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The coefficients of interatomic potential of simple form Exp-6 for neon are obtained. 
Repulsive part is calculated ab-initio in the Hartree-Fock approximation using the basis of 
atomic orbitals orthogonalized exactly on different lattice sites. Attractive part is 
determined empirically using single fitting parameter. The potential obtained describes 
well the equation of state and elastic moduli of neon crystal in a wide range of interatomic 
distances and it is appropriate for molecular dynamic simulations of high- temperature 
properties and phenomena in crystals and liquids. 

1. Introduction 

Investigation of strongly anharmonic nonlinear atomic systems by molecular 
dynamics (MD) method at high temperatures, pressures, or study of systems 
affected by large amplitude excitations requires high accuracy of interatomic 
potential (IP). Series expansion of the IP in the displacements of atoms from 
equilibrium positions is widely used both in phonon theory and in MD simulation 
[1,2]. Usually, fourth-order anharmonisms or lower-order ones can be taken into 
account because of complexity of expansion coefficients calculation. As an 
alternative, realistic potential method is used [35], in which exact equations of 
motion of atoms are solved using IP of a concrete substance without series 
expansion. Owing to that, all-order anharmonisms are taken into account 
automatically. This advantage of realistic potential method is especially useful in 
the MD simulation of soliton solutions where atoms approach each other closely. 
Realistic IP should have the simplest form to reduce calculation expenses as well 
as it must describe precisely the properties of the substance under extreme 
conditions. The aim of this paper is to obtain such IP. 

Conventional way of realistic IP determination is the empirical fitting to the 
properties of a gas or a crystal near the equilibrium point [6,7]. However, such 
potentials become unreliable at small interatomic distances like that arising in 
soliton waves. The properties of highly compressed matter (e.g., for neon up to 
1Mbar [8]) could give an information for obtaining all-distance reliable IP. 
However, the set of properties, which can be measured accurately at megabar 
pressures, is restricted strongly. Practically, only the equation of state and bulk 
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modulus may be included in this set [8,9]. For shear elastic moduli Cik the 

precision worsens drastically even at kilobar pressures [10,11]. The empirical 
information for fitting all the parameters of IP is insufficient, and ab-initio 
calculation is required. 

Realistic IP via interatomic distance is obtained in the present work for the 
crystal and dimer of neon. The repulsive part of the potential is calculated ab-initio 
in the Hartree-Fock approximation using the basis of localized atomic orbitals 
orthogonalized exactly on different lattice sites. The attractive part is chosen to 
have the standard Van-der-Vaals form of Сr6 with single empirical parameter C. 
The used approximations and calculation details are described in section 2. In 
section 3, the  repulsive part of IP is interpolated by exponential function of 
interatomic distance (Exp-6 potential) and the IP parameters are determined. 
Experimental verification of the IP obtained is performed in section 4 using the 
data concerning equation of state [8,9] and elastic moduli [1217] of compressed 
neon. The IP calculated is found to be in a good consistency with the experiment in 
the whole of pressure range. 

2. Ab-initio calculation of repulsion potential 

In MD simulations by realistic potential method the problem is divided into two 
stages. The former is quantum-mechanical calculation of the IP at electron level, 
with interatomic distance considered as a parameter. The latter is solving the equa-
tions of motion of atoms using the IP obtained. This division corresponds to adia-
batic approximation when motion of atoms and electrons is described separately 
[18]. 

Since pair collisions of atoms have maximal probability, we concentrate the at-
tention on the dimer of neon, and define the IP as a cohesive energy of the dimer. 
Three-atom forces can be taken into account as a correction to the two-atom ones 
using incremental expansion [19]. The estimation of [19] shows three-atom force 
contribution to be small.  

In Hartree-Fock approximation, the short-range repulsive part of IP is expressed 
through one–electron density matrix. We don’t use hard core approximation. 
Rearrangement of all electron shells is allowed as the interatomic distance is 
altered.  

Localized basis of atomic orbitals orthogonalized exactly (by Lovdin procedure 
[20]) on different lattice sites is used. In this basis, one-electron density matrix has 
the form [21]: 
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Р = I – (I+S)–1, 

where s(r–l) = |ls is the wave function of electron in isolated atom (atomic 

orbital), l and l are radius-vectors of lattice sites, s numerates the occupied states 
of the atom, Р is the orthogonalizing matrix, I is the unit matrix, S is the overlap 
integral matrix with the elements 
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S ss
ll
 = ls|ls  when l  l;   S ss

ll
  = 0  when l = l.   (2) 

We expand the repulsive part of IP in terms of small parameter such as the 
largest overlap integral S. Usually, S << 1 in uncompressed crystal, and overlap 
integrals grow exponentially as interatomic distance is decreased. The IP is 
expressed through the products of elements of orthogonalizing matrix P and two-
center Slater-Koster integrals. These integrals are atomic obital matrix elements of 
crystal hamiltoinian operators. The order in S for two-center integrals is estimated 
using the mean-value theorem. The elements of matrix P = 
= I  (I + S)–1 are expanded in powers of the overlap integral matrix S  

ll 
ss

P  = 
ll 
ss

S + O(S2), 
ll
ss

P   = – 
ll

S
ss )( 2 + O(S3),   (3) 

where s numerates the occupied states of the atom, S is the complete matrix of 
overlap integrals. The elements of matrix P contain high-order terms along with 
the main ones proportional to S and S2.  

Using the estimations described above, we expand the repulsive part of IP in 
powers of S  

Vsr = E(0) + W2 + W4 + W6.          (4) 

Here Е(0) is the energy of interatomic interaction if orthogonalization of 
neighboring atoms orbitals is neglected, W2, W4, W6 are orthogonalizing 

corrections. Series expansion in S begins for them from the second, the third, and 
the sixth powers respectively. Due to the presence of matrix P, the orthogonalizing 
corrections contain high-order terms in S along with the main ones.  

In equation (4) 

E(0) =  




s
exaen sVVVs

l lmm

mmm ll

,

 + Unn.      (5) 

The first term in equation (5) consists of two-center integrals. They are the atomic 

orbital matrix elements of electron-ion interaction potential V en
m , of neutral 

isolated atom potential V a
m , of electron-electron exchange interaction potential 

V ex
m , respectively. The second term is the energy of nucleus-nucleus interaction. 

The electron-ion interaction potential has the form 

V en
m  = Ven(r – m) = –Ze2/ |r – m|.        (6) 

Neutral isolated atom potential is  

V a
m  = Va (r–m) = Ven(r–m) + 2

t
c tt mm  ,   (7) 

where 

tt c mm   = l (r–m) vc (r–r) t(r–m) dr;    vc(r–r) = e2/|r–r|.  

Action of electron-electron exchange interaction potential on wave function is 
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defined as 

sVs ex ll m  = – 
t

c tsts mlml  .        (8) 

In equation (4), the orthogonalizing corrections, W2, W4, W6, are of the form 
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Since the orthogonalizing corrections grow exponentially as the interatomic 
distance is decreased, it is impossible to say which correction may be neglected. It 
should be checked for each substance under consideration. 

Using the method described, we calculate the repulsive part of IP, Vsr (equation 

(4)), for neon dimer as a function of interatomic distance d. Atomic orbitals from 
Clementi-Roetti set [22] are used as a basis. Hartree system of atomic units   = e 

= me = 1 is applied. The calculation shows the terms E(0) and W2 in equation (4) 

to have the same order of magnitude and opposite signs. These terms are found to 
give major contributions to the IP. The W4 correction consists of 0.02% of the IP at 

equilibrium interatomic distance d0. Further, the W4 does not exceed 1% of the IP 

up to d ~ 0.75d0. Finally, at small d, like that arising in soliton waves (for d above 

0,6–0.75d0), the W4 becomes about  

2–4% of the IP. The contribution of W6 to the IP is negligible (~0.002%) in the 

whole range of d under consideration. 

3. Determination of interatomic potential parameters 
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We interpolate the calculated points Vsr(d) by exponential function of intera-

tomic distance, using the least square method, by the formula  

Vsr(d) = A0 exp(–(x–1)),   x = d/z0    (12) 

with two unknown parameters A0 and . Experimental equilibrium interatomic 

distance for neon dimer z0 = 5.8411 a. u. [23] is used as the third parameter of the 

IP. The parameters are found to be A0 = (1,1384  0,0002)10–4 a. u.,  = 

= 13.6407  0.0037. Interpolation error is 1–4% of Vsr when the d is altered from 

0.6z0 to equilibrium one.  

Adding the attractive part, we express the IP in standard Exp-6 form  

V(d) = A0 exp(–a(x–1)) – Ñd6,   x = d/z0 .  (13) 

A single unknown parameter C remains in the attractive part of IP. We propose 
to fit the C to experimental equilibrium interatomic distance. The using of 
equilibrium data is considered to be reliable at all interatomic distances since the 
attraction is essential near the equilibrium only, while ab-initio calculated 
repulsive part dominates at small d.  

