PACS: 81.40.Vw, 75.30.Kz

А.И. Дерягин¹, Б.М. Эфрос², В.А. Завалишин¹, Л.В. Лоладзе², Н.Б. Эфрос², В.П. Пилюгин¹

ВЛИЯНИЕ ИНТЕНСИВНОЙ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ НА ОБРАЗОВАНИЕ α-МАРТЕНСИТА В МЕТАСТАБИЛЬНЫХ И СТАБИЛЬНЫХ АУСТЕНИТНЫХ СТАЛЯХ

¹Институт физики металлов УрО РАН Россия, 620219, г. Екатеринбург, ул. С. Ковалевской, 18

²Донецкий физико-технический институт им. А.А. Галкина НАН Украины 83114, г. Донецк, ул. Р. Люксембург, 72

Статья поступила в редакцию 27 июня 2002 года

Рассмотрено влияние интенсивной пластической деформации (ИПД) на дестабилизацию γ-фазы в метастабильных и стабильных аустенитных сталях. Показано, что увеличение степени и уменьшение температуры деформации приводит к образованию ферромагнитной фазы в исследованных материалах.

Введение

Образование ферромагнитного ОЦК-мартенсита деформации в метастабильных аустенитных сталях широко известно и используется в качестве упрочняющего фактора для материалов данного класса [1–3]. Однако появление ферромагнитных фаз при деформации может наблюдаться и в относительно стабильных аустенитных сталях, например в сталях типа 50Г13 и высоколегированных сплавах и сталях на основе Fe–Mn–Cr-твердого раствора [4,5]. При этом, как правило, происходит образование ферромагнитных фаз с высокой дисперсностью, концентрация которых может составлять порядка 0.001–0.1 mass%, что не позволяет их идентифицировать традиционными методами.

В этой связи целесообразно использование метода магнитометрии, который является наиболее высокочувствительным и однозначным способом идентификации ферромагнитных фаз высокой дисперсности в аустенитной структуре сталей и сплавов. Кроме того, применение этого метода в исследованиях может также инициировать поиск эффективных способов повышения концентрации данных фаз с целью создания условий их надежного идентифицирования традиционными способами, например методом просвечивающей электронной микроскопии (ПЭМ). Одной из основных задач в настоящей работе было изучение зависимости удельной намагниченности о от напряженности магнитного поля *H* для образцов метастабильных и стабильных аустенитных сталей после обработки различными методами ИПД с целью выявления и изучения ферромагнитных фаз деформации.

Материалы и методика эксперимента

Для исследования были выбраны 5 сталей на основе Fe-Mn- и Fe-Cr-Niтвердого раствора: 05Г20, 03Х18Н8, 110Г13 (сталь Гадфильда), 45Г17ЮЗ и 10Х18А0.6Г20 стандартного химического состава [6,7]. После ковки на заготовки сечением 10 × 10 mm образцы подвергали закалке от температур 950-1100°С в воде.

ИПД образцов сталей 110Г13, 45Г17ЮЗ и 10Х18А0.6Г20 осуществляли холодной прокаткой в гладких валках со степенями обжатия є до 95 и 30% соответственно при комнатной и криогенной (-196°С) температурах. Кроме того, образцы стали 10Х18А0.6Г20 дополнительно обрабатывали кручением под давлением (P = 10 GPa) на установке с наковальнями Бриджмена конструкции ИФМ УрО РАН со степенями логарифмической деформации е до 10 и 5 соответственно при комнатной и криогенной температурах [8]. Образцы сталей 05Г20 и 03Х18Н8 подвергали ИПД одноосным сжатием на установке высокого давления алмазными наковальнями конструкции с ДонФТИ НАН Украины со степенями обжатия є до 90% при комнатной температуре [9].

Магнитные измерения проводились методом Фарадея [10] на установке конструкции ИФМ УрО РАН в интервале температур от комнатной до 650°С в магнитном поле до 10 kOe. Погрешность измерения напряженности магнитного поля H составляла ±0.5%, а погрешность измерения удельной намагниченности σ в полях H > 1 kOe – ±1%.

Структуры образцов исследовали на электронном микроскопе JEM-200CX на просвет в режимах светло- и темнопольного изображений и микродифракции [11].

