PASC: 07.55.Db, 84.32.Hh, 84.40.Ik, 84.71.Ba, 84.71.Mn

Н.В. Таряник, Д.В. Варюхин, Д.О. Федюк, Л.Н. Прокофьева

СВЕРХПРОВОДНИКОВЫЙ ТРАНСФОРМАТОР ДЛЯ ИЗМЕРЕНИЯ КРИТИЧЕСКОГО ТОКА ОБРАЗЦОВ И СОПРОТИВЛЕНИЯ СОЕДИНИТЕЛЬНЫХ КОНТАКТОВ СВЕРХПРОВОДНИКОВ

Донецкий физико-технический институт им. А.А. Галкина

Статья поступила в редакцию 8 октября 2019 года

Приведены расчет и описание конструкции сверхпроводникового трансформатора (СПТ), базирующегося на свойстве сохранения потокосцепления для замкнутой сверхпроводниковой цепи. Трансформатор позволяет бесконтактным способом измерять критический ток образцов типа «шпилька» величиной в несколько килоампер и сопротивление соединительных контактов сверхпроводников величиной менее $10^{-12} \Omega$.

Ключевые слова: сверхпроводниковый трансформатор, индуктивность, взаимная индуктивность, критический ток, коэффициент трансформации, сопротивление соединительного контакта

Для испытания коротких сверхпроводниковых образцов вместо внешнего сильнотокового источника и мощных неэкономичных токовводов в криостат удобно применять СПТ, который способен работать на нулевой частоте (постоянном токе), если его вторичная обмотка является сверхпроводниковой и замкнутой на сверхпроводниковую нагрузку (рис. 1).

Расчет параметров СПТ можно производить на основе анализа переходных процессов [1], но проще использовать свойство сохранения потокосцепления в замкнутой сверхпроводниковой вторичной цепи СПТ, рассматривая процесс ее нагрузки как квазистационарный:

$$I_1 M - I_2 (L_2 + L_{\text{load}}) = 0$$
, (1)

где I_1 и I_2 – токи соответственно первичной и вторичной обмоток СПТ, M – взаимная индуктивность между ними, L_2 и L_{load} – индуктивности соответственно вторичной обмотки и нагрузки.

Коэффициент трансформации СПТ по току

$$K = I_2 / I_1 = M / (L_2 + L_{\text{load}}).$$
 (2)

Рис. 1. Электрическая схема сверхпроводникового трансформатора

Для СПТ с магнитным сердечником (магнитопроводом) [2] возмущение потокосцепления вторичной цепи в идеальном случае запишется как

$$\psi_2 = \Phi w_2 = I_1 w_1 w_2 / R_m \,, \tag{3}$$

где w_1 и w_2 – количество витков соответственно первичной и вторичной обмоток, R_m – магнитное сопротивление магнитопровода СПТ.

Из свойства сохранения потокосцепления

$$I_1 w_1 w_2 / R_m - I_2 \left[w_2^2 / R_m + L_{\text{load}} \right] = 0$$
(4)

определяется коэффициент трансформации по току

$$K = I_2 / I_1 = w_1 w_2 / \left(w_2^2 + L_{\text{load}} R_m \right).$$
(5)

При отсутствии нагрузки и потерь на рассеяние ($L_{\text{load}} = 0$) коэффициент трансформации по току равен отношению количества витков первичной и вторичной обмоток: $K = w_1 / w_2$, однако по мере роста индуктивности на-грузки он может значительно снижаться.

Максимальный ток, который может быть возбужден во вторичной цепи, ограничен индукцией насыщения B_s материала магнитопровода СПТ с площадью поперечного сечения S:

$$I_{\max} = B_s S \omega_2. \tag{6}$$

Испытываемый образец может подключаться последовательно со вторичной обмоткой СПТ. Наличие сопротивления во вторичной цепи снижает эффективность действия трансформатора и максимально достижимое значение тока. Приравняв потери магнитной энергии СПТ с индуктивностью L и током I к тепловыделению в соединительном контакте с сопротивлением R за время t для случая малого снижения тока, получим выражение для затухания тока во вторичной его цепи

$$\Delta I/I = Rt/L \,. \tag{7}$$

Для испытания короткозамкнутых сверхпроводниковых образцов типа «шпилька» в нулевом магнитном поле был разработан СПТ небольшого размера, который размещался в транспортном гелиевом сосуде Дьюара СТГ-10 или СТГ-25. Конструктивно трансформатор (рис. 2) состоит из цилиндрического магнитопровода *1*, магнитного сердечника *2*, на котором намотана первичная обмотка *3*, состоящая из 100 витков сверхпроводникового провода HT-50 диаметром 0.1 mm. Вторичная обмотка в виде «шпильки» *4* навешивается на сердечник и вместе с ним вставляется в магнитопровод. Часть петли образца охватывает бесконтактный измеритель тока *5*, а нижняя его часть может выполняться вытянутой для размещения участка испытания *6*.