For MD simulation of lattice dynamics, it is possible to fit the C to 
experimental data for dimer at T = 0 because the temperature effects will be taken 
into account explicitly, at the stage of solving the equations of motion. In this case, 
for neon С = 10.7293 (experimental equilibrium interatomic distance in the dimer 
is z0 = 5.8411 a. u. [23]). The calculated cohesive energy of dimer is Еcoh = –

1.449710–4 a. u., the experimental one is Еcoh = –1.33810–4 a. u. [23]. The 

discrepancy is 7% of the experimental value. 
For calculating static properties of a crystal at finite temperature, e.g. the 

equation of state, elastic moduli, it is better to fit the C to experimental data for a 
crystal at the same temperature. Such determination allows to take into account 
implicitly the three-atom forces, temperature effects, zero-point oscillations, and 
other effects omitted at the stage of IP calculation. In this case, for neon С = 
7.4030 (experimental equilibrium interatomic distance in the crystal is d0 = 5.9647 

a. u. at T = 4.25 K [12]). The calculated cohesive energy of incompressed crystal 
is Еcoh = –6.762010–4 a. u. per atom, the experimental one is Еcoh = –(7.35  

0.03)10–4 a. u. [24]. The discrepancy is 7.6% of the experimental value. 
 

4. Results and discussion 

Interatomic potential of neon is given in Fig. 1 as a function of interatomic 
distance d. 

The IP calculated by equation (13) for dimer is plotted by solid curve. Van-der-
Vaals constant (C = 10.7293) is fitted to experimental equilibrium interatomic 
distance in dimer [23]. 
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«Experimental» IP obtained in 
[8] is denoted by solid circles. 
This IP has been determined by 
interpolating the experimental data 
p(V) (measured at 300 K) by the 
formula Exp-6. The interpolation 
has been performed in theoretical 
model taking thermal pressure and 
zero-point oscillations into ac-
count explicitly, excluding them 
from the definition of IP. It allows 
us to compare the 300 K data of 
[8] with zero-temperature result of 
this paper. Three-atom forces were 
not included explicitly in the 
model of [8]. However, in [8], the 
effect of these forces is taken into 
account implicitly through fitting 
the IP to experimental data for the 
crystal. In our calculation, three-
atom forces are omitted because of 
fitting to dimer data. The agree-
ment of calculated IP and experi-
mental one indicates that three-

atom forces in neon are small at pressures up to 1Mbar.  
Dashed and dashed-dotted curves in the figure 1 are interatomic potentials of 

neon obtained by fitting to experimental data using the Lennard-Jones potential  
(612 formula) 

V(x) =  (–2/x6 + 1/x12),   x = d/z0,          (14) 

where  and z0 are fitting parameters. Dashed curve is the IP obtained using the 

low of corresponding-states fitted to vapor-pressure ratio of isotopic liquid [6]. 
Dashed-dotted curve is the IP fitted to experimental lattice constant and cohesive 
energy of crystal neon at p = 0, T = 0 [7]. Fitting to equilibrium crystal properties 
leads to a bad describing the IP for compressed crystal. Fitting to compressed gas 
properties gives the values of the IP close to experimental ones at moderate pres-
sures.  

Using the IP obtained (13) we calculate the equation of state p(V) for solid 
neon. Calculated pressure p against fractional volume is given in Fig. 2 as solid 
curve. 

Van-der-Vaals constant is fitted to experimental equilibrium interatomic dis-
tance d0 = 5.9647 a. u. measured for crystal neon at T = 4.25 K, p = 0 [12]. 

 

 
Fig. 1. Calculated IP and potentials fitted to 
experimental data for neon. Exp-6 is the poten-
tial interpolated by formula (13), 612 is the 
potential interpolated by (14).  – Exp-6, crys-
tal, 1 Mbar [8]; __________  Exp-6, dimer, calcu-
lation; - - - -  612, compressed gas [6]; 
_._._  612, crystal, p = 0 
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Fig. 2. Plot of V/V0 as a function of p for solid neon.   experiment, T = 4.2 K [9];   

experiment, T = 300 K [8]; ______  calculation, T = 0 K 

Fig. 3. Bulk elastic modulus of solid neon. ______  calculation, T = 0,   experiment, T = 
4.2 K [9] 

Experimental points p(V) from [8] (T = 300 K) and [9] (T = 4.2 K) are also 
given in Fig. 2. At the pressures below 20 kbar the theoretical curve is in a good 
agreement with the experimental points of [9]. At moderate pressures the theoreti-
cal curve deviates from experimental points of [8] by 4%. This deviation is caused, 
mainly, by neglecting the thermal pressure in our calculation. Fig. 2 shows tem-
perature sensitivity of the equation of state to be small. 

