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A structured model of the hypothalamic-pituitary-adrenal (HPA) axis that includes a 
glucocorticoid receptor (GR) is considered. The model includes nonlinear dynamics of 
pituitary GR synthesis. The nonlinear effect arises from the fact that GR homodimerizes 
after cortisol activation and induces its own synthesis in the pituitary. The homodimeriza-
tion makes possible two stable steady states (the low and the high one) and an unstable 
state. The model includes also a delay on stress. It is shown that competition between the 
trajectories of a dynamical system, which are produced by the unstable manifold and the 
value of delay time τ, results in slow asymptotic periodic oscillations of cortisol with a 
period, which is greater than 2τ. It is shown that the oscillations exist only in the interval 
τ1 < τ < τ2, where exact formulas for τ1 and τ2 has been obtained. The oscillations arise 
when the initial value of stress is larger of some threshold. 

Keywords: hypothalamic-pituitary-adrenal axis, asymptotic periodic oscillations, nega-
tive feedback, difference-differential delay equations, normal state 

Introduction 

Hormone regulation is a complex process where the level of a single hormone 
is tightly related to the levels of the rest. The chain of hormone interactions is a 
closed one that provides self-regulation of a living organism. Hormone dynamics 
was an object of a number of mathematical models. Mostly they imply the solu-
tion of a system of differential equations with a set of feedbacks involved. They 
are able to describe general tendencies without detailed agreement of the results 
and the experimental data. Experimentally registered oscillations of hormone con-
tent are usually far from the periodic form and include irregular components. De-
veloped later stochastic and chaotical models have demonstrated better agreement 
with the experimental testing.  

We consider HPA dynamics which includes stored corticotrophin-releasing 
hormone (CRH), circuiting CRH and adrenocorticotropic hormone (ACTH), cor-
tisol and glucocorticoid receptor that plays a role of «dispatcher» that controls dis-
tributions of hormones in the system. Our model incorporates a self-upregulation 
of CRH release, a negative and positive feedback effect on cortisol in CRH syn-
thesis and a delay in ACTH- activated cortisol synthesis [1]. It is worth reminding 
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that hypothalamic-pituitary-adrenal (HPA) axis is a neuroendocrine system that 
regulates hormones. The regulation is mediated by inhibition of peptide hormones 
such as corticotrophin-releasing hormone and adrenocorticotropic hormone by 
circulating glucocorticoids such as cortisol (CORT). 

Note that in this paper, we do not start with the local linear stability theory, be-
cause our experience suggests as cited in [2]: «Many experimentalists have excel-
lent intuition about rates of change at their fingertips, the abstraction of eigenvalues 
presents a road block». Our model includes three equilibrium states for the HPA 
system, one of which is unstable and the other two are stable. We developed a dy-
namical model of HPA axis to describe interactions between the key hormones and 
the GR with account of well known mediate feedback activity of cortisol. For ex-
ample, a model is considered [3] where two attracting limit cycles arise in HPA sys-
tem, so cortisol and ACTH oscillate to the beat of ultraradian (hourly) rhythms. Our 
model deals with two oscillating states. The state characterized by a lower cortisol 
level is associated with the normal state. Within this model, stress-induced secretion 
of CRH can trigger a transition between the normal and diseased states, respec-
tively. A simple hyperbolic attractor of the dynamical system that contains two at-
tractive fixed points and one repelling fixed point of codimension 1 (saddle point) 
forms slow asymptotic periodic oscillations of cortisol in the HPA axis. 

Basic relations 

In the present paper, we follow [4] and discuss the HPA axis model reported in 
[1] that accounts for the basic feedback mechanism and includes an intracellular 
glucocorticoid receptor GR as one of four state variables of the dynamical system, 
where variables [CRH], [ACTH], [GR] and [COR] represent concentrations. Here 
[GR] is related to cortisol. The resulting complex [COR–GR] determines general 
behaviour of solutions of the model. It is found that GR : [COR])  , where   

is a given nonlinear function (see [4], Fig. 1) which plays the main role in the 
quantitative behavior of limit distributions of cortisol in a physiological system. 