Результаты эксперимента и обсуждение

1. Метастабильная сталь 05Г20

На рис. 1,*а* представлены зависимости удельной намагниченности σ от напряженности магнитного поля *H* для образцов метастабильной двухфазной (γ + ϵ)-стали 05Г20 после ИПД одноосным сжатием в алмазных наковальнях со степенями обжатия ϵ до 90% при комнатной температуре. После закалки в структуре стали содержится 55% ГЦК- γ -фазы и 45% ГПУ- ϵ -фазы. В исходном (недеформированном) состоянии зависимость σ (*H*) имеет нелинейный характер, что свиде-тельствует о присутствии в образце ферромагнитной составляющей в виде кластеров, которые, по-видимому, обусловливают формирование супермагнитного состояния. Последнее наиболее ве-роятно связано с образованием мелкодисперсных (раз-мером 1–10 nm) кластеров ферро-

Физика и техника высоких давлений 2003, том 13, № 3

Рис. 1. Зависимости $\sigma(H)$ (*a*) и $\Delta\sigma(\varepsilon)$ (*б*) образцов деформированной стали 05Г20: *a*: $1 - \varepsilon = 0\%$, 2 - 20, 3 - 40, 4 - 60, 5 - 90; 6 - H = 10 kOe

ОЦК-α-фа-зы, магнитной количество которых составляет 0.2 vol.% в структуре. С ростом степени обжатия є зависимости $\sigma(H)$ располагаются существенно выше по величине σ относительно исходной кривой, при этом нелинейный характер увеличивается (рис. 1,а). Данные кривые $\sigma(H)$, как и в исходном состоянии, проходят через начало координат без признаков проявления гистерезиса, что свидетельствует о

росте объемной доли кластеров α -фазы, однако их размеры практически не изменяются. При максимальной степени обжатия $\varepsilon \approx 90\%$ количество α -фазы составляет порядка 1.2 vol.%.

На рис. 1,6 показана зависимость приращения $\sigma(\varepsilon)$ ($\Delta\sigma(\varepsilon) = \sigma(\varepsilon)_H - \sigma(\varepsilon)_0$) для образцов деформированной стали 05Г20, построенная по кривым $\sigma(H)$ (рис. 1,*a*) для величины H = 10 kOe. Видно, что с повышением степени обжатия ε значение $\Delta\sigma$ монотонно возрастает, что свидетельствует о монотонном увеличении количества α -фазы.

Таким образом, возникающая при пластической деформации ГПУ-є-фаза является парамагнитной и, следовательно, не может привести к наблюдаемой нелинейной зависимости $\sigma(H)$. Существенный прирост удельной намагниченности с увеличением степени обжатия ε (при $\varepsilon = 90\%$ значение σ выше в 7 раз, чем при $\varepsilon = 0$), наличие нелинейной зависимости $\sigma(H)$, а также отсутствие гистерезиса в данных кривых могут быть обусловлены монотонным возрастанием ферромагнитной ОЦК- α -фазы, которая, очевидно, имеет кластерный характер.

2. Метастабильная сталь 03Х18Н8

На рис. 2,*а* представлены зависимости $\sigma(H)$ для образцов метастабильной двухфазной ($\gamma+\alpha$)-стали 03X18H8 после ИПД одноосным сжатием в алмазных наковальнях со степенями обжатия ε до 90% при комнатной температуре. После закалки структура стали содержит 95% ГЦК- γ -фазы и 5% ОЦК- α -фазы. Поэтому как в исходном (недеформированном) состоянии, так и после ИПД исследованные образцы являются ферромагнетиками, которые характеризуются величиной намагниченности насыщения σ_s в пределах 40–58 G·cm³·g⁻¹, уз-кой петлей гистерезиса и значением коэрцитив-ной силы $H_c \approx$ 20 Ое. С повышением степени обжатия ε величина $\Delta \sigma_s$ растет, а после достижения максимума ($\varepsilon = 40\%$) – уменьшается (рис. 2, δ). В деформированных образцах так-же обнаружено уменьшение начальной восприимчивости χ_0 от 0.33 (при ε

Рис. 2. Зависимости $\sigma(H)$ (*a*) и $\Delta\sigma(\varepsilon)$ (*б*) образцов деформированной стали 03X18H8: *a*: $1 - \varepsilon = 0\%$, 2 - 20, 3 - 40, 4 - 60, 5 - 90; $\delta - H = 10$ kOe

= 0) до 0.28 cm³·g⁻¹ ($\epsilon \approx 40\%$), при этом величина коэрцитивной силы H_c практически не изменяется.

