PACS: 61.16.Fk, 81.40.Vw, 68.55.Ln

В.А. Ивченко¹, Б.М. Эфрос², Е.В. Попова¹, Н.Б. Эфрос², Л.В. Лоладзе²

ПОЛЕВАЯ ИОННАЯ МИКРОСКОПИЯ МЕТАЛЛОВ ПРИ ИНТЕНСИВНОМ ВНЕШНЕМ ВОЗДЕЙСТВИИ

¹Институт электрофизики УрО РАН Россия, 620016, г. Екатеринбург, ул. Амундсена, 106

²Донецкий физико-технический институт им. А.А. Галкина НАН Украины 83114, г. Донецк, ул. Р. Люксембург, 72

Статья поступила в редакцию 9 июля 2003 года

Представлены результаты оригинальных исследований изменений атомно-пространственной структуры различных металлов после интенсивных внешних воздействий (ИВВ), выполненные с помощью метода полевой ионной микроскопии (ПИМ).

Введение

Повышенный интерес в последние годы к ультрамелкозернистым (УМЗ) материалам обусловлен тем, что их физико-механические свойства существенно отличаются от таковых у обычных крупнозернистых [1–3]. К УМЗматериалам относятся нано- (НК) (средний размер зерен 10–100 nm) и субмикрокристаллические (СМК) (100–200 nm). Большая доля границ зерен и их особое, неравновесное, состояние в этих материалах [4] позволяют формировать заранее заданные и рекордные их свойства.

УМЗ-материалы получают порошковыми методами, методами шарового размола, быстрого охлаждения расплава, интенсивных пластических деформаций (ИПД). С помощью последних [3,5,6] удается изготавливать образцы, лишенные пор и загрязнений, что облегчает изучение их дефектной структуры. Представляет интерес экспериментальное исследование радиационных дефектов в облученных материалах в аспекте деформационного упрочнения в том случае, когда в последних не происходят радиационно-стимулированные фазовые превращения, а повышенная плотность имплантационных дефектов может приводить к существенному изменению структурного состояния и свойств.

В работе для изучения атомно-пространственного строения дефектов различных металлов после ИВВ использовался метод ПИМ. Его потенциальные возможности позволяют исследовать реальное строение кристаллической решетки твердых тел на уровне отдельных атомов, работать с атомно-чистой поверхностью при криогенных температурах и в то же время анализировать атомную структуру объекта в объеме путем управляемого последовательного удаления поверхностных атомов электрическим полем.

Цель работы заключалась не только в сопоставлении параметров дефектной структуры металлов на атомном уровне, но и в анализе вида того воздействия, который вызвал появление именно таких нарушений кристаллической решетки материала.

Материалы и методы исследования

Объектами исследования служили металлические поликристаллические иридий, вольфрам, никель и медь чистотой в пределах 99.95–99.99% (исходный размер зерен 20–50 µm).

Атомное строение дефектов (преимущественно планарных) различной *n*-мерности в данных металлах изучали после различных ИВВ (ИПД и облучение). Для формирования СМК-структур в иридии, вольфраме и меди использовали ИПД методом кручения (максимальная логарифмическая деформация $e \approx 7$) под квазигидростатическим давлением на установке типа наковален Бриджмена [5]. Облучение образцов иридия осуществляли ионами аргона с энергией E = 20-24 keV, при этом доза облучения составляла D = $= 10^{18}$ ion/cm², а плотность тока j = 300 µA/cm². ИПД никеля осуществляли методом пакетной гидроэкструзии (ПГЭ) (максимальная логарифмическая деформация $e \approx 12$) при комнатной температуре [7].

Предназначенные для исследования методом ПИМ образцы металлов готовили в виде игольчатых эмиттеров с радиусом кривизны при вершине 30–50 nm путем электрохимической полировки заготовок, заранее подвергнутых различным ИВВ. Для исследования методом ПИМ использовали полевой ионный микроскоп конструкции ИЭФ УрО РАН, снабженный микроканальным ионно-электронным конвертером, усиливающим яркость микрокартин поверхности в 10⁴ раз. При этом хладоагентом служил жидкий азот (T =78 K), а в качестве изображающего газа использовали спектрально чистый неон [8].

Результаты эксперимента и обсуждение

Предварительно аттестованный в полевом ионном микроскопе чистый иридий (исходное состояние) перед ИВВ имел атомно-гладкую поверхность, приготовленную *in situ* полевым испарением поверхностных атомов. Ионные изображения аттестуемых полевых эмиттеров (образцы иридия) фиксировали правильную кольцевую картину, характерную для монокристаллов (рис. 1,*a*), свидетельствующую об отсутствии в теле зерна структурных дефектов на атомном уровне.

Рис. 1. Полевое ионное изображение поверхности иридия (V = 10 kV): *a* – исходное состояние; δ – СМК-состояние после ИПД ($e \approx 6$) (стрелками указаны границы зерен)

После облучения имплантированные образцы вновь помещали в микроскоп и анализировали состояние металла в приповерхностном объеме, регистрируя видео- или фотокамерой полевые ионные изображения поверхности при контролируемом удалении (испарении) одного атомного слоя за другим. В результате в имплантированном чистом иридии обнаружили высокую плотность точечных, линейных и объемных структурных дефектов (рис. 2).

Сравнительный анализ структурных дефектов, обнаруженных в иридии после ИПД ($e \approx 6$) (см. рис. 1, δ) и облучения (рис. 2,a-e), показал существенную разницу их строения в зависимости от вида ИВВ. Так, после ИПД обнаружено формирование деформационных границ зерен, размер которых $d_g \approx$ 20–30 nm, при этом в теле зерен практически отсутствовали дефекты кристаллической структуры (см. рис. 1, δ). Напротив, в облученном иридии (см. рис. 2,a-e) выявлена субзеренная ($d_{sg} \approx 3-5$ nm) структура. Угловая разориентация ω субзерен составляла 0.5–1°. Причем в их теле наблюдались различные дефекты структуры, вплоть до микропор (рис. 2,a). Ширина граничной области в иридии после ИВВ была порядка межатомного расстояния, как и в термически обработанных металлах и сплавах [9].

Ионный контраст субзеренной структуры имплантированного иридия выявляли путем небольшого повышения напряжения на эмиттере-образце (разница относительно напряжения наилучшего изображения составляла около 500 V), но при этом полевое испарение поверхностных атомов еще не наблюдали. Контраст самих границ легко обнаруживали в виде более ярких линий, ограничивающих субзерна (рис. 2, β). Причем наблюдали полное соответствие разрыва кольцевой картины (рис. 2, β) с контрастом границ субзерен структуры (рис. 2, β) (обе микрофотографии представляют одну и ту же поверхность иридия, но вторая получена при повышении напряжения

Физика и техника высоких давлений 2003, том 13, № 3

б

Рис. 2. Полевое ионное изображение поверхности иридия после имплантации ионами аргона (E = 20 keV, D = $= 10^{18} \text{ ion/cm}^2$, $j = 300 \text{ µA/cm}^2$): a - V = 7.2 kV (указана микропора); δ - V = 8.4 kV (стрелками отмечены дефекты кристаллической структуры); g - V = 8.9 kV

на образце на 500 V). Необходимо отметить, что именно разрыв в кольцевой картине ионного контраста показывает нарушения совершенной структуры кристалла и определяет контраст от тех или иных дефектов, возникающих в металле после ИВВ.

Анализ приповерхностного объема иридия, имплантированного ионами аргона в процессе последовательного управляемого удаления поверхностных атомов, показал, что обнаруженная субструктура сохраняется на расстоянии до 50 nm от облученной поверхности. Известно [10], что проективный пробег ионов аргона в металлах, в частности в иридии, при используемых режимах имплантации составляет не более 10 nm. Отсюда можно предположить, что наблюдаемые деформационные эффекты обусловлены, по-види-мому, ударным воздействием ионного пучка, распространением в материале упругих волн и их взаимодействием с возникающими в процессе облучения дефектами решетки и с внедренными ионами аргона. Кроме того, в процессе образования дефектов определенную роль может играть высокая плотность имплантационного тока.

Рис. 3. Полевое ионное изображение поверхности СМК-никеля после ИПД ($e \approx 12$) в зависимости от количества атомных слоев, испаренных с полюса (001) (V = 12 kV): $a - 557 \text{ слоя}; \delta - 587; e - 622; e - 632$

ИПД методом ПГЭ (е ≈ 12) крупнокристаллического никеля приводит к формированию СМК-состояния ($d_g \approx 100$ nm) [11]. На рис. 3 представлены ионные изображения участков поверхности образцов СМК-никеля в зависимости от количества удаленных слоев поверхностных атомов при контролируемом испарении. Это адекватно изменению СМК-структуры по толщине образца никеля в исследуемом приповерхностном объеме, что позволяет отчетливо зафиксировать границы ультрадисперсных субзерен, которые и составляют субструктуру отдельных зерен СМК-никеля. При этом размеры обнаруженных субзерен d_{sg} оценивались как на поверхности ионной микрокартины материала, так и в процессе удаления одного атомного слоя за другим, и составляли от 3 до 10 nm (рис. 4). Проведенный анализ показал, что тела субзерен представляют собой совершенные микрокристаллиты, которые практически не разориентированы друг относительно друга. В процессе изучения атомной структуры СМК-никеля на границах раздела субзерен наблюдались выходы отдельных дислокаций. Ширина граничной области составляла расстояние, сравнимое с межатомным.

Полученные результаты в первом приближении идентичны результатам исследования атомной структуры СМК-вольфрама после ИПД ($e \approx 7, d_g \approx$

Рис. 4. Полевое ионное изображение поверхности СМК-никеля после ИПД ($e \approx 12$): *a* – после удаления 73 атомных слоев (26 nm, V = 20 kV); δ – 662 атомных слоев (240 nm, V = 12.5 kV) (стрелками указаны границы ультрадисперсных субзерен)

Рис. 5. Полевое ионное изображение поверхности СМК-меди после ИПД ($e \approx 7$, $T_{def} \approx 400$ °C, V = 15 kV) (стрелками указаны границы ультрадисперсных субзерен)

≈ 100 nm) [12]. Анализ полевого ионного изображения участка поверхности СМК-вольфрама с межзеренной границей показал, что ее ширина 0.6–0.8 nm. Необходимо отметить, что в исходном (недеформированном) крупнокристаллическом вольфраме ширина границы составляет 0.3–0.4 nm [12].

Формирование ультрадисперсных субзерен обнаружено также и в СМКмеди после ИПД методом кручения ($T_{def} \approx 400^{\circ}$ С, $e \approx 7$) (рис. 5). При этом ионный контраст границ субзерен по сравнению с СМК-никелем (см. рис. 4,*a*) показывает намного более широкую (порядка 3–4 межатомных расстояний) граничную область. Необходимо также отметить, что в данных образцах СМК-меди субзерна ($d_{sg} \approx 8-15$ nm) разориентированы друг относительно друга намного сильнее, чем в СМК-никеле.

Таким образом, в процессе изучения атомного строения дефектной структуры металлов методом ПИМ впервые при ИВВ обнаружено формирование субзерен и различной структуры их граничной области. Природа кристаллического строения границ в существенной мере зависит от типа ИВВ и определяет, в конечном счете, физико-механические свойства исследованных металлов.

Выводы

С помощью прямого метода ПИМ на атомном уровне получено свидетельство наличия высокой плотности дефектов различной *n*-мерности в металлах после ИВВ.

Впервые установлено, что в объеме зерен субмикрокристаллических никеля и меди после ИПД формируется ультрадисперсная ($d_{sg} \approx 3-15$ nm) субзеренная структура. Установлена дислокационная природа границ наблюдаемых субзерен.

Впервые обнаружено формирование ультрадисперсной субзеренной структуры в поверхностных и приповерхностных объемах иридия в результате имплантации ионов аргона на расстояниях, которые на порядок превышают проективный пробег ионов аргона от облученной поверхности.

- 1. И.Д. Морохов, Л.И. Трусов, В.И. Лаповок, Физические явления в ультрадисперсных средах, Наука, Москва (1984).
- 2. В.А. Теплов, В.П. Пилюгин, Г.Г. Талуц, Металлы № 2, 109 (1992).
- Р.З. Валиев, И.В. Александров, Наноструктурные материалы, полученные интенсивной пластической деформацией, Логос, Москва (2000).
- О.А. Кайбышев, Р.З. Валиев, Границы зерен и свойства металлов, Металлургия, