PACS: 64.70.Dv, 61.66.Dk, 61.72.Mm

И.М. Галушко

## О ВОЗМОЖНЫХ ПРИЧИНАХ СТРУКТУРООБРАЗОВАНИЯ В СПЛАВЕ ПЕРИТЕКТИЧЕСКОЙ СИСТЕМЫ Си–Ge

Национальная металлургическая академия Украины 49600, г. Днепропетровск, пр. Гагарина, 4

Статья поступила в редакцию 27 ноября 2002 года

С помощью металлографического и рентгеноструктурного анализов медленно охлажденного сплава Си + 13 ат.% Ge показано, что недорастворившиеся в перитектической реакции метастабильные кристаллы  $\alpha$ -твердого раствора германия в меди в результате мартенситного превращения переходят в стабильную  $\xi$ -фазу.

В работах, посвященных исследованию метастабильных фаз [1,2], отмечается, что метастабильные модификации могут образовываться при сверхбыстром ( $V_{\text{охл}} = 10^5 - 10^7$  K/c) охлаждении расплава [1] или в условиях высоких давлений [2]. При этом механизм формирования метастабильных фаз обычно связывается с влиянием внешних факторов – высоких давлений или сверхбольших  $V_{\text{охл}}$  расплава [1,2].

В работе [3] проанализировано влияние напряжений, возникающих вследствие упругих искажений кристаллической решетки, на устойчивость метастабильных фаз в перитектических системах сплавов. Высказано предположение о том, что при больших переохлаждениях расплава ниже температуры перитектической горизонтали после образования вокруг первичной фазы сплошной оболочки перитектической фазы метастабильная первичная фаза может переходить в стабильную перитектическую по бездиффузионному (мартенситному) механизму. Если при этом формирующиеся мартенситные кристаллы прорывают оболочку, возникает трехфазный контакт между жидкой, первичной и перитектической фазами, и перитектическая реакция проходит в условиях трехфазного контакта.

Задачей настоящей работы является экспериментальная проверка рассмотренных в [3] возможных механизмов перехода метастабильная первичная-стабильная перитектическая фаза.

Объектом исследования выбрана система Cu–Ge, отличающаяся: 1) относительно высокой ( $T_{\rm II} = 823$ °C) температурой перитектической горизонтали, в связи с чем диффузионные процессы должны проходить быстро; 2) широкой областью гомогенности перитектической фазы в большом температурноконцентрационном интервале. Последняя особенность строения перитектической диаграммы состояния Cu–Ge-сплавов позволяла при неполном перитектическом превращении, обусловленном формированием сплошной оболочки перитектической фазы вокруг первичных кристаллов, ожидать появления структурных превращений в твердом состоянии, связанных с переходом метастабильная первичная–стабильная перитектическая фазы.

Перитектическая реакция в системе Cu–Ge идет по схеме  $\mathcal{K} + \alpha \rightarrow \xi$ , где  $\alpha$ -фаза является твердым раствором германия в меди с ГЦК-решеткой, а  $\xi$ -фаза – промежуточным соединением, имеющим гексагональную решетку типа A3 с периодами a = 0.25845 - 0.26035 нм и c = 0.42243 - 0.42230 нм [4,5].

Для исследований из электролитической меди и германия полупроводниковой чистоты получили сплав, содержащий по данным химического анализа 13 ат.% Ge (погрешность составляла ±0,5%). Сплав перегревали на 100 К выше температуры линии ликвидус и выдерживали 10 мин, а затем медленно охлаждали в печи СНО с контролируемой скоростью  $V_{\rm 0xn} = 8 \cdot 10^{-3}$  К/с. Из полученных слитков вырезали образцы для металлографического и рентгеноструктурного анализов. Для выявления микроструктуры их травили 20%-ным водным раствором персульфата аммония. Рентгеноструктурный фазовый анализ осуществляли на установке УРС-60 в дебаевских камерах в медном излучении. Количество фазовых составляющих определяли по известной методике [6].