We define [GR]: u  and assume that ( )I I   for each u I , where I  is an 

open bounded interval. Then all solutions of the problem are bounded for all 
0t  . The phase diagram shows [4] that a state variable [GR] is a cubic type func-

tion of the concentration of cortisol [COR]: u . Hence, for a certain stress region, 

the system exhibits two stable steady states and one unstable steady state. 

It will be shown that the corresponding dynamical system in R
3
 (three-

dimensional space) can be reduced to the planar system with two delay equations: 

1( ) ( ) ( )x t y t x t  ,                                            (1) 

  2( ) ( 1) ( )y t f x t y t                                          (2) 

where ρ1 and ρ2 are parameters. Function f is derived from the plot of function 

: I I  , which is determined by the phase diagram of «pitchfork» type result-

ing from computer experiments in [5]. 
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Thus, the HPA mathematical model can be reduced to the study of solutions of 
system (1), (2). Besides, the planar system can be reduced to an autonomous dif-
ferential-difference delay equation of the second order: 

   1 2 1 2( ) ( ) ( 1) , : 1x x t x t f x t                                (3) 

that explains oscillating behavior of the solutions of differential-difference delay 
equations. It is known that the delay system has non-constant periodic solutions 
with a period greater then 2 [6]. 

With using these mathematical results, we found that there are slow oscillating 
asymptotically periodic solutions for the HPA axis, which describe distributions 
of cortisol. The role of delay in the HPA problem will be found. It turns out that 
oscillating solutions are stable if and only if 

1 2     ,                                                    (4) 

where delay times τ1 and τ2 are estimated exactly, being dependent on given pa-
rameters of the physiological problem. Exact analytical parameter-dependent for-

mulas for τ1 and τ2 will be derived. 

Postulation of problem 

The HPA axis has three components which represent the hypothalamus, the pi-
tuitary and adrenal. The equation for the hypothalamus is: 

d

d 1

c
cd

n

K FC
K C

OT
K


 



,                                 (5) 

where cdK C  describes constant degradation rate of CRH. In line with [1], we 

assume that 1
nK


O
. Then it follows from (5) that 

 
d

1
d

c cd
n

C O
K F K C

T K

 
    

 
.                                  (6) 

Here all undetermined constants can be found in [1]. Next, if c

cd

K F
C

K


  in (6), 

we can put 
d

0
d

C

T
  with accuracy (ε)O , where 

nK
 

O
. 

We write for the hypothalamus [1]: 

1

1

1
cd

f
c k c

o

k


 



 ,                                               (7) 

for the pituitary 
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2

1
ad

c
a k a

or

k

 



 .                                              (8) 

Equation (8) models the degradation rate of ACTH and ACTH production terms 
with a cortisol inhibition factor, 

2

2

( )

( )
cr rd

or
r k k r

k or
  


 .                                       (9) 

For the adrenal we have 

( )o o a t                                                   (10) 

with delay response  . 
If we put :c a  in (8) (for unification with [7]) and consider only the equilib-

rium 0c  , then we obtain the well-known model [7]: 

3
2

( ) ( )
1 ( ) ( )

A
a t p a t

p o t r t
 


 ,                                   (11) 

4
5 62

4

( ) 1 ( )
( ( ) ( ))

p
r t p p r t

p o t r t
    


 ,                          (12) 

( ) ( ) ( )o t o t a t                                               (13) 

as a particular case of the model reported in [1]. Thus, we have a projection of tra-

jectories of the dynamical system from R
4
 into R

3
. The assumption 0c   deter-

mines only zero line that describes curve 

1

1
0

1
cd

f
k c

o

k


 



.                                             (14) 

The projection on R
3
 requires at least 1 1o k  . We neglect this small term in the 

first approximation. 
Remind [1] that stress applied to the HPA axis ( f ) stimulates the hypothala-

mus to secrete CRH(c). Further, CRH(c)  signals the induction of ACTH synthesis 
(a)  in the pituitary. Thus, our assumption means that the velocity of stimulation 

of the ACTH signals is constant, i.e. 
1

cd

f
c

k


 . Mathematically, it means that 

function or   can be considered as a parameter (at lest asymptotically). The ef-

fect of changing of parameters on c–zero line has been considered by Kim et al. [3]. 