We calculate bulk modulus of solid neon by means of the IP obtained. Van-der-
Vaals constant is fitted to experimental equilibrium interatomic distance in the 
crystal [12]. Calculated bulk modulus B via the pressure p is given in Fig. 3 as 
solid curve. 

Experimental points obtained in [9] at T = 4.2 K are plotted as solid symbols. 
Bulk modulus is seen to be more sensitive to the approximations used. Growing 
when the p is enhanced, the difference between calculated B and measured one 
becomes about 7% of experimental B at p = 20 kbar. Incorrect taking three-atom 
forces into account at moderate pressures seems to contribute mainly to this dis-
crepancy. In our calculation, three-atom forces (and zero-point oscillations too) are 
taken into account implicitly, by fitting the IP to experimental data for uncom-
pressed crystal. Thus, calculated B agrees with experimental one at low pressures 
only (to 8 kbar). One can’t determine correctly the dynamics of alteration of three-
atom forces with the enhancement of pressure. This is the cause of growing the 
deviation of calculated B from measured one.  

We calculate elastic moduli Cik using the IP obtained with Van-der-Waals con-

stant fitted to crystal experimental data [12]. Calculated moduli and experimental 
ones are given in table for uncompressed solid neon at low temperatures. Isother-
mic moduli have been obtained in static measurements [9,12]. Adiabatic moduli 
have been measured in ultrasonic and neutron scattering experiments [13–17]. 
However, the difference between isothermic moduli and adiabatic ones is negligi-
ble at the temperatures under consideration (see, e.g., [13]).  

 
Table 
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Elastic moduli of solid neon 

Ref. Т, К В, kbar С11, kbar С12, kbar С44, kbar 
d = (С44 – 

С12)/С12 
Method  

[12] 4.25 11.120.12 – – – – Static. measure- 

[9] 4.2 11.0±0.1 – – – – ments of p(V)  

[13] 4 11.36±0.26 – – – – 
Ultrasonic 

velocity  

[14] 5 11.2±0.5 – – – – measurements 

[15] 4.7 12.1±0.4 16.9±0.5 9.7±0.4 10.0±0.3 0.03±0.07 Inelastic  

[16] 5 11.24±0.17 16.61±0.17 8.55±0.21 9.52±0.05 0.11±0.03 neutron-phonon 

[17] 6 11.52±0.3 16.49±0.3 9.03±0.3 9.28±0.08 0.03±0.04 scattering 

Calc 0 10.76 14.95 8.67 8.67 0 Ab-initio calc. 

 
The Cik moduli are seen to be more sensitive to the measurement method and 

calculation approximations. The difference between theoretical and experimental 
values of C11 and C44 is about 10% of experimental values for the most accurate 

experiment [16]. The agreement is better for C12 modulus (the discrepancy is 

about 2% [16]). The deviation from Cauchy relation  = (С44 – 

С12)/С12 is also given in the table. Cauchy violation is the measure of deviation 

of the IP from spherical symmetry. The  = 0.11  0.03 in [19], while it falls into 
experimental error bar in other experiments listed in the table. Cauchy relation 
takes place for our calculation results because in theoretical model the IP is 
supposed to be of spherical symmetry form. Small value of experimental  
indicates that spherical symmetry approximation for IP is valid for uncompressed 
neon at least. For another rare gas crystal, krypton, experiment [11] shows Cauchy 
relation to satisfy well under pressure up to 80 kbar. Moreover, for MgO the 
Cauchy violation is measured to drop with enhancing pressure up to 200 kbar [25]. 

Unlike Cik moduli, bulk modulus B is less sensitive to measurement method and 

calculation approximations. The discrepancy of theoretical result and experimental 
one doesn’t exceed 4% and falls into experimental error frames. 
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5. Conclusion 

Coefficients of realistic IP of simple form Exp-6 are obtained for neon by ab-
initio calculation of the repulsive part in Hartree-Fock approximation in the basis 
of atomic orbitals orthogonalized exactly on different lattice sites. The attractive 
part is determined empirically using the single fitting parameter, Van-der-Vaals 
constant C. For fitting the C it is enough to know experimental equilibrium 
interatomic distance in crystal (or dimer), i.e. high-pressure experimental data is 
not required. The IP calculated is suitable for molecular dynamic simulations of 
high-temperature and high-pressure properties and phenomena in crystals and 
liquids due to simplicity of the form and precise describing experimental data in 
wide range of interatomic distances. 
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