PACS: 75.30.Kz, 75.30.Et, 75.30.Cr

Ф.Н. Буханько, В.П. Дьяконов, Н.А. Дорошенко, В.И. Каменев, В.А. Бородин

ВЛИЯНИЕ ЛОКАЛЬНЫХ ДЕФОРМАЦИЙ КРИСТАЛЛИЧЕСКОЙ РЕШЕТКИ НА МАГНЕТИЗМ ДОПИРОВАННЫХ СОЕДИНЕНИЙ La_{1-x}Ca_xMnO₃ С ЯН-ТЕЛЛЕРОВСКИМИ ИОНАМИ

Донецкий физико-технический институт им. А.А. Галкина НАН Украины 83114, г. Донецк, ул. Р. Люксембург, 72

Статья поступила в редакцию 6 мая 2003 года

Исследовалась T-x-фазовая диаграмма соединений $La_{1-x}Ca_xMnO_3$ для трех режимов допирования кальцием: слабого ($0 \le x < x_c$), оптимального ($x_c < x \le 0.4$) и сильного ($0.4 \le x \le 1.0$), где $x_c = 1/8$ – критическая концентрация примеси Ca. Установлено, что для $x < x_c$ кооперативное ян-теллеровское (ST) искажение решетки при 300 K соответствует тетрагональному сжатию элементарной ячейки вдоль с-оси, тогда как для $x > x_c$ доминируют некогерентные разупорядоченные деформации кислородных октаэдров. Концентрационный фазовый переход от упорядоченного распределения ST-искажений к разупорядоченному сопровождается резким изменением температурных и концентрационных зависимостей магнитных свойств $La_{1-x}Ca_xMnO_3$ образцов, что подтверждает тесную связь магнитных свойств этих соединений с динамикой ST-искажений кислородных октаэдров. Предполагается, что с ростом концентрации примеси Ca вблизи критической концентрации $x_c = 1/8$ происходит фазовый переход от квазидвумерного ферромагнетизма к трехмерному.

1. Введение

Известно, что свойства основного состояния допированных манганитов $R_{1-x}A_xMnO_3$ (R = La, Pr, Nd; A = Ca, Sr, Ba) во многом определяются конкуренцией между магнитным, орбитальным и зарядовым упорядочением. При нулевой и малой концентрациях x примеси eg-орбитали ионов Mn³⁺ гибридизированы с *р*-орбиталями кислорода и принимают участие в кооперативном ЯТ-искажении MnO₆-октаэдров [1]. Это приводит к появлению при достаточно температурах кооперативного упорядочения низких eg-орбиталей в базисной ab-плоскости. Рост концентрации примеси сопровождается увеличением концентрации *p*-носителей заряда (дырок), изменением зарядового состояния марганца, разрушением антиферромагнитного (АФМ) состояния и появлением ферромагнитного (ФМ) упорядочения спинов при температурах ниже критической температуры Кюри Т_с. Различные эксперименты указывают на существование в манганитах очень богатой T-x-магнитной фазовой диаграммы с АФМ-, ФМ-, металлическими или диэлектрическими областями. В большинстве случаев эти фазы микроскопически неоднордны, особенно в областях с колоссальным магнетосопротивлением.

Существует большой класс магнитных веществ, в которых ЯТ-эффект играет весьма значительную роль, во многом определяя не только структуру, но и магнитные свойства. В свою очередь, обменное взаимодействие, столь важное для магнетизма, может в этих соединениях существенно повлиять на решетку, индуцируя структурные переходы. Соединения, содержащие ионы с орбитальным вырождением (ЯТ-ионы), имеют ряд свойств, отличающихся от свойств веществ с «обычными» ионами: их кристаллическая структура оказывается искаженной, в них часто наблюдаются структурные фазовые переходы, более сложной является и магнитная структура, во многих случаях они обладают аномально-сильной магнитной анизотропией и магнитострикцией. Для веществ с ЯТ-ионами характерны более низкая симметрия и наличие структурных переходов. Кристаллические и магнитные свойства концентрированных ЯТ-систем объясняются обычно на основе кооперативного эффекта Яна-Теллера (КЭЯТ) [2]. В таком подходе понижение симметрии решетки и одновременное коллективное упорядочение орбиталей связывают с упругим взаимодействием локальных деформаций вблизи различных центров. Поскольку значения соответствующих констант взаимодействия обычно неизвестны, предсказать конкретный вид упорядочения в рамках этой модели весьма трудно.