Determination of fixed points for the HPA problem 

It is known that these equations have three positive steady states (there is also a 
negative state which is not used). These steady states arise because of 
homodimerization of the GR with cortisol. From [1, Fig. 1] it follows that 
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1 6( )o f p  and 2 6( )r f p , where another parameters are fixed. Here, 1f  and 2f  

are multivalued functions. 

 
d

1
d

c cd
n

C
K F K C

T K

 
    

 

O
.                                (15) 

Next, it follows from (6) that if c

cd

K F
C

K


 , then we can set d d 0C T   with ac-

curacy ( )O , where nK O . 

As a result, we can consider the following approximation [7]: 

3
2

( ) ( )
1 ( ) ( )

A
a t p a t

p o t r t
 


 ,                                    (16) 

 
4

5 62
4

( ) 1 ( )
( ) ( )

p
r t p p r t

p o t r t
    


 ,                         (17) 

( ) ( ) ( )o t o t a t     .                                        (18) 

The main role hear is played by equation (17), which describes the production of 

GR in the pituitary. The term 4
2

4

1
( ( ) ( ))

p

p o t r t
 


 is in Michaelis–Menten form 

(see [1]) because we assume that the bound glucocorticoid receptor (or) in the di-
mensionless form is dimerized with fast kinetics, so that the amount of dimers is 
in constant quasi-equilibrium and ones depends on the excess of or. The model 
also assumes that cortisol (o) and the glucocorticoid receptor (r) are bound to each 
other with very fast kinetics, which is compared to the rate of the change of 4 state 
variables (A, C, O, and R), so that OR stays in quasi-equilibrium as well. These 
are reasonable assumptions, because of high affinity, the receptor-ligand kinetics 

is often much faster than enzyme kinetics, as is assumed in Michaelis–Menten 
equation (see [1]). Equation (16) models linear production term cK r  and degrada-

tion term rdK R  for pituitary GR production. Below, in the dimensional form for 

the model, these coefficients are defined as 1 and p6, respectively. 

Remark 1 

Note that (c) represents the level of circuiting CRH, (a)  defines the level of 
circuiting ACTH, (r)  describes the level of glucocorticoid receptor in the pitui-
tary, and (o)  is the level of circuiting cortisol. In equations for (a)  and (r), the 
cortisol-receptor complex (or)  is assumed to form and dissociate under fast dy-
namics [3]. Below it will be proved mathematically to be true indeed, because 
there are so-called slow oscillating distributions of cortisol [3]. It has been shown 
that this level can be approximated as «steady state» by the production (or). 

Indeed, let us define or  . Then the origin problem in R
3
 can be unfolded as 

a system in R
3
, so that 
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3
21

A
a p a

p
 

 
 ,                                            (19) 

4
5 62

4
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

 ,                                    (20) 

o o a   ,                                                  (21) 

or ro     ,                                                 (22) 

where, in (21), : ( )a a t  or : ( )a a t   . 

