Уменьшение намагниченности при охлаждении образца от T_{c.g} до 10 К составляет около 3.3%. Так что, хотя эффект и небольшой, но достоверный на фоне высокой точности измерений намагниченности. Это наводит на мысль о том, что в данном случае мы имеем дело с макроскопическим вариантом двойного обмена: не только схлопывание углов между намагниченностями ферромагнитных нанокластеров приводит к заметному увеличению спин-поляризованного тока между ними, но сам этот ток, в свою очередь, благоволит ферромагнитному упорядочению намагниченностей нанокластеров, т.е. возрастанию намагниченности нанокомпозита Cd₃As₂ + 44.7 mol% MnAs. Следовательно, изменяя спин-поляризованный ток с помощью приложенного к образцу электрического поля, можно изменять намагниченность образца так же, как это имеет место, например, в манганитах [2], в сверхпроводниках на основе железа [3] и в многослойных магнитных сэндвич-структурах на их основе [4]. Но с одним очень важным преимуществом – пробирочная «выплавка» нанокомпозита намного дешевле изготовления полупроводниковой гетероструктуры методом молекулярно-лучевой эпитаксии. В макроскопическом аналоге двойного обмена вместо магнитоактивных катионов выступает мезоскопический кластер MnAs, а в качестве среды, передающей заряд и спин электрона, вместо аниона кислорода O²⁻ – дираковский полуметалл Cd₃As₂ *n*-типа проводимости.

Примечательно, что так же, как и для систем с двойным обменом, для исследованной нами наноструктуированной эвтектики из Cd₃As₂ с ферромагнитными мезоскопическими вкраплениями MnAs присущи, как видно из упомянутой выше открытой модульной системы, структурные и магнитные фазовые переходы [5].

Для выявления возможного вклада в электрическую проводимость спиновой поляризации носителей тока нами были проведены измерения изотермических зависимостей электросопротивления $Cd_3As_2 + 44.7 \text{ mol}\%$ MnAs от приложенного напряжения при температурах как ниже $T_{c.g} = 241 \text{ K}$ (при 77 и 172 K), так и выше нее (при 272 и 372 K) (рис. 6). В отсутствие спиновой поляризации носителей в исследованном образце ток пропорционален приложенному напряжению и выполняется закон Ома – электросо-

противление постоянно. Однако электросопротивление зависит от напряжения (рис. 6). В состоянии кластерного стекла при $T < T_{c.g}$ сопротивление падает нелинейно и резко. При этом его относительное изменение при 172 К значительно (в 2.2 и 1.3 раза) выше, чем при азотной температуре. То, что начало зависимости при 172 К выше, чем начало зависимости при 77 К, объяснимо «металлическим» характером проводимости в состоянии кластерного стекла, т.е. при $T < T_{c.g.}$

Рис. 6. Изотермические зависимости электросопротивления гранулированного нанокомпозита $Cd_3As_2 + MnAs$ от напряжения в ферромагнитном (77 и 172 K) и в парамагнитном (272 и 372 K) состояниях при различных температурах *T*, K: *1* – 77, *2* – 172, *3* – 272, *4* – 372

При $T > T_{c.g} = 241$ K, т.е. при 272 и 372 K, электросопротивление понижается линейно, причем с почти одинаковыми наклонами прямых. При температурах выше $T_{c.g}$ начинает проявляться температурное разупорядочение направлений намагниченностей нанокластеров MnAs. Поэтому спиновая поляризация при $T > T_{c.g}$ проявляется слабее. При $T > T_{c.g}$ поведение электросопротивления сменяется на полупроводниковое, при котором с ростом температуры сопротивление понижается. Вот почему на рис. 6 зависимость при 372 К расположена ниже, чем зависимость при 272 К.

Уменьшение электросопротивления с увеличением приложенного напряжения объясняется усилением спиновой поляризации с ростом тока: чем больше спин-поляризованных электронов проникает из нанокластеров MnAs во вмещающую их матрицу Cd_3As_2 , тем сильнее они поляризуют собственные электроны этой матрицы. В результате ток увеличивается, поскольку электронам нет необходимости затрачивать энергию на переворот спина, как это происходит в том случае, когда его направление не совпадает с намагниченностью сосседних нанокластеров MnAs. Отдельного рассмотрения требует изотермическая зависимость электросопротивления от напряжения при 372 К, так как она наблюдается, когда значительная доля нанокластеров MnAs уже парамагнитная: точка Кюри нанокластеров MnAs в матрице $Cd_3As_2 T_C = 325$ К. Тем не менее и в этом случае имеет место влияние спиновой поляризации. Возможно, что такое поведение обусловлено существованием некоторой концентрации ферромагнитных нанокластеров MnAs и при температурах выше точки Кюри, как это наблюдалось в манганитах [6].