На наш взгляд, можно предложить следующие причины наблюдаемых изменений магнитных свойств образцов стали 03Х18Н8 при ИПД. Рост намагниченности насыщения σ_s может свидетельствовать об образовании в

процессе пластической деформации ферромагнитных выделений, кластеров либо фазы, обогащенной железом или никелем. В этом случае удельная намагниченность σ_s будет превышать величину σ_s стали 03Х18Н8 в более гомогенном (исходном) состоянии. Если предположить, что данные выделения имеют никелевую основу (они возможны на границах зерен при пластической деформации), то их содержание по изменению величины приращения σ при $\varepsilon \approx 40\%$ можно оценить в 8.5 mass%, а в случае выделений на основе железа – 3 mass%. Для окончательного выяснения природы данных выделений необходимы дальнейшие исследования. Уменьшение начальной восприимчивости с ростом ε , по-видимому, обусловлено повышением уровня внутренних остаточных напряжений.

Снижение намагниченности насыщения при $\varepsilon > 40\%$ связано с преобладанием роли барического фактора над деформационным [9], что может приводить к уменьшению количества ферромагнитных фаз, обладающих меньшей удельной плотностью по сравнению с аустенитом.

3. Сталь Гадфильда 110Г13

Сталь Гадфильда в исходном состоянии является парамагнитной, т.е. имеет линейную зависимость $\sigma(H)$ (рис. 3,*a*, кривая 1). После закалки структура стали содержит 100% ГЦК- γ -фазы. После ИПД холодной прокаткой при комнатной температуре со степенями обжатия $\varepsilon \ge 30\%$ наблюдается отчетливый гистерезис зависимости $\sigma(H)$, что однозначно свидетельствует о появлении ферромагнитной фазы (рис. 3,*a*, кривые 2 и 3). С ростом степени деформации ε величина σ возрастает (рис. 3, δ). Появление ферромагнитной фазы может быть обусловлено образованием как ОЦК- α -фазы деформации, так и карбидов типа (Fe, Mn)₃C. Анализ результатов изменения величины коэрцитивной силы H_c позволил оценить размер частиц α -фазы, который составляет величину порядка 2·10⁻⁷ m.

Рис. 3. Зависимости $\sigma(H)(a)$ и $\sigma(\varepsilon)(\delta)$ образцов деформированной стали Гадфильда: *a*: $1 - \varepsilon = 0\%$, 2 - 30, 3 - 50; $\delta - H = 2.5$ kOe

2

-2

Λ

Рис. 4. Зависимости $\sigma(T)$ образцов деформированной стали Гадфильда (H = 3 kOe): 1 $-\epsilon = 0\%, 2 - 50$

Термомагнитные исследования $\sigma(T)$ показали, что для недеформированных образцов (рис. 4, кривая 1) намагниченность слабо возрастает по мере увеличения температуры. Однако температурная зависимость σ образцов стали Гадфильда после деформации со степенью $\varepsilon = 50\%$ (рис. 4, кривая 2) существенно отличается от $\sigma(T)$ недеформированных образцов. При повышении температуры до $T \approx 240^{\circ}$ C удельная намагниченность уменьшается, а далее с ростом температуры при $T > 240^{\circ}$ С величина о начинает расти, при этом ход зависимости $\sigma(T)$ при нагреве выше 240°C имеет необратимый характер. Вогнутый ход кривой $\sigma(T)$ при нагреве свидетельствует о присутствии ферромагнитных карбидов типа (Fe, Mn)₃C, имеющих температуру Кюри $T_c \approx 215^{\circ}$ С (отмечена стрелкой на рис. 4). Поскольку при данной температуре намагниченность в деформированном состоянии остается существенно выше. чем величина σ в недеформированном состоянии, то, следовательно, можно заключить, что основной вклад в повышение намагниченности при холодной прокатке вносит не цементит, а α -мартенсит деформации, для которого $T_c \sim$ 600°С. Рост намагниченности при T > 240°С связан с распадом аустенита на ферритокарбидную смесь. Это примерно на 180°С ниже, чем для недеформированной стали в закаленном состоянии, что, по-видимому, обусловлено наличием зародышей α-фазы в деформированной стали Гадфильда.