It follows from these equations that the fixed points are located at the curves 

3 2

1

1

A
a

p p

 
  

  
,                                            (23) 

4
52

6 4

1
1

p
r p

p p

 
      

.                                     (24) 

Since the fixed points are positioned at diagonal o a , by multiplying these rela-
tions and substituting o a , and putting at a fixed point 0  , we obtain that   

is a solution of the fourth order algebraic equation. Indeed, 

4
52

6 3 2 4

1
1

1

pA
or p

p p p p

  
            

.                        (25) 

Let 
6 3

A

p p
  . Then from (25) we get 

 4 3 2
4 2 4 5 4 5 4(1 ) 0p p p p p p p          .                 (26) 

By Descartes rule, this equation has 3 or 1 positive roots and 1 negative root 
which can not be considered. Descartes rule means that the number of positive 
roots of the polynomial is either equal to the number of sign differences between 
the coefficients, or it is less of it by an even number. So, if we assume that 

2 4 51p p p  ,                                                (27) 

then equation (26) has 3 positive roots 1 2 3, ,   . Then we can find three fixed 

points of the problem from (23), (24). 

Thus, there are 0   on a hyperplane in R
4
-space that is included in R

4
-space, 

where   can be considered as a parameter. Since the basis in R
4
 is not a family of 

independent vectors, we can use this observation to find conditions when the tra-

jectories of the dynamical system in R
4
 are attractive by trajectories in R

3
. If this 

is true, then function ( )t  in R
4
 is a constant function in R

3
. A condition when it 

is possible can be easily found. Indeed, let 1, 2, 3, 4 be the eighenvalues of the 

problem. It means that 
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1 2 3 4, , ,a a r r o o o             .                          (28) 

Then 

4 2 3( )or           .                                     (29) 

It follows from (29) that if 2 3 0    , then 0  as t  . So   can be con-

sidered as a parameter in asymptotic sense. 

Geometric method of determination of the fixed points of the problem 

Now we assume that there is a component o o  of a fixed point in R
3
. Then 

we see from equation (20) for cortisol that 0r   if ( , ) 0G r o  . So, the ( , )o r -

nullcline structure can be found from (17) that is determined as a curve : ( )r r o  

such that ( ( ), ) 0G r o o   for each admissible o  within some interval (the corre-

sponding numerical simulation is reported in [3, Fig. 4]. To make it, we assume 
that there is a component of fixed 

G(r,o):= – p6o
2
r

3
 + (1 + p5)o

2
r

2
 – p4p6r + p4p5 = 0                  (30) 

where o  can be considered as a parameter. Thus, there is a multi-valued curve 

: ( )r r o  such that  ( ), 0G r o o   for every positive fixed o . This curve has been 

found by numerical simulation in [3], Fig. 4. The curve is S -shaped as a graphic 

of a cubic polynomial. 

Applications of the singularity theory for the HPA problem 

If we find from (29) the curve ( )S r o , then 0r   on this curve that follows 

from the second equation of the HPA problem for the function ( )r t . The results of 

computer experiments can be found in [3]. On this S-shaped curve that tends to 
bistability, function ( )r t  is constant. 

The behavior of GR can be analyzed by the singularity theory. The graphic 
: ( )r r o  is multi-valued and S -shaped as shown, for example, in [5], Fig. 3. It 

follows from [8] that there is irreversibility if 

0, 0r rr rrrG G G G    .                                    (31) 

As ( , ) 0G r o  , there are one or three fixed points for every fixed positive a . It 

follows from equation 0rrG  , i.e. 

2 2
6 53 (1 ) 0, 0p o r p o o                                      (32) 

that we have the vertical inflection point value 5

6

1

3

p
r

p


  here, which is inde-

pendent of o as a parameter. Ignition and extinction points in the ( )r o  locus 

(see [5]) are determined by the solutions 0rG G   with 0rrG  . 

They satisfy a quadratic equation 

2 2
5 4 5 4 5(1 ) 2 3 0p o r p p r p p                                   (33) 
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that results in 
2

4 5 4 5 5 4 5
1,2

5

( ) 3(1 )

(1 )

p p p p p p p
r

p

   


 
.                         (34) 

In the case of bistability, these points separate three fixed states (one unstable 
saddle point is between two stable states). We see that inequality 

2
4 5 5 4 5( ) 3(1 )p p p p p                                         (35) 

must be satisfied for the bistability to exist (it is the necessary condition). 

