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A structured model of the hypothalamic-pituitary-adrenal (HPA) axis that includes a
glucocorticoid receptor (GR) is considered. The model includes nonlinear dynamics of
pituitary GR synthesis. The nonlinear effect arises from the fact that GR homodimerizes
after cortisol activation and induces its own synthesis in the pituitary. The homodimeriza-
tion makes possible two stable steady states (the low and the high one) and an unstable
state. The model includes also a delay on stress. It is shown that competition between the
trajectories of a dynamical system, which are produced by the unstable manifold and the
value of delay time 1, results in slow asymptotic periodic oscillations of cortisol with a
period, which is greater than 2t. It is shown that the oscillations exist only in the interval
77 < 1 < 1, where exact formulas for t; and t, has been obtained. The oscillations arise
when the initial value of stress is larger of some threshold.

Keywords: hypothalamic-pituitary-adrenal axis, asymptotic periodic oscillations, nega-
tive feedback, difference-differential delay equations, normal state

Introduction

Hormone regulation is a complex process where the level of a single hormone
is tightly related to the levels of the rest. The chain of hormone interactions is a
closed one that provides self-regulation of a living organism. Hormone dynamics
was an object of a number of mathematical models. Mostly they imply the solu-
tion of a system of differential equations with a set of feedbacks involved. They
are able to describe general tendencies without detailed agreement of the results
and the experimental data. Experimentally registered oscillations of hormone con-
tent are usually far from the periodic form and include irregular components. De-
veloped later stochastic and chaotical models have demonstrated better agreement
with the experimental testing.

We consider HPA dynamics which includes stored corticotrophin-releasing
hormone (CRH), circuiting CRH and adrenocorticotropic hormone (ACTH), cor-
tisol and glucocorticoid receptor that plays a role of «dispatcher» that controls dis-
tributions of hormones in the system. Our model incorporates a self-upregulation
of CRH release, a negative and positive feedback effect on cortisol in CRH syn-
thesis and a delay in ACTH- activated cortisol synthesis [1]. It is worth reminding
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that hypothalamic-pituitary-adrenal (HPA) axis is a neuroendocrine system that
regulates hormones. The regulation is mediated by inhibition of peptide hormones
such as corticotrophin-releasing hormone and adrenocorticotropic hormone by
circulating glucocorticoids such as cortisol (CORT).

Note that in this paper, we do not start with the local linear stability theory, be-
cause our experience suggests as cited in [2]: «Many experimentalists have excel-
lent intuition about rates of change at their fingertips, the abstraction of eigenvalues
presents a road block». Our model includes three equilibrium states for the HPA
system, one of which is unstable and the other two are stable. We developed a dy-
namical model of HPA axis to describe interactions between the key hormones and
the GR with account of well known mediate feedback activity of cortisol. For ex-
ample, a model is considered [3] where two attracting limit cycles arise in HPA sys-
tem, so cortisol and ACTH oscillate to the beat of ultraradian (hourly) rhythms. Our
model deals with two oscillating states. The state characterized by a lower cortisol
level is associated with the normal state. Within this model, stress-induced secretion
of CRH can trigger a transition between the normal and diseased states, respec-
tively. A simple hyperbolic attractor of the dynamical system that contains two at-
tractive fixed points and one repelling fixed point of codimension / (saddle point)
forms slow asymptotic periodic oscillations of cortisol in the HPA axis.

Basic relations

In the present paper, we follow [4] and discuss the HPA axis model reported in
[1] that accounts for the basic feedback mechanism and includes an intracellular
glucocorticoid receptor GR as one of four state variables of the dynamical system,
where variables [CRH], [ACTH], [GR] and [COR] represent concentrations. Here
[GR] is related to cortisol. The resulting complex [COR—GR] determines general
behaviour of solutions of the model. It is found that GR := ®[COR]), where ®
is a given nonlinear function (see [4], Fig. 1) which plays the main role in the
quantitative behavior of limit distributions of cortisol in a physiological system.