4. Аустенитная сталь 45Г17Ю3

Аналогичные явления, обнаруженные выше, наблюдаются и в случае стабильной марганцевой аустенитной стали 45Г17ЮЗ, которая так же, как и сталь Гадфильда, в исходном состоянии содержит 100% ГЦК- γ -фазы и, следовательно, является парамагнитной (рис. 5,*a*, кривая *I*). Предварительная ИПД холодной прокаткой образцов стали 45Г17ЮЗ при комнатной температуре с логарифмическими степенями деформации $\varepsilon > 20-90\%$ (рис. 5,*a*, кривые 2–5) приводит к появлению отчетливого гистерезиса в зависимостях $\sigma(H)$, что свидетельствует об образовании ферромагнитной фазы, количество которой уве-личивается с ростом степени ε . После ИПД со степенью $\varepsilon =$ 90% количество α -мартен-сита деформации в структуре образца, оцененное по приросту удельной намагниченности, составляет ~ 2.3 mass%. Так как в процессе ИПД не происходит заметного изменения коэрцитивной силы H_c , можно сделать вывод, что размеры кристаллов α -фазы не изменяются, но растет их число по мере увеличения степени обжатия ε (рис. 5,*b*).

Рис. 5. Зависимости $\sigma(H)$ (*a*) и $\sigma(\varepsilon)$ (*б*) образцов деформированной стали 45Г17Ю3: *a*: *1* – $\varepsilon = 0\%$, *2* – 30, *3* – 60, *4* – 80, *5* – 90; *б* – *H* = = 5 kOe

Оценка количества α-фазы по данным магнитометрического анализа внушает уверенность в перспективности использования метода ПЭМ для обнаружения α-мартенсита деформации в данной стали [11]. На рис. 6 представлено светлопольное изображение края полосы некристаллографического сдвига, в котором наблюдаются сильная фрагментация и разворот аустенитных фрагментов на большие углы после ИПД со степенью є = 90%. Микроэлектронограмма, полученная от этой зоны, является практически кольцевой (рис. 6, правый нижний

участок). Прилегающие к зоне некристаллографического сдвига области (левый верхний участок) имеют практически одну исходную ориентацию с монокристальной дифракцией. Дис-

Физика и техника высоких давлений 2003, том 13, № 3

Рис. 6. Светлопольное изображение края полосы некристаллографического сдвига и микродифракции от разных ее участков (см. текст) структуры образца деформированной стали $45\Gamma 17HO3$ ($\varepsilon = 90\%$, $T_{def} = 20^{\circ}C$)

Рис. 7. Темнопольное изображение дисперсных кристаллов α -мартенсита в рефлексе (200)_{α} для фрагментированного участка структуры образца деформированной стали 45Г17ЮЗ ($\varepsilon = 90\%$, $T_{def} = 20^{\circ}$ С)

персные ферромагнитные кристаллы α -мартенсита обнаружены именно в фрагментированных участках некристаллографического сдвига. На рис. 7 приведено темнопольное изображение дисперсных кристаллов α -мартенсита в рефлексе типа (200) $_{\alpha}$. Размеры данных кристаллов находятся в пределах 3–20 nm, при этом их толщина составляет ~ 3 nm.

Анализ результатов термомагнитных исследований дает основание для предположения, что наличие зародышей α -фазы в структуре деформированной стали 45Г17ЮЗ ($\varepsilon = 90\%$) инициирует прямое $\gamma \rightarrow \alpha$ -превращение при последующем термическом отпуске в области T = 550°C, а при повышении температуры до T = 650°C – обратное $\alpha \rightarrow \gamma$ -превращение (рис. 8).