Note that according to Descartes rule of signs, the number of positive roots of a 
polynomial is equal to the number of sign changes in the coefficients or less of it 
by a multiple of 2. Hence polynomial (30) has one or three positive roots. These 
roots are positioned at the curve ( )r o . The intersection of this curve with the line 

o a , which follows from (18), yields ( )ar a  . Here 1 2 3( , , )     . With us-

ing (32), we find the fixed points of the problem, which are 

 , , ( ) , 1,2,3k k k k
kp a a r r a k      . 

Note also that according to interpretation in [1], Fig. 3, the variations of the 
steady state for GR and cortisol r are obtained, respectively, with a  as a parame-

ter. There are three intervals 1I , 3I  and 2I . If 1 3a I I  , then there are two at-

tractive fixed points. If 2a I , we obtain a repelling fixed point. 

2D nonlinear dynamics 

Let us consider the system of equations 

( ) ( ) ( )o t o t a t     ,                                          (36) 

  3( ) ( ) ( )a t f o t p a t   .                                        (37) 

Then 

  3( ) ( ) ( )a t f o t p a t         .                              (38) 

Define ( ) ( )a t y t   . Then it follows from (60) that 

  3( ) ( ) ( )y t f o t p y t       .                                 (39) 

In (57) we define (for unification with [6]) ( ) ( )o t x t . Then (58), (61) can be 

written as 
( ) ( ) ( )x t y t x t  ,                                             (40) 

  3( ) ( ) ( )y t f o t p y t       ,                                 (41) 

( ) ( ) ( )y t y t x t  .                                             (42) 

Consequently, the first equation can be written as 

  3
2

( ) ( )
1 ( ) ( )

A
y t p y t

p o t r o t
 


 .                                 (43) 
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Note that on every plane ( ) 0y t  , the following functional relation 

 ( ) ( )r t o t   is satisfied, where   is a known irreversible function. Remind 

that function   represents the glucocorticoid receptor (GR) that is included in the 
HPA axis (see [1, Fig. 3(a)]) that involves the glucocorticoid. The nonlinear effect 
arises when GR homodimerizes (after cortisol activation) and induces its own 
synthesis in the pituitary. The form of graphics ( )o  plays the main role in the 

qualitative study of solutions. The S-shaped graphic allows finding of three fixed 
points. Two of these fixed points are attracting, but one of the points o  must be 

repelling in R
1
. 

Indeed, it will be shown below that if o  is attracting, there are four fixed 

points in reality (see the previous stable solutions). So there are no oscillating so-
lutions. If the unique fixed point o  is repelling, then this point plays the role of 

the separator. The behavior of a solution depends on the amplitude of the initial 
data which is given within interval [ ,0) . Let ( )h t  be the initial function within 

[ ,0) . Then if 0 ( )h t o  , the solution tends to a constant solution 

1 3( )o t o o   as t  . If ( )h t o  on interval ,0) , then 1 3( )o t o o   as 

t  . As a result, the existence of both delay and repelling fixed points results 
in the possibility of oscillating solutions of the problem if the initial data on ,0)  

are large enough. 

Planar case on RG null-isocline 

Now we return to the mathematical aspects of the problem i.e. to equation (43). 
Define 

2

( ) :
1 ( )

A
f o

p or o
 


,                                          (44) 

where ( )r o  is defined by RG form of the RG curve. Then equation (42) can be 

rewritten as  

3( ) ( ) ( )y t f o p y t   .                                        (45) 

Next, an important observation is that both equations (43) and (60) are equivalent 
to the system of equations 

1( ) ( ) ( )x t y t x t  ,                                           (46) 

2( ) ( ( ) ( )y t f x t y t     ,                                     (47) 

where for (45) we put 1 1  , 2 3p  , 1  . Then it follows from [6] that system 

(46), (50) has a monotonic periodic solution with a period greater than 2  and 2  

for the origin physiological problem, respectively. 
Here, the following conditions must be satisfied: (i) a  and b  are positive con-

stants, (ii) ( ) 0f u   for all 0u  , (iii) there is a positive constant   such that 