Эксперименты показали, что при кристаллизации сплава Cu + 13 ат.% Ge перитектическая реакция не доходит до конца вследствие образования сплошной оболочки перитектической  $\xi$ -фазы вокруг первичных  $\alpha$ -кристаллов. Такое экранирование приводит к тому, что перитектическая реакция, начавшаяся в условиях трехфазного контакта жидкой, первичной и перитектической фаз, в дальнейшем подавляется из-за резкого уменьшения скорости диффузии компонентов через твердофазную оболочку  $\xi$ -фазы. Дальнейший рост перитектической  $\xi$ -фазы осуществляется в процессе ее однофазной (не связанной с растворением первичных кристаллов) кристаллизации.

Количественное соотношение фазовых составляющих оказалось следующим: α-фазы – 22%; ξ-фазы – 76%, пор – 2%. В соответствии с диаграммой состояния в сплаве Cu + 13 ат.% Ge до начала перитектической реакции в равновесии с жидкостью должно находиться 84% первичных кристаллов. В процессе указанной реакции их доля уменьшилась на 62%.

С помощью металлографического анализа обнаружено мартенситное превращение кристаллов α-твердого раствора, недорастворившихся в процессе перитектической реакции, в стабильную ξ-фазу (рис. 1).

Рентгеноструктурный анализ образцов, микроструктура которых приведена на рис. 1, выявил только две фазы, обозначенные на равновесной диаграмме состояния:  $\alpha$ -твердый раствор германия в меди (на рис. 1 и 2,*a* он темный) и  $\xi$ -фазу (на рис. 1 и 2,*a* она светлая ). Существенных изменений в топографии линий на рентгенограммах не обнаружено. Результаты фазового анализа приведены в таблице.



**Рис. 1.** Микроструктура сплава Cu + 13 ат.% Ge: a – общая картина, ×100;  $\delta$  – морфологические особенности мартенситной структуры, ×500. На микроснимках:  $\xi$ -фаза – белая,  $\alpha$ -фаза – темная



**Рис. 2.** Микроструктура сплавов: a - Cu + 13 ат.% Ge, закаленного из двухфазной области  $\mathcal{K} + \alpha$ , ×200;  $\delta - Cu + 6$  ат.% Ge, ×50

О том, что мартенситное превращение происходило в затвердевших образцах при температурах ниже температуры перитектической горизонтали, свидетельствует рис. 2,*a*. Резкой закалкой после выдержки в двухфазной области (жидкость +  $\alpha$ -кристаллы) фиксируется однородная  $\alpha$ -фаза. Для сопоставления с исследуемым сплавом Cu + 13 ат.% Ge был выплавлен сплав Cu + 6 ат.% Ge, в котором  $\alpha$ -твердый раствор является стабильным и при комнатных температурах. Мартенситных структур в этом сплаве также не обнаружено. На микроснимке (рис. 2, $\delta$ ) видна только ликвационная микронеоднородность  $\alpha$ -твердого раствора.

Наблюдаемое мартенситное превращение можно объяснить, базируясь на результатах работ [8,9]. В [8] теоретически и экспериментально обоснована возможность бездиффузионного перехода ГЦК-структуры в ГПУ. В [9] с помощью рентгеноструктурного анализа исследован переход  $\alpha$ -твердого раствора в  $\xi$ -фазу при различных степенях деформации однофазных сплавов меди с 9–11 ат.% Ge. Показано, что при малых (около 2%) степенях деформации образуется дефектная 9*R*-решетка, которая при увеличении степени де-

Физика и техника высоких давлений 2003, том 13, № 2

формации (до 30% по данным [9]) переходит в ГПУ-решетку  $\xi$ -фазы. Мартенситные превращения при переходе ГЦК-решетки в ГПУ представлены в статье [9] схемой: ГЦК  $\rightarrow$  ПС  $\rightarrow$  ГПУ. Механизм подобных перестроек связывается с появлением деформационных дефектов упаковки, приводящих к нарушению плотноупакованных слоев ГЦК-решетки и формированию промежуточных структур (ПС), прежде чем сформируется ГПУрешетка. Причиной же указанных структурных переходов  $\alpha$ -твердого раствора в  $\xi$ -фазу является влияние внешнего фактора – деформации исследуемых образцов.