5. Аустенитная сталь 10Х18А0.6Г20

После закалки в структуре высокоазотистой стали 10Х18А0.6Г20 (концентрация азота составляет 0.62 mass%) содержится 100% ГЦК- γ -фазы, которая считается суперстабильной по отношению к $\gamma \rightarrow \alpha$ -деформацион-ному мартенситному превращению (ДМП) [7]. Прокатка образцов данной стали при комнатной температуре приводит к монотонному повышению твердости HRC с ростом степени деформации ε (рис. 9, кривая *1*), что обусловлено возникновением в процессе деформации дефектов упаковки, деформационных двойников и кристаллов ГПУ- ε -мартенсита. Количество кри-сталлов ε мартенсита возрастает с увеличением степени деформации, что подтверждается повышением дилатометрического эффекта $\Delta L/L$ (рис. 9,

Физика и техника высоких давлений 2003, том 13, № 3

Рис. 8. Зависимость $\sigma(T)$ образца деформированной стали 45Г17ЮЗ ($\varepsilon = 90\%$, $T_{def} = 20^{\circ}$ С) (выдержка при данной температуре отпуска $\tau = 30$ min)

Рис. 9. Зависимости HRC(ε) (1) и $\Delta L/L(\varepsilon)$ (2) образцов деформированной стали 10X18A0.6Г20 (3 – значение $\Delta L/L$ образца после деформации с $\varepsilon = 6\%$ при $T = -196^{\circ}$ C)

кривая 2). Однако дилатометрический эффект после деформации при T = -196°C почти в 3 раза больше (на рис. 9 отмечено знаком *) по сравнению с деформацией при комнатной температуре, что обусловлено образованием є-мартенсита деформации (за меру относительного содержания деформационных двойников и є-мартенсита в соответствии с методикой [12] принимали величину дилатометрического эффекта $\Delta L/L = (L - L_1)/L_1$, где L и L_1 – длина образцов соответственно при комнатной температуре и после нагрева до 400°C).

В исходном состоянии сталь 10Х18А0.6Г20 является парамагнитной (рис. 10, кривая *I*). ИПД прокаткой при комнатной температуре до высоких степеней деформации ($\varepsilon \approx 95\%$) практически не изменяет ход зависимости

Рис. 10. Зависимости $\sigma(H)$ образцов деформированной стали 10Х18А0.6Г20: *1* – $\varepsilon = 0$; *2* – прокатка, $\varepsilon = 60\%$; *3* – прокатка, $\varepsilon = 95\%$; *4* – кручение, $e \approx 10$, P = 10 GPa; *5* – кручение, e = 5, P = 10 GPa; *2*–4 – $T_{def} = 20^{\circ}$ C; *5* – $T_{def} = -196^{\circ}$ C

Рис. 11. Зависимости $\sigma(H)$ образцов деформированной стали 10Х18А0.6Г20: $I - \varepsilon = 0$; 2 -прокатка, $\varepsilon \approx 30\%$, $T_{def} = -196$ °C; 3 -прокатка, $\varepsilon \approx 30\%$, $T_{def} = -196$ °C + + термический отпуск при T = 550°C (выдержка $\tau = 20$ min)

 $\sigma(H)$, что подтверждает высокую стабильность высокоазотистого аустенита к $\gamma \rightarrow \alpha$ -ДМП (рис. 10, кривые 2 и 3). Однако после деформации прокаткой со степенью $\varepsilon \approx 30\%$ при криогенной температуре $T_{def} \approx -196$ °C наблюдается отчетливый гистерезис зависимости $\sigma(H)$ (рис. 11, кривая 2), что свидетельствует о появлении в аустените ферромагнитной ОЦК- α -фазы. После нагрева образца этой стали, содержащего ферромагнитную α -фазу, до температуры T = 550°C (изотермическая выдержка 20 min) и охлаждения до комнатной температуры гистерезис $\sigma(H)$ сохранился (рис. 11, кривая 3), что свидетельствует об отсутствии $\alpha \rightarrow \gamma$ -превращения в этих условиях нагрева.

На рис. 12, a приведены изотермические зависимости $\sigma(H)$ образцов стали 10Х18А0.6Г20 после деформации прокаткой со степенью $\varepsilon \approx 30\%$ при T_{def} = -196°С, с помощью которых можно оценить температуру перехода ферромагнитной фазы в парамагнитное состояние. Анализ полученных результатов $\sigma(H)$ позволил построить зависимость приращения $\Delta \sigma$, обусловленного наличием ферромагнитной фазы, от температуры (рис. 12,6). Плавный (без перегибов) ход зависимости $\Delta \sigma(T)$ свидетельствует, что образец исследованной стали не содержит ферромагнитных фаз с $T_c > 400$ °C. По перегибу зависимости $\Delta \sigma(T)$ обнаружено, что температура Кюри образовавшейся при деформации ферромагнитной фазы составляет рекордно низкое значение $T_c \approx 400^{\circ}$ C. Для определения температуры α→γ-превращения образцы выдерживали 20 min при $T > 500^{\circ}$ C, а затем при комнатной температуре измеряли зависимость $\sigma(H)$. Анализ показал. что после отжига при Т = = 640°C образец становится парамагнитным и имеет зависимость $\sigma(H)$, полностью совпадающую с аналогичной зависимостью для у-фазы, т.е. температура α→у-превращения на 240°С выше температуры Кюри образовавшейся ферромагнитной фазы. Оценка по коэрцитивной силе $H_c = 200$ Ое дает размер кристаллов α-мартенсита порядка 10-20 nm, а концентрация мартенситных кристаллов, вычисленная по приросту намагниченности $\Delta \sigma$, составляет Можно предположить, что ~ 0.02 mass%. данная концентрация α -мартенсита обусловлена $\epsilon \rightarrow \alpha$ -превращением в сильно фрагментированных участках полос некристаллографического сдвига.

Если вышесказанное предположение верно, то концентрацию участков, имеющих сильно фрагментированную структуру, можно увеличить, используя ИПД кручением под высоким давлением в наковальнях Бриджмена [13]. После ИПД кручением стали 10Х18А0.6Г20 в наковальнях Бриджмена со степенью e = 10 (P = 10 GPa) уже при комнатной температуре обнаружен гистерезис зависимости $\sigma(H)$ (см. рис. 10, кривая 4) и примерно в 10 раз увеличение удельной намагниченности, что свидетельствует о значительно большей концентрации (~ 0.2 mass%) ферромагнитной фазы. Структурные исследования методом ПЭМ показали, что сформированная γ -фаза при ИПД является ультрамикрокристаллической с размерами зерен-фрагментов ~ 100 nm и между фрагментами имеет место значительная азимутальная разориентировка (рис. 13).

Puc. 12. Зависимости $\sigma(H)$ (*a*) и $\Delta\sigma(T)$ (*b*) образцов деформированной стали 10X18A0.6Г20 (прокатка, $\varepsilon \approx 30\%$, $T_{def} = -196$ °C): *a*: $I - T_{meas} = 20$ °C; 2 - 100; 3 - 200; 4 - 300; 5 - 450; 6 - 550; 7 - 550 ($\varepsilon = 0$)

ИПД со степенью e = 5 (P = 10 GPa) при криогенной температуре $T_{def} = -196$ °C существенно увеличивает концентрацию ферромагнитной фазы до ≈ 2 mass% (см. рис. 10, кривая 5). Термомагнитные измерения показали, что при температуре T = 550°C начинается заметный рост удельной намагниченности, которая существенно увеличивается при возврате к комнатной температуре. Это свидетельствует о распаде аустенита, инициированном высокой концентрацией микрокристаллитов α -мартенсита, с образованием феррита. Данный факт подтверждается электронно-микроскопическими исследованиями (рис. 14), где в сильно фрагментированной нанокристалличе-

Рис. 13. Светлопольное изображение фрагментированной структуры образца деформированной стали 10Х18А0.6Г20 (кручение, $e \approx 10$, P = 10 GPa, $T_{def} = 20^{\circ}$ С) (в правом верхнем углу приведена микродифракция от данного участка)

Рис. 14. Светлопольное изображение участка фрагментированной структуры образца деформированной стали 10Х18А0.6Г20 (кручение, $e \approx 5$, P = 10 GPa, $T_{def} = -196^{\circ}$ C): А – аустенит; М – мартенсит (в правом верхнем углу приведена микродифракция от данного участка для кристаллов α -мартенсита в рефлексе типа (111) $_{\alpha}$ (110) $_{\alpha}$ и аустенита в рефлексе (111) $_{\gamma}$ (220) $_{\gamma}$)

Рис. 15. Зависимости $\sigma(T)$ образцов деформированной стали 10Х18А0.6Г20 (кручение, $e \approx 5$, P == 10 GPa, $T_{def} = -196^{\circ}$ C): I-6 – циклы нагрева и охлаждения

ской структуре аустенита отчетливо выявляются области α -фазы. На рис. 15 видно, что виртуальная температура Кюри α -мартенсита составляет ~ 620°С. Распад аустенита в области температур порядка T = 550°С, не наблюдавшийся ранее, вероятно, обусловлен не только более высокой концентрацией микрокристаллитов α -мартенсита, но и процессами расслоения при ИПД сталей [14]. Это приводит к образованию микрообластей с пониженным содержанием марганца, которые близки к метастабильному состоянию аустенита в данной стали.

Физика и техника высоких давлений 2003, том 13, № 3

Выводы

Исследована зависимость удельной намагниченности σ от напряженности магнитного поля H для образцов различных метастабильных и стабильных аустенитных сталей после деформации различными методами ИПД.

Полученные результаты свидетельствуют, что использование ИПД в условиях высокого давления может приводить к значительной дестабилизации стабильных аустенитных сталей по отношению к $\gamma(\varepsilon) \rightarrow \alpha$ -ДМП и изменению магнитных свойств ферромагнитной фазы. Отмечено, что в стали 10Х18А0.6Г20 образовавшийся мартенсит деформации имеет рекордно низкую температуру Кюри для ферромагнитной α -фазы $T_c \approx 400^{\circ}$ С.

- 1. М.А. Филиппов, В.С. Литвинов, Ю.Р. Немировский, Стали с метастабильным аустенитом, Металлургия, Москва (1988).
- 2. В.В. Сагарадзе, А.И. Уваров, Упрочнение аустенитных сталей, Наука, Москва (1989).
- 3. B.M. Efros, S.V. Gladkovskii, L.V. Loladze, High Pressure Research 5, 900 (1990).
- 4. В.А. Завалишин, А.И. Дерягин, В.В. Сагарадзе, Л.Г. Коршунов, ФММ 62, 916 (1986).
- 5. В.А. Шабашов, С.В. Мамаев, Г.А. Волков, ФММ 75, № 1, 54 (1993).
- 6. *М.И. Гольдштейн, С.В. Грачев, Ю.Г. Векслер*, Специальные стали, Металлургия, Москва (1985).
- 7. A.S. Domareva, A.A. Dobrikov, B.M. Efros, Y.E. Beygelzimer, V.N. Varyukhin, High Pressure Research 15, 221 (1997).
- B.M. Efros, V.P. Pilyugin, S.V. Gladkovskii, Defects and Diffusion Forum 208–209, 263 (2002).
- 9. B.I. Beresnev, B.M. Efros, Physica 139, 910 (1986).

10. И.В. Свечкарев, ПТЭ № 4, 142 (1963).

- 11. *Л.М. Утевский*, Дифракционная электронная микроскопия, Металлургия, Москва (1973).
- 12. Т.П. Васечкина, В.Г. Пушин, А.Н. Уксусников, А.И. Уваров, ФММ 46, 965 (1978).
- 13. В.П. Пилюгин, Б.М. Эфрос, С.В. Гладковский, А.М. Пацелов, Е.Г. Чернышев, ФТВД 11, № 2, 78 (2000).
- 14. В.А. Завалишин, А.И. Дерягин, В.В Сагарадзе, ФММ 92, № 1, 51 (2001).

A.I. Deryagin, B.M. Efros, V.A. Zavalishin, L.V. Loladze, N.B. Efros, V.P. Pilyugin

INFLUENCE OF SEVERE PLASTIC DEFORMATION ON THE FORMATION OF α -MARTENSITE IN METASTABLE AND STABLE AUSTENITIC STEELS

Influence of severe plastic deformation (SPD) on γ -phase destabilization in metastable and stable austenitic steels has been studied. It is shown that an increase in the degree and a decrease in the temperature of deformation result in the formation of ferromagnetic phase in materials under investigation.