We define [GR]:=u and assume that ®(/) c [ for each u € I, where I is an
open bounded interval. Then all solutions of the problem are bounded for all
t > 0. The phase diagram shows [4] that a state variable [GR] is a cubic type func-
tion of the concentration of cortisol [COR]:=u . Hence, for a certain stress region,
the system exhibits two stable steady states and one unstable steady state.

It will be shown that the corresponding dynamical system in R (three-
dimensional space) can be reduced to the planar system with two delay equations:

X(t)=y(O)—px(1), (D
(0)==f (x(1=1))=pox(1) 2

where p; and p, are parameters. Function f is derived from the plot of function
®: ] — I, which is determined by the phase diagram of «pitchfork» type result-
ing from computer experiments in [5].
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Thus, the HPA mathematical model can be reduced to the study of solutions of
system (1), (2). Besides, the planar system can be reduced to an autonomous dif-
ferential-difference delay equation of the second order:

)'c'+(pl+Pz)5c(t)+p1p2x(t):—f(x(t—l)), =1 3)

that explains oscillating behavior of the solutions of differential-difference delay
equations. It is known that the delay system has non-constant periodic solutions
with a period greater then 2 [6].

With using these mathematical results, we found that there are slow oscillating
asymptotically periodic solutions for the HPA axis, which describe distributions
of cortisol. The role of delay in the HPA problem will be found. It turns out that
oscillating solutions are stable if and only if

T <T<1T,, 4)

where delay times t; and T, are estimated exactly, being dependent on given pa-
rameters of the physiological problem. Exact analytical parameter-dependent for-

mulas for t; and 1, will be derived.

Postulation of problem

The HPA axis has three components which represent the hypothalamus, the pi-
tuitary and adrenal. The equation for the hypothalamus is:

dC K.+F
= _K(;dC7 (5)
K

n

where —K_,C describes constant degradation rate of CRH. In line with [1], we

assume that Kg <<1. Then it follows from (5) that
n

dC 0
—=(K,+F)|1+— |-K_,C. 6
dT ( c )[ Kn j cd ( )
. . . K. +F .
Here all undetermined constants can be found in [1]. Next, if C =—=< in (6),
cd
dC .
we can put T =( with accuracy O(¢g), where ¢ =—
n
We write for the hypothalamus [1]:
1+
= e, ™
1+~
ky

for the pituitary
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C
or

ky

a=

_kada : (8)
1+

Equation (8) models the degradation rate of ACTH and ACTH production terms
with a cortisol inhibition factor,

. (or)2
F=——->—+k. —k. 1. 9)
i+ (01")2 cr rd
For the adrenal we have
o=—o+a(t—1) (10)

with delay response t.
If we put c:=a in (8) (for unification with [7]) and consider only the equilib-
rium ¢ =0, then we obtain the well-known model [7]:

N S
a(t)—szO(t)r(t) p3a(t), (11)
(1) =— P4 14 pe — 12
)= T P20, (12)
(1) = —o(t) + a(t — 1) (13)

as a particular case of the model reported in [1]. Thus, we have a projection of tra-
jectories of the dynamical system from R* into R’. The assumption ¢ =0 deter-
mines only zero line that describes curve

S e=o0. (14)
o

I+—
ky

The projection on R requires at least o/k; <<1. We neglect this small term in the

first approximation.

Remind [1] that stress applied to the HPA axis ( /') stimulates the hypothala-
mus to secrete CRH(c). Further, CRH(c) signals the induction of ACTH synthesis
(a) in the pituitary. Thus, our assumption means that the velocity of stimulation

of the ACTH signals is constant, i.e. c:ﬂ. Mathematically, it means that
cd
function p=or can be considered as a parameter (at lest asymptotically). The ef-

fect of changing of parameters on c—zero line has been considered by Kim et al. [3].