К.И. Кугель и Д.И. Хомский [3] впервые предложили альтернативный механизм кооперативного упорядочения *d*-орбиталей ЯТ-ионов, основанный на суперобменном взаимодействии, который позволил предсказать как магнитную структуру, так и ряд особенностей упорядочения вырожденных орбиталей в магнитных диэлектриках с ЯТ-*d*-ионами. Согласно этой модели понижение энергии, стимулирующее орбитальное упорядочение, зависит от характера заполнения орбиталей соседних центров и вызвано виртуальными переходами электрона с центра на центр. Авторы [3] считают, что упорядочение орбиталей и спинов ЯТ-ионов в магнитных диэлектриках с решеткой типа перовскита определяется совместным действием и конкуренцией двух основных механизмов - КЭЯТ и сверхобмена. В магнитных диэлектриках, где прямое перекрытие *d*-орбиталей соседних ионов мало, главным механизмом является косвенный обмен Крамерса–Андерсона, названный суперобменом или сверхобменом. Он сводится к тому, что перекрываются не атомные *d*-функции, а их суперпозиции с *s*- и *p*-функциями лигандов. При этом наиболее существенными оказываются два фактора: выигрыш в энергии за счет виртуальных переходов электронов с центра на центр, определяемый эффективным интегралом перехода, и кулоновское отталкивание электронов на одном центре.

Для значений 0.2 < x < 0.5 манганиты проявляют дальнодействующее ферромагнитное упорядочение в низкотемпературной фазе, которое сопровождается резким уменьшением сопротивления ρ и «металлическим» поведением зависимости $\rho(T)$ при температурах ниже T_c . Такое необычное поведение образцов принято описывать в рамках модели двойного обмена [4], согласно которой кубическое кристаллическое поле и связь Хунда в манганитах настолько велики, что три электрона располагаются на внутренних вырожденных t_{2g} -орбиталях ионов Mn³⁺ с эффективным спином $S_c = 3/2$, тогда поведение четвертого валентного электрона на внешних как eg-орбиталях определяется во многом связью Хунда с внутренними электронами на t2g-оболочке. Большая величина энергии связи приводит к тому, что вероятность прыжков дырок в eg-оболочке между двумя соседними позициями Mn сильно зависит от взаимной ориентации эффективных спинов на внутренних орбиталях: она максимальна, если спины t2g-электронов соседних ионов Mn параллельны друг другу, и минимальна, если они антипараллельны. В то же время прыжки дырок между соседними ионами Mn³⁺ и Mn⁴⁺ повышают вероятность параллельной ориентации эффективных спинов S_c, что способствует появлению ФМ-упорядочения и резкому падению сопротивления при температурах ниже *T_c*.

В данной работе исследовано влияние сильного электрон-фононного взаимодействия на структуру и магнитные свойства допированных соединений $La_{1-x}Ca_xMnO_3$. Показано, что полученные нами экспериментальные результаты нельзя объяснить, оставаясь только в рамках модели двойного обменного взаимодействия.

2. Экспериментальные результаты и их обсуждение

Серия образцов $La_{1-x}Ca_xMnO_3$ с концентрацией примеси $0 \le x \le 0.1$ и шагом $\Delta x = 0.1$ была получена из высокочистых окислов La₂O₃, CaCO₃ и металлического электролитического марганца, взятых в стехиометрических соотношениях. Смесь растворяли в разбавленной (1:1) азотной кислоте. Полученный раствор выпаривали до сухого продукта, а затем прокаливали на воздухе при 500-700°С, перетирали в ступке и повторно прокаливали при 900°С с целью окончательного удаления продуктов распада солей. По рентгеновским данным, эти операции еще не приводят к формированию кристаллической структуры манганитов, но они позволяют добиться гомогенного распределения компонентов. Поэтому полученные порошки прессовали в брикеты диаметром 15 mm и подвергали дополнительной термообработке в три этапа при температурах 1000, 1100 и 1150°С длительностью 10 h. Синтезированный порошок прессовали под давлением 10 kbar в диски диаметром 6 mm, толщиной 1.5 mm и спекали на воздухе при температуре 1150°С в течение 24 h с последующим снижением температуры co скоростью 60 grad/h. Полученные таблетки представляли собой однофазную (по рентгеновским данным) керамику.

Метод дифракции рентгеновских лучей в данной работе использовали для контроля гомогенности образцов, а также для установления особенностей в изменениях параметров решетки, вызванных изменениями стехиометрии образцов. Рентгенографические исследования проводили при 300 К на дифрактометре ДРОН-1.5 в излучении Ni $K_{\alpha 1+\alpha 2}$. Параметры *a*, *b* и *c* кристаллической решетки определяли по положению и характеру расщепления рефлекса

(321) псевдокубической решетки перовскита ($a_p \approx 3.9$ Å). Магнитную восприимчивость $\chi'_{ac}(T)$ измеряли резонансным методом в относительных единицах на частоте $f \cong 1$ MHz по изменениям частоты нагруженного образцом колебательного контура автодинного генератора в интервале температур 77–300 К в измерительном поле $h \approx 0.1$ Ое. Критические температуры ферро- T_c и антиферромагнитного T_N фазовых переходов определяли соответственно по точке перегиба и максимуму кривых $\chi'_{ac}(T)$. Измерения намагниченности производили на вибрационном магнитометре в интервале температур 4.2–300 К в диапазоне постоянных магнитных полей 0.005–1 Т.