| т аолица | Т | аб | ЛИ | ца |
|----------|---|----|----|----|
|----------|---|----|----|----|

| №<br>п/п | I <sub>отн</sub> | <i>d<sub>hkl</sub></i><br>(экспе-<br>римент) | α-твердый<br>раствор,<br><i>a</i> = 0,36357 нм [7] |                  | ξ-фаза,<br><i>a</i> = 0,26035 нм,<br><i>c</i> = 0,42230 нм [5] |                  | Фа-<br>за |
|----------|------------------|----------------------------------------------|----------------------------------------------------|------------------|----------------------------------------------------------------|------------------|-----------|
|          |                  |                                              | hkl                                                | d <sub>hkl</sub> | hkl                                                            | d <sub>hkl</sub> |           |
| 1        | Слабая           | 2,254                                        | _                                                  | —                | 100                                                            | 2,254            | ξ         |
| 2        | Сильная          | 2,103                                        | 111                                                | 2,099            | 002                                                            | 2,111            | α, ξ      |
| 3        | Очень<br>сильная | 1,997                                        | _                                                  | _                | 101                                                            | 1,989            | w         |
| 4        | Слабая           | 1,817                                        | 200                                                | 1,817            | _                                                              | _                | α         |
| 5        | Средняя          | 1,546                                        | _                                                  | —                | 102                                                            | 1,541            | Ľ         |
| 6        |                  | 1,296                                        | 220                                                | 1,285            | 110                                                            | 1,301            | α, ξ      |
| 7        | Слабая           | 1,199                                        | _                                                  | —                | 103                                                            | 1,194            | لا        |
| 8        | Средняя          | 1,106                                        | _                                                  | _                | 112                                                            | 1,108            |           |
| 9        |                  | 1,090                                        | 311                                                | 1,096            | 201                                                            | 1,089            | α, ξ      |
| 10       | Слабая           | 1,052                                        | 222                                                | 1,049            | 004                                                            | 1,055            |           |
| 11       |                  | 0,995                                        | _                                                  | _                | 202                                                            | 0,994            |           |
| 12       | Очень<br>слабая  | 0,959                                        | _                                                  | _                | 104                                                            | 0,956            | ξ         |
| 13       |                  | 0,880                                        | _                                                  | _                | 203                                                            | 0,879            |           |
| 14       |                  | 0,835                                        | 331                                                | 0,834            | 211                                                            | 0,835            | α, ξ      |
| 15       | Слабая           | 0,817                                        | 420                                                | 0,813            | 114                                                            | 0,820            |           |
| 16       |                  | 0,791                                        | _                                                  | _                | 212,<br>105                                                    | 0,790            | ž         |

Данные рентгеноструктурного анализа сплава Cu + 13 ат.% Ge

В нашем случае кристаллы метастабильного первичного α-твердого раствора окружены сплошной оболочкой перитектической ξ-фазы. Они имеют состав, близкий к составу перитектической ξ-фазы, и стремятся к бездиффузионному переходу в ξ-фазу, вследствие чего в них могут возникать упругие искажения кристаллической решетки, приводящие к появлению дефектов упаковки. Помимо этого, образованию и развитию дефектов упаковки, вероятно, способствуют термические напряжения, возникающие при охлаждении образцов. Основной причиной наблюдаемого бездиффузионного перехода метастабильного α-твердого раствора в стабильную ξ-фазу является, повидимому, влияние внутреннего фактора – возникающих напряжений кристаллической решетки α-твердого раствора.