Fig. 1. $\sigma(H)(a)$ and $\Delta\sigma(\varepsilon)(\delta)$ dependences of specimens of the deformed steel 05 Γ 20: *a*: $1 - \varepsilon = 0\%$, 2 - 20, 3 - 40, 4 - 60, 5 - 90; $\delta - H = 10$ kOe

Fig. 2. $\sigma(H)(a)$ and $\Delta\sigma(\varepsilon)(\delta)$ dependences of specimens of the deformed steel 03X18H8: *a*: $1 - \varepsilon = 0\%$, 2 - 20, 3 - 40, 4 - 60, 5 - 90; $\delta - H = 10$ kOe

Fig. 3. $\sigma(H)(a)$ and $\sigma(\varepsilon)(\delta)$ dependences of specimens of the deformed Hadfield steel: *a*: $1 - \varepsilon = 0\%$, 2 - 30, 3 - 50; $\delta - H = 2.5$ kOe

Fig. 4. $\sigma(T)$ dependences of specimens of the deformed Hadfield steel (H = 3 kOe): $1 - \varepsilon = 0\%$, 2 - 50

Fig. 5. $\sigma(H)(a)$ and $\sigma(\varepsilon)(\delta)$ dependences of specimens of the deformed steel 45 Γ 17HO3: *a*: $l - \varepsilon = 0\%$, 2 - 30, 3 - 60, 4 - 80, 5 - 90; $\delta - H = 5$ kOe

Fig. 6. Bright-field image of the edge of non-crystallographic shear band and of microdiffraction from its different sections (see the text) for the structure of the specimen of undeformed steel $45\Gamma 17$ KO3 ($\varepsilon = 90\%$, $T_{def} = 20^{\circ}$ C)

Fig. 7. Dark-field image of α -martensite disperse crystals in reflex (200) α for the fragmented portion of deformed-steel 45 Γ 17HO3 specimen structure ($\epsilon = 90\%$, $T_{def} = 20^{\circ}$ C)

Fig. 8. $\sigma(T)$ dependence of a specimen of the deformed steel 45 Γ 17HO3 ($\epsilon = 90\%$, $T_{def} = 20^{\circ}$ C) (for the given tempering temperature, $\tau = 30$ min)

Fig. 9. HRC(ε) (1) and $\Delta L/L(\varepsilon)$ (2) dependences of specimens of the deformed steel 10X18A0.6 Γ 20 (3 – $\Delta L/L$ value of as-deformed specimen with $\varepsilon = 6\%$, $T = -196^{\circ}$ C)

Fig. 10. $\sigma(H)$ dependences of specimens of the deformed steel 10X18A0.6 Γ 20: $1 - \varepsilon = 0$; 2 - rolling, $\varepsilon = 60\%$; 3 - rolling, $\varepsilon = 95\%$; 4 - torsion, $e \approx 10$, P = 10 GPa; 5 - torsion, e = 5, P = 10 GPa; 2-4 - $T_{def} = 20^{\circ}$ C; 5 - $T_{def} = -196^{\circ}$ C

Fig. 11. $\sigma(H)$ dependences of specimens of the deformed steel 10X18A0.6F20: $1 - \varepsilon = 0$; 2 - rolling, $\varepsilon \approx 30\%$, $T_{def} = -196$ °C; 3 - rolling, $\varepsilon \approx 30\%$, $T_{def} = -196$ °C + thermal tempering, T = 550°C ($\tau = 20$ min)

Fig. 12. $\sigma(H)$ (a) and $\Delta\sigma(T)$ (b) dependences of specimens of the deformed steel

10X18A0.6Γ20 (rolling, $\varepsilon \approx 30\%$, $T_{def} = -196$ °C): *a*: $I - T_{meas} = 20$ °C; 2 - 100; 3 - 200; 4 - 300; 5 - 450; 6 - 550; 7 - 550 ($\varepsilon = 0$)

Fig. 13. Bright-field image of the fragmented structure of deformed steel 10X18A0.6 Γ 20 specimen (torsion, $e \approx 10$, P = 10 GPa, $T_{def} = 20$ °C) (in the right upper corner, a microdiffraction from that section is shown)

Fig. 14. Bright-field image of a section of the fragmented structure of the deformed steel 10X18A0.6 Γ 20 specimen (torsion, $e \approx 5$, P = 10 GPa, $T_{def} = -196$ °C): A – austenite; M – martensite (in the right upper corner, a microdiffraction from that section is shown for α -martensite crystals in reflex of the (111) $_{\alpha}$ (110) $_{\alpha}$ type and for austenite in reflex (111) $_{\gamma}$ (220) $_{\gamma}$)

Fig. 15. $\sigma(T)$ dependences of deformed steel 10X18A0.6 Γ 20 specimens (torsion, $e \approx 5$, P = 10 GPa, $T_{def} = -196$ °C): l-6 – heating and cooling cycles