2.1. Кристаллическая структура соединений La_{1-x}Ca_xMnO₃ при 300 ℃

В данной работе было установлено, что кристаллическая структура соединений $La_{1-x}Ca_xMnO_3$ изменяется с ростом концентрации x примеси Ca от псевдотетрагональной фазы T ($0 \le x \le 0.1$) с решеточными параметрами a = b $> c/\sqrt{2}$ к псевдокубическим фазам К' (0.1 $\le x \le 0.3$) и К (0.3 $\le x \le$ ≤ 1.0) со средней постоянной решетки a(x) элементарной ячейки типа перовскита (рис. 1). Эти три структурные фазы, по нашему мнению, соответствуют двум орторомбическим $(0 \le x \le 0.1), O (0.1 \le x \le 0.3)$ и одной ромбоэдрической R (0.3 \le $\leq x$) фазам, обнаруженным ранее в La_{1-x}Sr_xMnO₃ [5], каждая из которых характеризуется различным типом малых искажений базисной структуры перовскита. Локаль-ные искажения скомпонованы из трижды вырожденных вращательных мод Φ_x , Φ_y , Φ_z и дважды вырожденных ЯТ-активных мод Q_2 , Q_3 . Согласно нашим данным, исходное соединение LaMnO₃ имеет относительно малое когерентное тетрагональное ЯТ-искажение ($c/\sqrt{2} a - 1$) < 0 элементарной ячейки с параметрами кристаллической решетки $a = b \cong 5.55$ Å

Рис. 1. Зависимость параметров кристаллической решетки a, b и $c/\sqrt{2}$ в La_{1-x}Ca_xMnO₃ от концентрации x примеси Ca при 300 K

и $c/\sqrt{2} \cong 5.50$ Å, которое соответствует слабому сжатию элементарной ячейки вдоль с-оси. Абсолютная величина кооперативного ЯТ-искажения $\left| \left(c / \sqrt{2} a - 1 \right) \right| \cong$ 0.01 значительно меньше, чем наблюдается обычно в шпинелях и гранатах, содержащих ионы с орбитальным вырождением. Тетрагональное искажение решетки исчезает вблизи малой концентрации примеси Са $x \cong 0.1$. Для x > 0.1 постоянная псевдокубической решетки a(x) линейно уменьшается с ростом x, но имеет различный наклон в фазах К' и К с резким изломом вблизи $x \cong 0.3$. Предполагается, что при 300 К в фазе К' доминируют разупорядоченные локальные

ЯТ-деформации кислородных $Mn^{3+}O_6$ -октаэдров, лежащие в *ab*-плоскости, тогда как в фазе К преобладают искажения решетки, вызванные поворотом MnO_6 -октаэдров, которые сопровождаются уменьшением угла между Mn-O-Mn-связями. В псевдокубической фазе К обнаружена аномалия концентрационной зависимости параметра решетки a(x) в виде узкого плато вблизи критического значения $x_c = 3/4$, соответствующего, согласно литературным данным, образованию суперструктуры зарядов в соединении $La_{1-x}Ca_xMnO_3$ [6].

Таким образом, мы установили три основные особенности концентрационной зависимости величины и характера распределения ЯТ-искажений в La_{1-x}Ca_xMnO₃-соединениях при 300 К:

1) кооперативное ЯТ-искажение кристаллической решетки $|(c/\sqrt{2}a - 1)| \approx 0.01$ для x = 0 резко падает до нуля с ростом x вблизи критической концентрации $x_c \approx 0.1$;

2) в интервале концентраций примеси $0.1 \le x \le 0.3$ доминируют локальные неупорядоченные ЯТ-искажения кислородных $Mn^{3+}O_6$ -октаэдров;

3) при $x \ge 0.3$ влияние локальных ЯТ-деформаций кислородных октаэдров на изменения параметров кристаллической решетки незначительно: объем псевдокубической элементарной ячейки линейно уменьшается с ростом концентрации примеси Са вследствие перехода части ионов марганца с зарядовым состоянием Mn^{3+} в ионы Mn^{4+} , имеющие значительно меньший радиус.

2.2. Фазовые переходы спинов в упорядоченное ФМ-состояние и состояние, подобное спиновому стеклу

Согласно полученным нами экспериментальным результатам, фазовый переход из высокотемпературной парамагнитной (ПМ) в низкотемпературную Φ M-фазу существенно отличается в образцах La_{1-x}Ca_xMnO₃, синтезированных в режиме оптимального и слабого допирования. При оптимальном допировании температурная зависимость $\chi'_{ac}(T)$ вблизи критической температуры Кюри–Вейса $T_c(x)$ соответствует обычному фазовому переходу в Φ Мсостояние в слабом магнитном поле для относительно узкого интервала концентрации примеси Ca 0.2 ≤ x ≤ 0.4 в образцах с металлической проводимостью в низкотемпературной фазе. Этот ин-тервал принято описывать в рамках модели двойного обменного взаимодействия за счет прыжков дырок между локализованными спинами ионов Mn³⁺ и Mn⁴⁺. Фазовый переход парамагнетик-ферромагне-тик в режиме оптимального допирования сопровождается обычным резким увеличением восприимчивости вблизи критической температуры T_c до максимального значения вблизи T_{max} с последующим линейным по температуре уменьшением $\chi'_{ac}(T)$ (рис. 2). Такое уменьшение восприимчивости с понижением температуры обычно объясняют пиннингом ФМ-доменных стенок, который приводит к неполной намагниченности образцов в слабом переменном поле высокой частоты. Никаких других допол-

Рис. 2. Температурная зависимость магнитной восприимчивости $\chi'_{ac}(T, x)$ в La_{1-x}Ca_xMnO₃ в высокочастотном поле $h \approx 0.1$ Oe: 1 - x = 0; 2 - x = 0.2; 3 - x = 0.3

нительных особенностей кривых $\chi'_{ac}(T)$ вблизи T_c в образцах с оптимальным допированием нами не было обнаружено.