В исследованной системе Си-Ge первичная фаза обладает округлыми формами роста. Напряжения, обусловленные упругими искажениями ее кристаллической решетки, и возникающие при этом внутренние давления будут примерно одинаковыми вдоль границы раздела кристалла первичной и оболочки перитектической фаз. Прорыв оболочки в системах, где первичная фаза обладает округлыми формами роста, менее вероятен, чем в системах, где она обладает гранными формами роста. Экспериментальные данные настоящей работы подтверждают указанную точку зрения. Первичные кристаллы α-твердого раствора германия в меди обладают округлыми формами роста Прорыва оболочки при их распаде не наблюдается (рис. 2.a).(рис. 1,a). Он будет облегчаться в тех системах, где первичная фаза обладает гранными формами роста. В местах соприкосновения ребер граней кристаллов первичной фазы с оболочкой напряжения, вызываемые упругими искажениями кристаллической решетки, и соответственно внутренние давления будут максимальными, и в этих местах возможен прорыв оболочки.

Приведенные рассуждения подтверждаются экспериментальными данными, полученными при исследовании структурообразования перитектики алюминий-хромистых сплавов [10]. В работе [10] зафиксирован прорыв оболочки перитектической фазы CrAl<sub>7</sub>, осуществляемый первичными кристаллами соединения Cr<sub>2</sub>Al<sub>11</sub>, обладающими хорошо выраженными гранными формами роста. Разрыв оболочки приводит к последующей ее фрагментации и установлению трехфазного контакта жидкой, первичной и перитектической фаз, в условиях которого скорость перитектической реакции резко возрастает. Таким образом, возможность прорыва оболочки следует связывать не только с появлением напряжений, обусловленных упругими искажениями кристаллической решетки, но и с кристаллогеометрией первичной фазы.

- 1. И.С. Мирошниченко, Закалка из жидкого состояния, Металлургия, Москва (1982).
- 2. В.Ф. Башев, ФТВД **8**, № 1, 93 (1998).
- 3. *Я.В. Гречный, В.Н. Ипатова*, в сб.: Механизм и кинетика кристаллизации, Наука и техника, Минск (1969).
- 4. *М. Хансен, К. Андерко*, Структуры двойных сплавов, Металлургиздат, Москва (1962), т. 2.
- 5. Р.П. Эллиот, Структуры двойных сплавов, Металлургия, Москва (1970).
- 6. С.А. Салтыков, Стереометрическая металлография, Металлургия, Москва (1970).
- 7. *W.B. Pearson*, Handbook of Lattice Spacings of Metals and Alloys, Pergamon Press, Oxford, v. 1 and 2 (1958 and 1968).

- 8. Я.С. Уманский, Б.Н. Финкельштейн, М.Е. Блантер и др., Физическое металловедение, Металлургиздат, Москва (1955).
- 9. Б.И. Николин, А.И. Устинов, ФММ 44, 813 (1977).
- 10. *Н.И. Варич, Б.Н. Литвин, П.Ф. Роздайбеда*, Изв. АН СССР, Металлы № 4, 145 (1977).

I.M. Galushko

## ON POSSIBLE REASONS OF STRUCTURE FORMATION IN THE ALLOY OF PERITECTIC SYSTEM Cu–Ge

With the help the metallographic and roentgenostructural analyses of the slowly cooled Cu + 13 at.% Ge alloy it is shown that not-dissolved in the peritectical reaction metastable crystals of the  $\alpha$ -solid solution of germanium in copper pass into a stable  $\xi$ -phase as a result of the martensite transformation.

**Fig. 1.** Microstructure of an alloy Cu + 13 at.% Ge: a – general pattern, ×100;  $\delta$  – morphological features of the martensite structure, ×500. On the microsnapshots:  $\xi$ -phase is white,  $\alpha$ -phase is grey

**Fig. 2.** Microstructure of alloys: a - Cu + 13 at.% Ge tempered from biphase region  $L + \alpha$ ,  $\times 200$ ;  $\delta - Cu + 6$  at.% Ge,  $\times 50$