Determination of fixed points for the HPA problem

It is known that these equations have three positive steady states (there is also a
negative state which is not used). These steady states arise because of
homodimerization of the GR with cortisol. From [1, Fig. 1] it follows that
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o= fi(pe) and r = f5(ps) , where another parameters are fixed. Here, f; and f,

are multivalued functions.

dC O
—=(K +F)|1+— |-K ,C. 15
dT ( c )[ KnJ cd ( )

K. +F

Next, it follows from (6) that if C = , then we can set dC/dT =0 with ac-

cd
curacy O (g), where e=0/K,, .
As a result, we can consider the following approximation [7]:

4
a(t)=————pza(t), 16

(1) T+ pro(Or(0) p3a(t) (16)

SeN Py
F(t)=— 5 +1+ps—per(?), (17)

ps+(o()r (1))
o(t)y=—o(t)+a(t—7). (18)
The main role hear is played by equation (17), which describes the production of
GR in the pituitary. The term — P4 5 +1 is in Michaelis—Menten form
P4+ (0(0)r (1))

(see [1]) because we assume that the bound glucocorticoid receptor (or) in the di-
mensionless form is dimerized with fast kinetics, so that the amount of dimers is
in constant quasi-equilibrium and ones depends on the excess of or. The model
also assumes that cortisol (0) and the glucocorticoid receptor (r) are bound to each
other with very fast kinetics, which is compared to the rate of the change of 4 state
variables (4, C, O, and R), so that OR stays in quasi-equilibrium as well. These
are reasonable assumptions, because of high affinity, the receptor-ligand kinetics
is often much faster than enzyme kinetics, as is assumed in Michaelis—Menten
equation (see [1]). Equation (16) models linear production term K_r and degrada-

tion term —K, ;R for pituitary GR production. Below, in the dimensional form for

the model, these coefficients are defined as 1 and pg, respectively.

Remark 1

Note that (c) represents the level of circuiting CRH, (a) defines the level of
circuiting ACTH, (») describes the level of glucocorticoid receptor in the pitui-
tary, and (o) is the level of circuiting cortisol. In equations for (a) and (), the
cortisol-receptor complex (or) is assumed to form and dissociate under fast dy-
namics [3]. Below it will be proved mathematically to be true indeed, because
there are so-called slow oscillating distributions of cortisol [3]. It has been shown
that this level can be approximated as «steady state» by the production (or).

Indeed, let us define p = or. Then the origin problem in R can be unfolded as

a system in R3, so that
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a= 4 - psa, (19)
1+ pou
F=——Ph 1t pe—per (20)
2 Ps = Pe">
Pyt
o0=-o+a, (21)
L=or+ro, (22)

where, in (21), a:==a(t) or a:=a(t—7).
It follows from these equations that the fixed points are located at the curves

azi( 4 J, (23)
p3\ 1+ pou
1
r=—y -4 414 ps |, (24)
Pe\ pstp

Since the fixed points are positioned at diagonal o = a, by multiplying these rela-
tions and substituting o = a, and putting at a fixed point [t =0, we obtain that p

is a solution of the fourth order algebraic equation. Indeed,

or=p= 1 ( A J— p42+1+p5 . (25)
PeP3 \ 1+ pou Pst
Let v= . Then from (25) we get
PeP3
4, 3 2 -
Pab +H +(P2P4—(1+P5))H + pat—Vpspy =0. (26)

By Descartes rule, this equation has 3 or 1 positive roots and 1 negative root
which can not be considered. Descartes rule means that the number of positive
roots of the polynomial is either equal to the number of sign differences between
the coefficients, or it is less of it by an even number. So, if we assume that

Papy <1+ ps, (27)

then equation (26) has 3 positive roots L, 1y, 13. Then we can find three fixed
points of the problem from (23), (24).

Thus, there are 1 =0 on a hyperplane in R4-space that is included in R4-space,
where p can be considered as a parameter. Since the basis in R*isnota family of
independent vectors, we can use this observation to find conditions when the tra-
jectories of the dynamical system in R* are attractive by trajectories in R. If this
is true, then function p(¢) in R* is a constant function in R>. A condition when it
is possible can be easily found. Indeed, let A, A;, A3, A4 be the eighenvalues of the
problem. It means that

107



Pdu3nka ¥ TEXHUKA BLICOKHX AaBjennii 2019, tom 29, Ne 3

a=Ma, F=hyyr, 0=2A0, [L=NA4l0. (28)
Then

It follows from (29) that if A, +A3 <0, then 1 — 0 as t - 4. So p can be con-
sidered as a parameter in asymptotic sense.

Geometric method of determination of the fixed points of the problem

Now we assume that there is a component 0o =0" of a fixed point in R’. Then
we see from equation (20) for cortisol that #=0 if G(r,0)=0. So, the (o,r)-
nullcline structure can be found from (17) that is determined as a curve r:=r(0)
such that G(7(0),0)=0 for each admissible o within some interval (the corre-

sponding numerical simulation is reported in [3, Fig. 4]. To make it, we assume
that there is a component of fixed

23 22
G(r,0)==peor" + (1 + ps)o™r" — paper + paps =0 (30)
where o can be considered as a parameter. Thus, there is a multi-valued curve
r:=r(o) such that G(r(o),o) =0 for every positive fixed o . This curve has been

found by numerical simulation in [3], Fig. 4. The curve is S -shaped as a graphic
of a cubic polynomial.

Applications of the singularity theory for the HPA problem

If we find from (29) the curve S =r(0), then #=0 on this curve that follows
from the second equation of the HPA problem for the function »(¢). The results of

computer experiments can be found in [3]. On this S-shaped curve that tends to
bistability, function »(¢) is constant.

The behavior of GR can be analyzed by the singularity theory. The graphic
r:=r(o) is multi-valued and S -shaped as shown, for example, in [5], Fig. 3. It

follows from [8] that there is irreversibility if
G=G.=G,.=0, G,, #0. (31)

As G(r,0)=0, there are one or three fixed points for every fixed positive a. It
follows from equation G,,. =0, 1.e.

—3pco’r+(1+ps)o® =0, 0#0 (32)

1+ ps
36
pendent of o as a parameter. Ignition and extinction points in the (r—o0) locus
(see [5]) are determined by the solutions G =G, =0 with G,, #0.
They satisfy a quadratic equation

that we have the vertical inflection point value » = here, which is inde-

—(1+ ps )02’”2 +2pypst —=3paps =0 (33)

108



®du3uKa ¥ TEXHHKA BLICOKHX AaBJjaenuii 2019, tom 29, Ne 3

that results in

_TP4pst \/(P4P5 )2 =31+ ps) p4ps
—(1+ ps)

N (34)

In the case of bistability, these points separate three fixed states (one unstable
saddle point is between two stable states). We see that inequality

(P4ps)> 231+ ps)paps (35)

must be satisfied for the bistability to exist (it is the necessary condition).

Note that according to Descartes rule of signs, the number of positive roots of a
polynomial is equal to the number of sign changes in the coefficients or less of it
by a multiple of 2. Hence polynomial (30) has one or three positive roots. These
roots are positioned at the curve (o). The intersection of this curve with the line

o =a, which follows from (18), yields p=ar(a). Here p=(u;,1,,13). With us-
ing (32), we find the fixed points of the problem, which are
pk:(afaafar*k:r(af))a k:17273

Note also that according to interpretation in [1], Fig. 3, the variations of the
steady state for GR and cortisol  are obtained, respectively, with a as a parame-

ter. There are three intervals /;, /3 and I,. If a e 11U13 , then there are two at-

tractive fixed points. If a € I,, we obtain a repelling fixed point.

2D nonlinear dynamics

Let us consider the system of equations

o(t)=—-o(t)+a(t—1), (36)
(1) =—f[o(®)] - pya(r). (37)
Then
d(t—r):—f[o(t—r)]—p3a(t—r). (38)
Define a(t—1t) = y(¢). Then it follows from (60) that
Wt—1)=—f[ot—1)]~-p3y(0) . (39)

In (57) we define (for unification with [6]) o(¢) = x(¢). Then (58), (61) can be
written as

x(t) = y(1) = x(1), (40)
=1 ==f[o(t=1)]-p3y(®). (41)
y(@) = y(t)—x(1). (42)
Consequently, the first equation can be written as
y(t)= T+ pyo(r (o) —p3y(). (43)
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Note that on every plane p(¢)=0, the following functional relation
r(t)=®(o(t)) is satisfied, where @ is a known irreversible function. Remind
that function @ represents the glucocorticoid receptor (GR) that is included in the
HPA axis (see [1, Fig. 3(a)]) that involves the glucocorticoid. The nonlinear effect

arises when GR homodimerizes (after cortisol activation) and induces its own
synthesis in the pituitary. The form of graphics ®(0) plays the main role in the

qualitative study of solutions. The S-shaped graphic allows finding of three fixed
points. Two of these fixed points are attracting, but one of the points o, must be
repelling in R

Indeed, it will be shown below that if o, is attracting, there are four fixed

points in reality (see the previous stable solutions). So there are no oscillating so-
lutions. If the unique fixed point o, is repelling, then this point plays the role of

the separator. The behavior of a solution depends on the amplitude of the initial
data which is given within interval [—t,0). Let 4(¢) be the initial function within

[-7,0). Then if O<Ah(t)<o,, the solution tends to a constant solution
o(t) >0, <03 as t >+ . If h(¢) > o, on interval —7,0), then o(f) > 0, <05 as

t — +o . As a result, the existence of both delay and repelling fixed points results
in the possibility of oscillating solutions of the problem if the initial data on —t,0)

are large enough.

Planar case on RG null-isocline

Now we return to the mathematical aspects of the problem i.e. to equation (43).
Define

A

1+ p,or(o) ’

~/(0)= (44)

where r(0) is defined by RG form of the RG curve. Then equation (42) can be
rewritten as

(1) ==f(0)=p3y(0). (45)

Next, an important observation is that both equations (43) and (60) are equivalent
to the system of equations

x(t) = () = pyx(1) , (46)

y(O)==f(x(t=1)=py)(1), (47)

where for (45) we put p; =1, p, = p3, T=1. Then it follows from [6] that system
(46), (50) has a monotonic periodic solution with a period greater than 2 and 2t
for the origin physiological problem, respectively.

Here, the following conditions must be satisfied: (i) a and b are positive con-
stants, (ii)) f(u)>0 for all u =0, (iii) there is a positive constant 7 such that

f(u)=—y forall u,
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, +
joy» PPt (48)
siny
Where v satisfies 0 <y <m, and
1
COthYZV(Y—MPz)(PﬁPz)- (49)

Remind that p; =1 and p, = p; for the physiological problem. Hence, condition
(1) 1s satisfied. Next, the inequality (60) becomes

. 1+
joy» LR, (50)
siny
Note that there is only a unique fixed point 0 as reported in [6]. In our situation,
there are three fixed points (0;,0,,03), where o; and o3 must be attractive fixed
points, and o0, = o, is arepelling fixed point. So that inequality (62) becomes
. +
foy> B2l (51)
siny
Further, the point o, must be repelling. For example, we obtain f(0,)>1+ p; In
the limit y — 0 and, hence, the condition of the local instability is satisfied. Since,
p3 20, this fixed point must be repelling at least for small &. In conclusion, the
condition (iii) is the condition of local instability as it will be shown below.

Analysis
Define a=p;+p,, B=pipy, V= £(0). Then the characteristic equation is
A2 +al+B+ve =0, (52)
where we assume that t=1. If t#1 then the problem is reduced to the character-

istic equation:
2oz +prt +vite © =0, (53)

where z =41, v vi, a —>at, and B—)Brz, and we assume that t#0.
Further, we use the results reported in [6], Lemma 1. If o, B, v are positive,
and if o > 2B, then the following three conditions are equivalent: (1) Equation

(52) has at least one solution. (2) The characteristic equation has precisely one
solution A with RA >0 and 0 < JA < 7. (3) The following inequality is true

vl (54)
sinv,
where 0 <v; <m and
coth v, :l(vl —EJ (55)
o \%]
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Note that there are many details about the behavior of trajectories of the dy-
namical system. We formulate this behavior as distributions of concentrations of
hormones a and o on the (0—a)-plane, where o is the distribution of cortisol.

For example, there is an estimation

' P1P2
0 , 56
70> exp(min(p;,p,)) -1 )

where 0 = o, and p; =1, p, = p3 so that

; P3
f(0.)> exp(min(l,p3))—1 ' (57)

Then a component o(¢) is characterized as follows: 1) zeroes for a graphic o(¢)
form an infinite series ¢, k=1,2,..., with o(t)=0, #.,,—-# >1 and
0(tyr_1) <0, o(ty;) >0, and o(ty;_;) <0, o(ty;) >0, and a(t,,_;) <0,a(t,;) >0,
and a(ty,_; +1)<0, a(ty;, +1)>0; 2) function e o(t) is monotonic and increas-
ing on interval (t,;,%; +1) and monotonically decreasing on (t,;_;,ty;_; +1),
where a =1+ p; (see Fig. 1).

AW A W
w:d)*(g)
|
: D(u)
il B: 10,
|l g B @'(By) g
|
|
| — B> .
3 2
Ag
D(w)
R S AN A WO A R it
1 U 4 1 2 3 4 5
it
Psl
u}

Fig. 1. Slow oscillating distributions of cortisol
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Necessary and sufficient condition for the existence of slow periodic solutions

If t#1, then we obtain the characteristic equation

Zraz+pri+vite T =0, (58)

where z=At. Define G =ort, f=pt> and v =vt’. Next, we must verify the as-

sumption 6 > 2[§2 from [6], Lemma 1. Evidently that this assumption is satisfied

for every t1#0.
Further, we assume that

n2+°°7—f32 >0. (59)

The necessary condition of delay follows from (59)

r<— (60)

4p—a’
We obtain from (60) that 2f3 < a? < 4f that results in the natural condition p; >1.

The condition (59) allows application of Lemma 1 (see [6]). It means that char-
acteristic equation (58) has precisely one solution z with Rz>0 and 0< 3z <.

Here, v must be such that

v>— (61)
sin Vv,
where 0 <V, <7, and
o 2
(see [6], conditions (2), (3) from Lemma 1).
It follows from (62) that
3
vi2 > T (63)
sin vyt
In the limit t— 0,
> 2100, (64)
\Y

Remind that v= f(o,), where o, is the repelling fixed point of f. Being com-
bined with (62) it yields

P 2T (65)

f.) P-o?

Inequality (65) determines the necessary and sufficient conditions for the exis-
tence of slow periodic solutions for the HPA problem in 2D approximation.
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Conclusion

In this paper, physiological and mathematical mechanisms of formation of ul-
traradian oscillations in the HPA axis have been considered. It is shown that the
main role is played by the nonlinear connection between cortisol COR and the GR
that forms a homodimer [9]. A conception of transcriptional regulation is that the
GR feedback control works rather slowly as compared to other cellular processes.

The corresponding differential-difference equations with the delay argument
have slow oscillating periodic solutions. The delay has been included because, for
example, in mammalian cells, one can expect at least a delay of the down regula-
tion in the range of 15 minute up to 2 hours (see [4]). It is proved that this hy-
pothesis has been confirmed as slow oscillating 2t (or larger) periodic distribu-
tions of cortisol at least mathematically (Fig. 1). Here we follow a mechanistic
ODE system model of the glucocorticoid feedback mechanisms within the ante-
rior pituitary gland cell, with addition of the delay 1 to this model.

It is shown that an important factor is the consequence between extracellular
events such as changes in the CRH and cortisol induced inhibitory effect on ante-
rior pituitary gland cells, which already occurs after a few seconds [11,12]. As a
result, slow oscillating periodic solutions of the mathematical mode explain quali-
tatively a phenomenon that can not be explained by the genomic feedback mecha-
nism [4]. Exact interval 1) < 1 < 1, for existence of slow oscillating periodic dis-
tributions for cortisol has been found.
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HU.B. Kpacniok

MEOJIEHHBIE NMEPUOONYECKUE OCLUUITTIALINA
B CUCTEME T'MNOTANAMYC-TUMNOPUNI-HAONOYEHHNKNA

PaccMoTpena cTpyKTypHpOBaHHAas MOJENbh CHUCTEMBI THUIOTANaMyC—THIO(MH3—HaIOYEeTHH-
ku (I'TH), koTopas BKII04aeT B ce0s1 TIIIOKOKOPTUKOUIHEIHN pertenitop (I'P). Moxens yau-
THIBAaET HEJIMHEHHYIO TnHaMUKy cuHTe3a ['P runodusom. Henuneitnsiii a3¢dexT Bo3HUKa-
eT 1o Toi nmpuunHe, 9to ['P ToMomumMepu3yeTcs mocine aKTHBaMy KOPTH30J1a M MHHUIIAN-
pyeT CBOM COOCTBEHHBIN CHHTE3 rumodu3oM. ['oMommmepm3arus JaeT BO3MOXKHOCTH
peanu3anyy JBYX CTa0MIIBHBIX YCTOMYHMBBIX COCTOSIHUH (HU3KOTO M BBICOKOTO) H OZHOTO
HecTaOuIbHOro. Moziens BKITIOUAaeT B ceOs Takke 3a7epiKKy BO3ACHCTBUS cTpecca. YcTa-
HOBJIEHO, YTO KOHKYPEHIIUS MEXAY TPACKTOPUSIMHU TUHAMHYECKON CHCTEMBI, BEI3BaHHAS
HecTaOMIBHBIM MHOT000pa3veM M 3Ha4eHHEeM BPEMEHH 3a/IEP)KKH T, MPUBOJUT K MeEJ-
JICHHBIM TIEPUOAMYECKUM OCLIJUIALUSAM KOPTU30Jia ¢ IEpHOA0M, OoibinM, yeM 2t [lo-
Ka3aHO, YTO OCHWUIALIMH CYLIECTBYIOT TOJNBKO B MHTEpBaNe T < T < Ty, MOJyYCHBI TOY-
HbIe (POPMYIBI 7S T1 U Tp. OCIMIUIAIIY MOSIBIISIOTCS, KOTIa HaYaJIbHOE 3HAYSHHE CTpecca
CTaHOBHTCS BBIIIIE HEKOTOPOTO TTOPOra.

KuiroueBble ci10Ba: TUIIOTAIaMO-TUIIO(PHU3APHO-HAANOYCUHUKOBAS OCh, aCHMIITOTHYEC-
KHE TEePUOIMYSCKUE OCHUJUIAIUN, OTPHUIIATEIbHAS 00paTHAas CBsI3b, auddepeHimanbHo-
Pa3HOCTHBIE ypaBHEHUS 3a/ICP>KKH, HOPMAJIbHOE COCTOSTHUE

Puc. 1. MemieHHbIe KoeOaTeIbHbIC PACIIPEICICHUS KOPTH30J1a
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