В режиме слабого допирования соединения $La_{1-x}Ca_xMnO_3$ ($0 \le x \le$ 0.1) сохраняют свойства изолятора при всех температурах, тогда как магнитная структура в низкотемпературной фазе может быть ФМ-, АФМ- или смешанной в зависимости от технологии получения образцов. В наших образцах в режиме слабого допирования реализовалось ФМ-состояние с критической тем-

пературой $T_c = 170-180$ K, слабо зависящей от концентрации примеси Ca, вблизи которой магнитная восприимчивость резко возрастала от нуля до максимальной величины. Однако при температурах чуть ниже T_c поведение действительной компоненты магнитной восприимчивости в слабом измерительном поле 0.1 Ое сильно отличается от зависимости, характерной для обычного ферромагнетика: вместо линейного уменьшения $\chi'_{ac}(T)$ с понижением температуры мы наблюдали формирование широкого максимума восприимчивости, характерного для перехода в состояние спинового стекла с температурой «замерзания» спинов $T_f \cong 154$ K (рис. 2). Известно, что переход ферромагнетика в состояние спинового стекла происходит при наличии в образце конкуренции между ФМ- и АФМ-обменными

Рис. 3. Температурные зависимости ZFC- (-•–) и FC-намагниченности (–о–) LaMnO₃ в поле $H_{\text{ext}} = 50$ Oe

Рис. 4. Полевые зависимости намагниченности LaMnO3 при температуре 4.2 К

Физика и техника высоких давлений 2003, том 13, № 4

взаимодействиями. Поэтому появление характерного признака спинового стекла в образцах с малым количеством дырок, разрушающих АФМ-упорядочение спинов, представляется вполне возможным. Это предположение подтверждается также результатами проведенных нами в широком интервале температур и полей дополнительных исследований температурных и полевых зависимостей намагниченности LaMnO₃ в постоянном магнитном поле (рис. 3, 4). Как видно из рис. 3, температурная зависимость намагниченности M(T) образца LaMnO₃, полученная при его охлаждении в статическом внешнем магнитном поле $H_{\text{ext}} = 50$ Oe (FC-режим), существенно отличается от кривой M(T), полученной при нагреве образца после его охлаждения в нулевом магнитном поле (ZFC-режим). Это явление наблюдалось ранее многими авторами, однако удовлетворительное объяснение причин резкого отличия кривых M(T) нам не известно. Обращает на себя внимание необычная ступенька ZFC-кривой M(T) при температурах ниже 100 K, а также резкое отличие кривых M(T), снятых в ZFC-режиме, от температурной зависимости высокочастотной магнитной восприимчивости $\chi'_{ac}(T)$ вблизи 150 К (см. рис. 2). По-нашему мнению, перечисленные выше особенности кривых $\chi'_{ac}(T)$ и M(T) свидетельствуют в пользу существования в низкотемпературной фазе исследованных нами образцов $La_{1-x}Ca_xMnO_3$ ($0 \le x \le 0.1$) примеси необычного магнитного состояния, подобного спиновому стеклу с температурой «замерзания» спинов $T_f \cong 154$ К. Вместе с тем полевая зависимость M(T) образца LaMnO₃, измеренная при температуре 4.2 К (рис. 4), имеет вид, характерный для обычного ферромагнетика, что свидетельствует о незначительности примеси спин-гласс-подобной фазы в образцах с 0 ≤ x ≤ $\leq 0.1.$

2.3. Орбитальное и зарядовое упорядочение в соединениях $La_{1-x}(Sr, Ca)_x MnO_3$ для концентраций примеси вблизи $x_c = 1/8$