Действительно, как видно из рис. 5, даже при температуре 350 К имеется отличная от нуля намагниченность, которая благодаря спин-поляризованнному току, наведенному внешним электрическим полем, увеличивается и достигает температуры даже выше, чем 372 К. Кроме того, благодаря термодинамическим флуктуациям и мезоскопическим структурным неоднородностям (например, различным размерам нанокластеров и, следовательно, различным сжимающим их упругим силам со стороны матрицы Cd₃As₂) мезоскопические ферромагнитные состояния могут существовать при температурах значительно выше точки Кюри в парамагнитном состоянии. Такое поведение присуще комплексным соединениям переходных элементов: тройным сплавам, к которым относится и Cd₃As₂ + 44.7 mol% MnAs, тройным оксидам – манганитам, никелатам, кобальтитам и т.п. Что касается влияния «материнской породы» на содержащиеся в ней ферромагнитные включения, заметим, что точка Кюри для MnAs внутри Cd₃As₂ составляет 325 K, тогда как для MnAs в свободном виде она равна 318 K [7,8]. То есть матрица Cd₃As₂, всесторонне сжимая нанокластеры MnAs, повышает их точку Кюри на целых 7 К. Это дает дополнительное технологическое преимущество нанокомпозитам, заключающееся в том, что подбором соответствующей матрицы можно управлять магнитными характеристиками ее содержимого.

Возможно также, что и сама матрица Cd_3As_2 проявляет магнитные свойства. С этой точки зрения, наши результаты согласуются с тем, что в некоторых композитах на основе Cd_3As_2 достоверно установлено наличие двойного обмена и соответствующего ферромагнитного поведения [9,10]. Спин-поляризованный ток наблюдался в магнитных сэндвич-структурах [3,4,11,12], состоящих из слоев магнитного и немагнитного материала примерно той же толщины, что и расстояние между кластерами MnAs (на рис. 1 видно, что как размеры кластеров, так и средние расстояния между ними примерно одинаковы – 10–40 nm). Эти исследования поддерживают представленное нами объяснение поведения электросопротивления в нанокомпозите $Cd_3As_2 + 44.7\%$ MnAs спиновой поляризацией делокализованных электронов из нанокластеров MnAs собственными носителями тока в зоне проводимости Cd_3As_2 .

Низкая концентрация электронов в матрице Cd_3As_2 , в особенности при низких температурах $T < T_{c.g.}$ не позволяет привлечь РККИ-механизм обменного взаимодействия для объяснения наблюдаемого эффекта спиновой поляризации электрического тока в $Cd_3As_2 + 44.7$ mol% MnAs изначальной РККИ-поляризацией магнитными моментами кластеров MnAs носителей тока в матрице Cd₃As₂. Двойной обмен Зинера – один из видов косвенного обменного взаимодействия в магнетиках, обладающих металлической проводимостью, с локализованными спинами электронов ионного остова и подвижными электронами внешних оболочек атомов.

В случае исследуемых материалов можно считать, что в макроскопическом аналоге двойного обмена вместо магнитоактивных катионов выступает мезоскопический кластер MnAs, а в качестве среды, передающей заряд и спин электрона, вместо аниона кислорода O^{2-} (как, например, в случае манганатов) выступает дираковский полуметалл Cd₃As₂ *n*-типа. Мы предположили, что не только диполь-дипольное магнитное взаимодействие между нанокластерами MnAs, но и вызванная их намагниченностью спиновая поляризация тока способствуют ферромагнитному упорядочению нанокластеров MnAs. Обычно в таком случае намагниченность возрастает при понижении температуры вследствие уменьшения разупорядочивающего действия температуры. В наблюдаемом же случае с понижением температуры концентрация собственных носителей в матрице Cd₃As₂ уменьшается, что приводит к снижению спин-поляризованного тока между нанокластерами MnAs и аномальному понижению намагниченности (в ферромагнитном состоянии). Для исследуемых композитов наибольшая скорость ее уменьшения наблюдалась при температуре ниже ~ 240 К. Если проводить аналогию с микроскопической системой, то точка Кюри (или температура перехода в состояние спинового стекла T_{s.g}) в микроскопической системе с двойным обменом аналогична точке кластерного стекла T_{c.g} (см. рис. 4 и 5) «мезоскопической» системы Cd₃As₂ + 44.7 mol% MnAs.

Заключение

Исследованы ВАХ нанокомпозита $Cd_3As_2 + 44.7\%$ MnAs при различных температурах, температурные зависимости электросопротивления, удельной намагниченности, рассчитаны изотермы электросопротивления в ферро- и парамагнитном состояниях. Приведена интерпретация аномального понижения электросопротивления этого композита в зависимости от приложенного напряжения как следствие возникновения спин-поляризованного тока – спиновой поляризации делокализованных электронов из нанокластеров MnAs собственными носителями заряда в зоне проводимости Cd_3As_2 .

Таким образом, предлагаемая нами интерпретация аномального понижения электросопротивления исследованного композита в зависимости от приложенного напряжения представляется вполне актуальной.

- 1. S.F. Marenkin, V.M. Trukhan, I.V. Fedorchenko, S.V. Trukhanov, T.V. Shoukavaya, Russian Journal of Inorganic Chemistry **59**, 355 (2014).
- 2. В.П. Глазков, Д.П. Козленко, К.М. Подурец, Б.Н. Савенко, В.А. Соменков, Кристаллография **48**, 59 (2003).

- 3. S. Choi, H.J. Choi, J.M. Ok, Y. Lee, W.-J. Jang, A.T. Lee, Y. Kuk, S. Lee, A.J. Heinrich, S.-W. Cheong, Y. Bang, S. Johnston, J.S. Kim, J. Lee, Phys. Rev. Lett. 119, 227001 (2017).
- 4. E.B. Myers, D.C. Ralph, J.A. Katine, R.N. Louie, R.A. Buhrman, Science 285, 867 (1999).
- 5. Н.В. Мельникова, С.Ф. Маренкин, Л.А. Сайпулаева, А.В. Тебеньков, Г.В. Суханова, А.Г. Алибеков, В.С. Захвалинский, М.М. Гаджиалиев, А.Ю. Моллаев, ФТВД **28**, № 3, 5 (2018).
- 6. V.V. Matveev, E. Ylinen, V.S. Zakhvalinski, R. Laiho, J. Phys.: Condens. Matter 19, 226209 (2007).
- 7. A. Ney, T. Hesjedal, K.H. Ploog, Phys. Rev. B72, 212412 (2005).
- 8. Ч. Киттель, Введение в физику твердого тела, Мир, Москва (1978).
- 9. С.Ф. Маренкин, В.М. Трухан, И.В. Федорченко, ЖНХ 59, 511 (2014).
- 10. V.F. Sapega, M. Moreno, M. Ramsteiner, L. Daweritz, K. Ploog, Phys. Rew. B66, 075217 (2002).
- 11. A. Asamitsu, Y. Tomioka, H. Kuwahara, Y. Tokura, Nature 388, 50 (1997).
- 12. L. Thomas, M. Hayashi, X. Jiang, R. Moriya, C. Rettner, S. Parki, Science 315, 1553 (2007).

L.A. Saypulaeva, Sh.B. Abdulvagidov, M.M. Gadjialiev,

A.G. Alibekov, N.V. Melnikova, E.A. Stepanova, D.O. Alikin,

V.S. Zakhvalinskiy, A.I. Ril', S.F. Marenkin, Z.Sh. Pirmagomedov

TEMPERATURE EFFECT ON THE CURRENT-VOLTAGE CHARACTERISTICS OF Cd₃As₂ + MnAs

It is shown that electrical and physical properties of the $Cd_3As_2 + 44.7 \text{ mol}\%$ MnAs granulated nanocomposite are determined by spin polarization of intrinsic electrons of the Cd₃As₂ matrix by spin-polarized electrons injected from the ferromagnetic clusters of MnAs. As the total magnetization increases, the angle between the magnetizations of single nanoclusters is reduced and spin-polarized current rises too. Besides, an increment in the concentration of intrinsic carriers of the matrix results in an increase in spin-polarized current. This concept is confirmed also by current-voltage characteristics (CVC) registered at the voltage up to 5 V under the temperature below the critical temperature of formation of cluster glass $T_{c,g} = 241$ K (at 77 and 172 K) and above it (at 272 and 372 K). The characteristics demonstrate a deviation from Ohm law that is increased under a higher voltage. This fact means that a higher spin polarization of intrinsic electrons in Cd₃As₂ due to enhanced voltage-dependent injection of spin-polarized electrons from MnAs is associated with a higher current. The described behavior was found in a bulk nanocomposite with nano-sized ferromagnetic inclusions first. The inclusions are synthesized by a chemical technology that is relatively cheap as compared to the heterostructures grown by molecular beam epitaxy from the layers of a ferromagnet and a semiconductor, where a similar phenomenon has been registered earlier.

Keywords: nanoclusters, current-voltage characteristics, spin-polarized current, temperature, electrical resistance

Fig. 1. SEM image of a chip of the Cd₃As₂ + 44.7 mol% MnAs sample MERLIN (Carl Zeiss)

Fig. 2. Current-voltage characteristics at varied temperature *T*, K: $\bullet - 77$, $\circ - 172$, $\blacktriangle - 272$, $\blacksquare - 372$

Fig. 3. XRD pattern of the $Cd_3As_2 + 44.7 \mod \%$ MnAs sample

Fig. 4. Temperature dependence of electrical resistance of the Cd₃As₂ + 44.7 mol% MnAs nanocomposite within the temperature range of 40–380 K; $T_{c.g} = 241$ K, $T_{C} = 325$ K

Fig. 5. Temperature dependence of specific magnetization of $Cd_3As_2 + 44.7 \text{ mol}\%$ MnAs. The value of $T_C = 325$ K corresponds to the bending point of curve $\partial^2 I(T)/\partial T^2 = 0$

Fig. 6. Isothermal voltage dependences of electric resistance of the granulated $Cd_3As_2 + MnAs$ nanocomposite in the ferromagnetic state (77 and 172 K) and in the paramagnetic one (272 and 372 K) at varied temperature *T*, K: 1 - 77, 2 - 172, 3 - 272, 4 - 372