( )f u    for all u , 
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 1 2(0)
sin

f
  




 ,                                          (48) 

Where   satisfies 0     , and 

  1 2 1 2
1

coth       


.                              (49) 

Remind that 1 1   and 2 3p   for the physiological problem. Hence, condition 

(i) is satisfied. Next, the inequality (60) becomes 

 31
(0)

sin

p
f

 



 .                                            (50) 

Note that there is only a unique fixed point 0  as reported in [6]. In our situation, 
there are three fixed points 1 2 3( , , )o o o , where 1o  and 3o  must be attractive fixed 

points, and 2o o  is a repelling fixed point. So that inequality (62) becomes 

 1 2( )
sin

f o
  




 .                                           (51) 

Further, the point o  must be repelling. For example, we obtain 3( ) 1f o p    in 

the limit 0   and, hence, the condition of the local instability is satisfied. Since, 

3 0p  , this fixed point must be repelling at least for small  . In conclusion, the 

condition (iii) is the condition of local instability as it will be shown below. 

Analysis 

Define 1 2    , 1 2    , (0)f   . Then the characteristic equation is 

2 0e      ,                                        (52) 

where we assume that 1  . If 1   then the problem is reduced to the character-
istic equation: 

2 2 2 0zz z e      ,                                    (53) 

where z   , 2  ,  , and 2 , and we assume that 0  . 

Further, we use the results reported in [6], Lemma 1. If  ,  ,   are positive, 

and if 2 2   , then the following three conditions are equivalent: (1) Equation 

(52) has at least one solution. (2) The characteristic equation has precisely one 
solution   with 0   and 0     . (3) The following inequality is true 

1

1sin


 


,                                                  (54) 

where 10      and 

1 1
1

1
coth .

 
    

  
                                         (55) 
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Note that there are many details about the behavior of trajectories of the dy-
namical system. We formulate this behavior as distributions of concentrations of 
hormones a  and o  on the ( )o a -plane, where o  is the distribution of cortisol. 

For example, there is an estimation 

 
1 2

1 2

(0)
exp min( , ) 1

f
 


  

 ,                                    (56) 

where 0 o  and 1 1  , 2 3p   so that 

 
3

3

( )
exp min(1, ) 1

p
f o

p
 


 .                                    (57) 

Then a component ( )o t  is characterized as follows: 1) zeroes for a graphic ( )o t  

form an infinite series kt , 1,2,...k  , with ( ) 0ko t  , 1 1k kt t    and 

2 1( ) 0ko t   , 2( ) 0ko t  , and 2 1( ) 0ko t   , 2( ) 0ko t  , and 2 1 2( ) 0, ( ) 0k ka t a t   , 

and 2 1( 1) 0ka t    , 2( 1) 0ka t   ; 2) function e ( )to t  is monotonic and increas-

ing on interval 2 2( , 1)k kt t   and monotonically decreasing on 2 1 2 1( , 1)k kt t   , 

where 31 p    (see Fig. 1). 

 
 

  
 
 

 
 
 

Fig. 1. Slow oscillating distributions of cortisol 
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Necessary and sufficient condition for the existence of slow periodic solutions 

If 1  , then we obtain the characteristic equation 

2 2 2 0zz z e      ,                                   (58) 

where z   . Define ̂   , 2̂    and 2̂   . Next, we must verify the as-

sumption 2 2ˆˆ 2    from [6], Lemma 1. Evidently that this assumption is satisfied 

for every 0  . 
Further, we assume that 

2
2 2ˆ ˆ 0

4


    .                                             (59) 

The necessary condition of delay follows from (59) 

2

2

4


 


.                                               (60) 

We obtain from (60) that 22 4      that results in the natural condition 3 1p  . 