Особенностью зарядового упорядочения в манганитах является то, что ионы Mn^{3+} и Mn^{4+} выстраиваются регулярно в базисной *ab*-плоскости, тогда как ионы Mn³⁺ – вдоль *с*-оси. Упорядочение носителей зарядов в кристаллах происходит, если дальнодействующее кулоновское взаимодействие между носителями превышает их кинетическую энергию. Обычно упорядочение зарядов наблюдается или в низкоразмерных металлах, или в тех случаях, когда концентрация носителей составляет определенную часть (1/8, 1/3, 1/2 и т.д.) от числа узлов решетки в узкозонных проводниках. Большой интерес вызывают обнаруженные нами аномалии в концентрационных зависимостях $T_c(x)$, $\chi'_{ac}(x)$ и $\Delta T_c(x)$ вблизи критической концентрации примеси Са $x_c = 1/8$, соответствующей концентрационному фазовому переходу от упорядоченного распределения ЯТ-искажений решетки к разупорядоченному (рис. 5–7). Этот переход сопровождается резким изменением температурных И концентрационных зависимостей магнитных свойств La_{1-x}Ca_xMnO₃, что подтверждает тесную связь магнитных свойств данных соединений с динамикой ЯТ-искажений кислородных октаэдров. Мы установили появление ряда новых особенностей магнитных свойств исследованных образцов для концентраций примеси $x \ge x_c$: исчезновение признаков АФМупорядочения спинов в низкотемпературной фазе, резкое увеличение производной $\partial T_c / \partial x$, мини-

Рис. 5. Зависимости температур фазовых переходов в Φ М-состояние T_c и спинстекольное состояние T_f от концентрации *x* примеси Са

Рис. 6. Скачок зависимости ширины перехода в Φ М-состояние от концентрации примеси Са вблизи критического значения $x_c = 1/8$

Рис. 7. Зависимость максимальной величины высокочастотной магнитной восприимчивости $\chi'_{ac}(T, x)$ в La_{1-x}Ca_xMnO₃ от концентрации *x* примеси Ca

мум магнитной восприимчивости $\chi'_{ac}(x)$ вблизи x_c , резкое уменьшение ширины $\Delta T_c(x)$ фазового перехода из ПМ- в ФМ-состояние.

Известно, что исходное соединение LaMnO₃ сохраняет свойства изолятора при всех температурах, тогда как магнитная структура в низкотемпературной фазе может быть ФМ, АФМ или смешанной в зависимости от малых изменений отношения La/Mn. Как видно из рис. 2, смешанное состояние существует в образцах, содержащих при 300 К Т-фазу с кооперативным ЯТ-искажением кристаллической решетки $(x \le 0.1)$, которое стабилизирует АФМупорядочение спинов. Согласно [10] при наличии коллективного ЯТ-искажения поляризация орбиталей строго (3x²

 $(3y^2 - r^2)$, при этом стабилизирован *А*-тип АФМ-взаимодействия в образце. Такая структура орбиталей и спинов характерна для Mn³⁺ окисла LaMnO₃ типа перовскита, который имеет свойства изолятора и проявляет свойства *А*-типа антиферромагнетика. В *ab*-плоскости *e*_g-орбитали поляризованы в чередующиеся $(3x^2 - r^2)$ - и $(3y^2 - r^2)$ -орбитали, что сопровождается наличием кооперативного ЯТ-искажения.

Без ЯТ-искажения как ФМ-, так и АФМ-состояния А-типа сопровождаются $(3x^2 - r^2)/(3y^2 - r^2)$ -поляризацией орбиталей со значительной примесью $(3z^2 - r^2)$. В этом случае энергия ФМ-состояния оказывается меньше, чем АФМ, так как ФМ-связь между спинами сильнее не только внутри ab-плоскостей, но и между плоскостями благодаря возникшей в отсутствие КЭЯТ поляризации орбиталей ионов Mn³⁺. Если подавить ЯТ-искажение, то должен наблюдаться переход от антиферромагнетика А-типа к ферромагнетику. Как показано в [11], такой фазовый переход ожидается для отношения $(pd\sigma)_s/(pd\sigma)_l \approx 1.4$, где $(pd\sigma)_s$ и $(pd\sigma)_l$ – интегралы переноса для короткой и длинной Мп-О-связей соответственно. Подавление КЭЯТ в La_{1-х}Sr_хMnO₃ допированием дырками приводит к ферромагнетизму образцов. Ширина энергетической щели для ФМ-состояния меньше, чем для АФМ, она уменьшается с ростом допирования и обращается в нуль при исчезновении КЭЯТ. Это говорит о том, что металлизация La_{1-x}Sr_xMnO₃ связана с изменениями спиновой и орбитальной поляризации, индуцированной допингом дырок.

Ранее в режиме слабого допирования вблизи $x_c = 1/8$ было обнаружено существование в манганитах ФМ-диэлектрического состояния, что противоречит модели двойного обмена. Электросопротивление монокристаллов La_{1-x}Sr_xMnO₃ для $x \approx 0.12$ вначале уменьшается при температурах ниже T_c ,

но при дальнейшем понижении температуры резко возрастает [12]. Согласно результатам исследования рассеивания нейтронов [5], рост сопротивления в этих соединениях при температурах ниже Т_с вызван появлением дальнодействующего поляронного упорядочения. Однако в работе [10] методом дифракции нейтронов не было обнаружено коллективное зарядовое упорядочение в монокристаллах $La_{1-x}Sr_xMnO_3$ для x = 0.12, поэтому было высказано предположение, что низкотемпературная аномалия сопротивления вызвана орбитальным упорядочением. В то же время результаты исследования температурных зависимостей теплоемкости, сопротивления и намагниченности монокристаллов La_{1-x}Sr_xMnO₃ для $x_c = 1/8$ указывают на то, что низкотемпературное упорядоченное состояние зарядов стабилизируется приложением сильного внешнего магнитного поля [13]. Авторы объясняют это взаимодействием ЯТ-эффекта, магнетизма и зарядового упорядочения. Обнаруженные нами аномалии магнитных свойств вблизи фазового перехода парамагнетик-ферромагнетик в образцах с $x \approx 1/8$ свидетельствуют о возможности появления локального динамического орбитального (зарядового) упорядочения при температурах вблизи T_c в La_{1-x}Ca_xMnO₃-соединениях.

В слабодопированных соединениях $La_{1-x}Ca_xMnO_3$ (x < 0.2) также существует низкотемпературное ферромагнитное диэлектрическое состояние, аналогичное рассмотренному выше [14]. Исследование диффузного рассеяния нейтронов в монокристаллах с примесью Ca x = 0.15; 0.20; 0.25; 0.30 позволило установить существование в них парных полярон-полярон корреляций, соответствующих короткодействующему упорядочению зарядов, которое сильно влияет на транспортные свойства. Длина когерентности корреляций поляронов в монокристаллах с диэлектрическими свойствами (x == 0.15 и 0.20), равная 12 Å при 300 K, практически не изменялась с понижением температуры. В то же время длина когерентности в образцах с металлическими свойствами (x = 0.25 и 0.30) существенно возрастает с понижением температуры от значения ~ 13 Å при 300 K до 28 Å при температурах чуть выше T_c . Таким образом, согласно [15] в образцах с малой примесью Ca (x =0.15 и 0.20) при понижении температуры отсутствуют признаки развития дальнодействующего поляронного или зарядового упорядочения. Диэлектрические свойства образцов с малым уровнем допирования, по-видимому, обусловлены формированием в низкотемпературной фазе разупорядоченного (стекольного) состояния поляронов [16], вызванного фрустрацией АФМупорядочения спинов, характерного для LaMnO₃, с кооперативным ЯТискажением MnO₆-октаэдров. Существует ряд экспериментальных результатов [17], свидетельствующих о неустойчивости орбитального состояния e_{o} электронов в низкотемпературных фазах слаболегированных манганитов, однако для La_{1-r}Ca_rMnO₃-соединений в настоящее время отсутствует ясность в понимании природы этой неустойчивости.

Таким образом, обнаруженное нами расслоение слабодопированных образцов $La_{1-x}Ca_xMnO_3$ на ФМ-, АФМ- и спин-стекольную микрофазы тесно связано с существованием в низкотемпературной фазе микрообластей с различной степенью фрустрации АФМ-упорядочения спинов, характерного для LaMnO₃, с кооперативным ЯТ-искажением MnO₆-октаэдров. Появление в образцах признаков кластеров с магнитными свойствами, подобными свойствам спинового стекла, по-видимому, вызвано формированием разупорядоченного (стекольного) состояния *d*-орбиталей ионов Mn³⁺. В температурных зависимостях $\chi'_{ac}(T)$ и M(T) мы не обнаружили каких-либо признаков появления в низкотемпературной фазе La_{1-x}Ca_xMnO₃-соединений ФМ-упорядочения орбиталей.

Выявленные нами отличия фазового перехода в ФМ-состояние в образцах, синтезированных в режиме слабого и оптимального допирования, можно объяснить выравниванием рельефа локального адиабатического ЯТ-потенциала ионов Mn^{3+} , индуцированного исчезновением КЭЯТ. При этом в основное состояние e_g -электронов примешивается ($3z^2 - r^2$)-орбитальное состояние, за счет чего происходит переход от квазидвумерного ферромагнетизма к трехмерному, что сопровождается резким изменением характерных параметров перехода в ФМ-состояние.

2.4. Двойной фазовый переход ферромагнетик-антиферромагнетик, индуцированный зарядовым упорядочением в La_{0.5}Ca_{0.5}MnO₃

Наибольший интерес представляют результаты проведенного нами исследования температурной зависимости высокочастотной восприимчивости $\chi'_{ac}(T)$ в соединении La_{0.5}Ca_{0.5}MnO₃, в котором в низкотемпературной фазе возникает состояние с коллективным зарядовым упорядочением [9]. В узком интервале концентраций примеси вблизи $x_c = 1/2$ наблюдается конкуренция двух типов магнитного порядка, которая сопровождается появлением неоднородного распределения носителей заряда, связанного с их локализацией и упорядочением. Особенностью зарядового упорядочения в манганитах является то, что ионы Mn^{3+} и Mn^{4+} выстраиваются регулярно в базисной *ab*плоскости, тогда как ионы Mn³⁺ – вдоль *с*-оси. Упорядочение носителей зарядов в кристаллах происходит, если дальнодействующее кулоновское взаимодействие между носителями превышает их кинетическую энергию. При концентрации примеси вблизи x_c = 1/2 в манганитах существует метастабильная фаза с упорядочением заряда ионов марганца при температурах ниже Т_с, вызванная периодической локализацией дырок на марганце, что приводит к образованию статической волны зарядовой плотности. В данной неустойчивой фазе существует сильная конкуренция между непроводящим основным состоянием антиферромагнетик-изолятор и состоянием ферромагнетик-металл. Этой конкуренцией можно управлять с помощью внешних воздействий (давления, магнитного поля). Фазовые переходы с зарядовым и орбитальным упорядочением наблюдались в монокристаллах La1-rCarMnO3 многими исследователями для концентраций примеси вблизи x = 0.5. Зарядовое упорядочение было также обнаружено в La_{1-x}Ca_xMnO₃ и при более высоком уровне допирования для определенных концентраций примеси x = 1/2, 2/3, 3/4 [6].