Рис. 2. Схема сверхпроводникового трансформатора: *1* – магнитопровод, *2* – ферромагнитный сердечник, *3* – первичная обмотка, *4* – вторичная обмотка, *5* – измеритель тока, *6* – участок испытания провода

Рис. 3. Блок-схема измерителя тока в образце: *1* – источник тока, *2* – датчик Холла, *3* – компенсатор, *4* – усилитель, *5* – двухкоординатный самописец, *6* – шунт, *7* – испытываемый образец сверхпроводника, *8* – сверхпроводниковый ключ, *9* – нагреватель

При индуктивности нагрузки $L = (2-10) \cdot 10^{-8}$ Н максимальный расчетный ток для образца длиной до 0.15 m $I_{\text{max}} = 0.7-3$ kA. Принцип бесконтактного измерения тока в замкнутой вторичной цепи СПТ основан на измерении магнитного поля вблизи проводника с током, например, датчиком Холла, который имеет линейную характеристику. Блок-схема измерителя приведена на рис. 3. Датчик Холла 2 запитывается током от стабилизированного источника тока *I*. Сигнал с датчика, пропорциональный току в образце 7, через компенсатор 3 и усилитель 4 подается на координату *y* двухкоординатного самописца 5. Одновременно с шунта 6, установленного в первичной цепи СПТ, на координату *x* самописца поступает сигнал, пропорциональный току в первичной цепи. Сверхпроводниковый ключ 8 с подогревателем 9 используется для запитки и длительной работы вторичной цепи СПТ в короткозамкнутом режиме, например, при определении сопротивления сверхпроводниковых контактов.

Измерения, проведенные в СПТ для образца-«шпильки» из проводника диаметром 0.7 mm марки HT-50, позволили вычислить коэффициент трансформации. При отношении количества витков в первичной и вторичной обмотках 100:1 он составил 88. Критический ток образца при этом $I_{cr} = 0.60 \pm 0.01$ kA, и насыщения ферромагнитного сердечника СПТ не наблюдалось.

С целью увеличения тока во вторичной цепи СПТ при сохранении его размеров перед замыканием вторичной обмотки сердечник трансформатора предварительно доводили до насыщения в направлении, обратном рабочему, подачей в первичную обмотку трансформатора тока в направлении, противоположном рабочему. Поскольку вторичная обмотка была разомкнута, насыщение сердечника наступало при относительно малом токе в первичной обмотке $-I_1$, который имел направление, противоположное рабочему. После замыкания вторичной обмотки и изменения тока в первичной обмотке от $-I_1$ до $+ I_1$ во вторичной обмотке трансформатора наводили ток I_2 , почти в два раза превышающий ток при стандартной запитке СПТ [2].

В том случае, когда необходимо выполнить измерения серии сверхпроводниковых образцов с малыми потерями жидкого гелия, для смены образца не обязательно извлекать из криостата весь трансформатор. Для этого ферромагнитный сердечник СПТ изготавливали составным из двух частей – неподвижной и съемной. Неподвижную часть выполняли с клиновидной прорезью, в которой устанавливали съемную часть сердечника в виде усеченного клина с размещенным на нем образцом. При этом стенки прорези и клина имели одинаковый уклон [3] (рис. 4). Первичную обмотку *1* СПТ устанавливали на неподвижной части сердечника 2, а вторичную обмотку-образец *3* – на съемной части сердечника *4*. Кроме того, вторичную обмотку снабжали подогревателем-размыкателем *6* и бесконтактным измерителем тока *5*. Подвеска 7 служила для механического крепления съемной части с образцом, а также для извлечения и установки ее в криостат.

Рис. 4. Общий вид сверхпроводникового трансформатора со съемной частью сердечника: *1* – первичная обмотка, *2* – ферромагнитный сердечник, *3* – вторичная обмотка, *4* – съемная часть сердечника, *5* – бесконтактный измеритель тока, *6* – подогреватель-размыкатель, *7* – подвеска

СПТ работает следующим образом. Первичная обмотка и неподвижная часть сердечника находятся постоянно в криостате с жидким гелием. Вторичную короткозамкнутую обмотку-образец при комнатной температуре устанавливают на съемную часть сердечника и вместе с бесконтактным измерителем тока и подогревателем-размыкателем образца при помощи штанги опускают в криостат до плотной установки клиновидной съемной части в прорезь неподвижной части сердечника и образования замкнутой магнитной цепи. После этого в первичную обмотку трансформатора подают относительно слабый ток, а во вторичной цепи-образце наводят намного больший ток, величину которого измеряют бесконтактным измерителем, например датчиком Холла. Подогреватель образца используют для размыкания и приведения трансформатора в исходное состояние при его многократных испытаниях.

После окончания испытаний образца штангу с разъемной частью сердечника СПТ и образцом извлекают из криостата и производят смену образца.

Измерение малых сопротивлений в короткозамкнутом сверхпроводником образце удобно проводить, контролируя затухание в нем тока. Для возбуждения начального тока в такой цепи можно применить СПТ, в котором эта цепь образует короткозамкнутую вторичную обмотку.

Сопротивление короткозамкнутой вторичной сверхпроводниковой обмотки трансформатора, обусловленное, например, неидеальным контактом между ее выводами, вызывает затухание в ней тока со временем, которое определяется выражением

$$I_t = I_0 \exp\left(-Rt/L\right),\tag{8}$$

где *R* – сопротивление контакта, *L* – индуктивность вторичной обмотки с учетом влияния сердечника СПТ.

Экспериментально было установлено, что при токе во вторичной короткозамкнутой обмотке СПТ величиной 40 A и ее индуктивности 10^{-6} H затухание тока в течение 10^4 s отсутствует. Это позволило оценить величину остаточного сопротивления сварного контакта, которая составила менее $10^{-12} \Omega$.

Таким образом, разработанная методика испытания сверхпроводников в виде замкнутых образцов с использованием СПТ малых размеров и с большим (~ 100) коэффициентом трансформации позволяет бесконтактным способом измерять критический ток величиной в несколько килоампер, а также сопротивление соединительных контактов сверхпроводников величиной менее $10^{-12} \Omega$.

- 1. *Е.Я. Казовский, В.П. Карцев, В.И.Шахтарин*, Сверхпроводящие магнитные системы, Наука, Ленинград (1967).
- В.В. Пермяков, Н.В. Таряник, В.Г. Терещенков, Л.Н. Горностаева, В.Н. Богин, Способ запитки сверхпроводящего трансформатора, А.с. 635818 СССР, М.Кл. Н О1 L 39/14, Н О1 F 39/00.
- В.В. Пермяков, Н.В. Таряник, В.Г. Терещенков, Л.Н. Горностаева, Устройство для испытания сверхпроводников, А.с. 673093 СССР, М.Кл. Н О1 L 39/24, УДК 537.312 (088.8)

N.V. Taryanik, D.V. Varyukhin, D.O. Fedyuk, L.N. Prokof'eva

SUPERCONDUCTING TRANSFORMER FOR THE MEASUREMENT OF THE CRITICAL CURRENT AND THE RESISTANCE OF THE JOINT CONTACTS IN SUPERCONDUCTORS

The design and the calculations of a superconducting transformer (SCT) based on the concept of conserved flux linkage in a closed superconducting chain are reported. The

transformer allows touchless measurement of the critical current of a few kA in magnitude in the pin-shaped samples and the resistance of the joint contacts less of $10^{-12} \Omega$ in superconductors.

Keywords: superconducting transformer, inductance, mutual inductance, critical current, coefficient of transformation, resistance of a joint contact

Fig. 1. Electrical scheme of the superconducting transformer

Fig. 2. Scheme of the superconducting transformer: 1 - magnetic circuit, 2 - ferromagnetic core, 3 - primary coil, 4 - secondary coil, 5 - current meter, 6 - zone of the circuit testing

Fig. 3. Flow chart of the current meter: 1 - current supply, 2 - Hall probe, 3 - compensator, 4 - amplifier, 5 - two-coordinate recorder, 6 - shunt, 7 - tested superconducting sample, 8 - superconducting key, 9 - heater

Fig. 4. General view of the superconducting transformer with the detachable part of the core: l – primary coil, 2 – ferromagnetic core, 3 – secondary coil, 4 – detachable part of the core, 5 – touchless current meter, 6 – heater-disconnector switch, 7 – support