The condition (59) allows application of Lemma 1 (see [6]). It means that char-
acteristic equation (58) has precisely one solution z  with 0z   and 0 z    . 

Here, ̂  must be such that 

1

1

ˆ ˆ
ˆ

ˆsin


 


,                                                  (61) 

where 1ˆ0     , and 

1 1
1

1
ˆ ˆcoth

ˆ

 
    

  
                                           (62) 

(see [6], conditions (2), (3) from Lemma 1). 
It follows from (62) that 

3
2 1

2
1sin

 
 

 
.                                               (63) 

In the limit 0 ,  
2( )O


   


.                                               (64) 

Remind that ( )f o   , where *o  is the repelling fixed point of  f. Being com-

bined with (62) it yields 

3

2

1 2

( ) 4

p

f o

 
  

 


.                                        (65) 

Inequality (65) determines the necessary and sufficient conditions for the exis-
tence of slow periodic solutions for the HPA problem in 2D approximation. 
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Conclusion 

In this paper, physiological and mathematical mechanisms of formation of ul-
traradian oscillations in the HPA axis have been considered. It is shown that the 
main role is played by the nonlinear connection between cortisol COR and the GR 
that forms a homodimer [9]. A conception of transcriptional regulation is that the 
GR feedback control works rather slowly as compared to other cellular processes. 

The corresponding differential-difference equations with the delay argument 
have slow oscillating periodic solutions. The delay has been included because, for 
example, in mammalian cells, one can expect at least a delay of the down regula-
tion in the range of 15 minute up to 2 hours (see [4]). It is proved that this hy-
pothesis has been confirmed as slow oscillating 2 (or larger) periodic distribu-
tions of cortisol at least mathematically (Fig. 1). Here we follow a mechanistic 
ODE system model of the glucocorticoid feedback mechanisms within the ante-
rior pituitary gland cell, with addition of the delay  to this model. 

It is shown that an important factor is the consequence between extracellular 
events such as changes in the CRH and cortisol induced inhibitory effect on ante-
rior pituitary gland cells, which already occurs after a few seconds [11,12]. As a 
result, slow oscillating periodic solutions of the mathematical mode explain quali-
tatively a phenomenon that can not be explained by the genomic feedback mecha-

nism [4]. Exact interval τ1 < τ < τ2 for existence of slow oscillating periodic dis-

tributions for cortisol has been found. 
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И.Б. Краснюк 

МЕДЛЕННЫЕ ПЕРИОДИЧЕСКИЕ ОСЦИЛЛЯЦИИ  
В СИСТЕМЕ ГИПОТАЛАМУС–ГИПОФИЗ–НАДПОЧЕЧНИКИ 

Рассмотрена структурированная модель системы гипоталамус–гипофиз–надпочечни-
ки (ГГН), которая включает в себя глюкокортикоидный рецептор (ГР). Модель учи-
тывает нелинейную динамику синтеза ГР гипофизом. Нелинейный эффект возника-
ет по той причине, что ГР гомодимеризуется после активации кортизола и иниции-
рует свой собственный синтез гипофизом. Гомодимеризация дает возможность 
реализации двух стабильных устойчивых состояний (низкого и высокого) и одного 
нестабильного. Модель включает в себя также задержку воздействия стресса. Уста-
новлено, что конкуренция между траекториями динамической системы, вызванная 
нестабильным многообразием и значением времени задержки , приводит к мед-
ленным периодическим осцилляциям кортизола с периодом, большим, чем 2 По-
казано, что осцилляции существуют только в интервале τ1 < τ < τ2, получены точ-
ные формулы для 1 и 2. Осцилляции появляются, когда начальное значение стресса 
становится выше некоторого порога. 

Ключевые слова: гипоталамо-гипофизарно-надпочечниковая ось, асимптотичес-
кие периодические осцилляции, отрицательная обратная связь, дифференциально-
разностные уравнения задержки, нормальное состояние 

Рис. 1. Медленные колебательные распределения кортизола 
 

 