Рис. 8. Температурный гистерезис высокочастотной магнитной восприимчивости $\chi'_{ac}(T, x)$ в La_{0.5}Ca_{0.5}MnO₃ в поле $h \approx \infty 0.1$ Oe

В наших экспериментах переход в состояние с зарядовым упорядочением образце в $La_0 5Ca_0 5MnO_3$ проявлялся В аномальном поведении магнитной восприимчивости $\chi'_{ac}(T)$ в низкотемпературой фазе (рис. 8). При охлаждении мы наблюдали вначале «размазанный» переход в ФМ-состояние с $T_c \cong 224$ К, который при более низких температурах сменяется на переход в АФМсостояние в виде пика $\chi'_{ac}(T)$ вблизи $T_N \cong 155$ К с последующим резким падением магнитной восприимчивости до величины, близкой к нулю. При нагреве пик $\chi'_{ac}(T)$ был обнаружен при более

высокой критической температуре $T_N \cong 218$ К.

Таким образом, метастабильное состояние с зарядовым упорядочением типа волны зарядовой плотности существует в низкотемпературной фазе $La_{1-x}Ca_xMnO_3$ в очень узком интервале концентраций примеси Са вблизи x = 0.5. Фазовый переход в это состояние является фазовым переходом первого рода и сопровождается гигантским температурным гистерезисом высокочастотной магнитной восприимчивости образцов.

3. Заключение

Результаты проведенного нами исследования магнитной T-x-фазовой диаграммы гомогенных по рентгеновским данным образцов La_{1-x}Ca_xMnO₃-керамики свидетельствуют о существовании тесной взаимосвязи магнитных свойств этих соединений с динамикой ЯТ-искажений кислородных октаэдров Mn³⁺O₆. Обнаруженное нами расслоение слабодопированных образцов La_{1-x}Ca_xMnO₃ на ФМ-, АФМ- и спин-стекольную микрофазы тесно связано с существованием в низкотемпературной фазе областей с различной степенью фрустрации АФМ-упорядочения спинов, характерного для LaMnO₃ с кооперативным ЯТ-искажением MnO₆-октаэдров.

Появление в образцах признаков формирования кластеров с магнитными свойствами, подобными свойствам спинового стекла, по-видимому, вызвано возникновением разупорядоченного (стекольного) состояния *d*-орбиталей ионов Mn^{3+} . Мы не обнаружили в температурных зависимостях $\chi'_{ac}(T)$ и M(T) каких-либо признаков появления в низкотемпературной фазе $La_{1-x}Ca_xMnO_3$ -соединений ФМ-упорядочения орбиталей.

Выявленные нами отличия фазового перехода в ФМ-состояние в образцах, синтезированных в режиме слабого и оптимального допирования, можно объяснить выравниванием рельефа локального адиабатического потенциала ЯТ-ионов Mn^{3+} , индуцированного исчезновением КЭЯТ. При этом к основному состоянию e_g -электронов примешивается ($3z^2 - r^2$)-орбитальное состояние, за счет чего происходит переход от квазидвумерного ферромагнетизма к трехмерному, что сопровождается резким изменением характерных параметров перехода в ФМ-состояние.

Работа выполнена при финансовой поддержке МОН Украины (проект № 2М/736-2001).

- 1. A. Lanzara, N.L. Saini, M. Brunelli, F. Natali, A. Bianconi, P.G. Radaelli, S.W. Cheong, Phys. Rev. Lett. 81, 878 (1998).
- 2. З.А. Казей, П. Новак, В.И. Соколов, ЖЭТФ 23, 1483 (1982).
- 3. К И. Кугель, Д.И. Хомский, УФН 136, 621 (1982).
- 4. C. Zener, Phys. Rev. 10, 403 (1951); P.W. Anderson, H. Hasegava, Phys. Rev. 100, 675 (1955); P.-G. de Gennes, Phys. Rev. 118, 141 (1960).
- 5. Y. Yamada, O. Hino, S. Nohdo, R. Kanao, T. Inami, S. Katano, Phys. Rev. Lett. 77, 904 (1996).
- J.L. Martinez, A. de Andres, M. Garcia-Hernandez, C. Prieto, J.M. Alonso, E. Herrerj, J. Gonzalez-Calbet, M. Vallet-Regi, JMMM 196–197, 520 (1999).
- 7. A.J. Millis, Boris I. Shraiman, R. Mueller, Phys. Rev. Lett. 77, 175 (1996).
- 8. H. Röder, Jun Zang, A.R. Bishop, Phys. Rev. Let. 76, 1356 (1996).
- 9. P.G. Radaelli, D.E. Cox, M. Marezio, S.W. Cheong, Phys. Rev. B55, 3015 (1997).
- 10. Y. Endoh, K. Hirota, S. Ishihara, S. Okamoto, Y. Murakami, A. Nishizawa, T. Fukuda, H. Kimura, H. Nojiri, K. Kaneko, S. Maekawa, Phys. Rev. Lett. **82**, 4328 (1999).
- 11. T. Mizokava, A. Fujimori, Phys. Rev. B51, 12880 (1995).
- 12. A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, Y. Tokura, Phys. Rev. B51, 14103 (1995).
- 13. S. Uhlenbruck, R. Teipen, R. Klingeler, B. Büchner, O. Friedt, M. Hücker, H. Kierspel, T. Niemöller, L. Pinsard, A. Revcolevschi, R. Gross, Phys. Rev. Lett. 82, 185 (1999).
- 14. P. Schiffer, A.P. Ramirez, W. Bao, S.W. Cheong, Phys. Rev. Lett. 75, 336 (1995).
- 15. P. Dai, J.A. Fernandez-Baca, N. Wakabayashi, E.W. Plummer, Y. Tomioka, Y. Tokura, Phys. Rev. Lett. 85, 2553 (2000).
- 16. M. Hennion, F. Moussa, G. Biotteau, J. Rodriguez-Carvajal, L. Pinsaard, A. Revcolevschi, Phys. Rev. Lett. 81, 1957 (1998).
- 17. P. Papavassiliou, M. Belesi, M. Fardis, C. Dimitropoulos, Phys. Rev. Lett. 87, 177204-1 (2001).

Физика и техника высоких давлений 2003, том 13, № 4

F.N. Bukhanko, N.A. Doroshenko, V.P. Dyakonov, V.I. Kamenev, V.A. Borodin

INFLUENCE OF CRYSTAL-LATTICE LOCAL DEFORMATIONS ON MAGNETISM OF DOPED $La_{1-x}Ca_xMnO_3$ COMPOUNDS WITH JAHN-TELLER IONS

In this paper, the magnetic *T*-*x* phase diagram of doped La_{1-x}Ca_xMnO₃ compounds was investigated by the methods of X-ray diffraction, magnetization in static magnetic field M(T, x) and a high-frequency susceptibility $\chi'_{ac}(T, x)$ for three conditions of the calcium doping: low ($0 \le x < x_c$), optimum ($x_c < x \le 0.4$) and high ($0.4 \le x \le 1.0$), where $x_c = 1/8$ is the critical concentration of Ca impurity. It has been established that for $x < x_c$ the cooperative Jahn-Teller (JT) lattice distortion at 300 K corresponds to tetragonal compression of a unit cell along the *c*-axis, whereas for $x > x_c$ the incoherent disordered strains of oxygen octahedrons are predominant. There is the concentration phase transition from ordered distribution of the JT distortions to a distribution with the disordered local distortions of the Mn³⁺O₆ octahedrons, which is accompanied with sharp changes of the temperature and concentration dependences of magnetic properties of the La_{1-x}Ca_xMnO₃ samples. The obtained experimental results are evidence of a close relationship between the magnetic properties of these compounds and the JT distortions dynamics.

Fig. 1. Dependence of crystal lattice parameters *a*, *b* and $c/\sqrt{2}$ in La_{1-x}Ca_xMnO₃ on concentration \tilde{o} of impurity Ca at 300 K

Fig. 2. Temperature dependence of magnetic susceptibility $\chi'_{ac}(T, x)$ in $La_{1-x}Ca_xMnO_3$ in a high-frequency field $h \approx 0.1$ Oe: 1 - x = 0; 2 - x = 0.2; 3 - x = 0.3

Fig. 3. Temperature dependences of ZFC- (-•-) and FC-magnetization ($-\hat{i}$ -) of LaMnO₃ in a field $H_{\text{ext}} = 50$ Oe

Fig. 4. Field dependences of LaMnO3 magnetization at temperature of 4.2 K

Fig. 5. Dependences of temperatures of phase transitions to a ferromagnetic (FM) state $T_c(\tilde{o})$ and a spin-glass state $T_f(x)$ in La_{1-x}Ca_xMnO₃ on concentration \tilde{o} of impurity Ca

Fig. 6. Jump in dependence of the width of transition to a FM-state of $La_{1-x}Ca_xMnO_3$ on concentration of impurity Ca near the critical value $x_c = 1/8$

Fig. 7. Dependence of the peak quantity of high-frequency magnetic susceptibility $\chi'_{ac}(T, x)$ in La_{1-x}Ca_xMnO₃ on concentration \tilde{o} of impurity Ca

Fig. 8. A temperature hysteresis of a high-frequency magnetic susceptibility in $La_{0.5}Ca_{0.5}MnO_3$ in a field $h \approx 0.1$ Oe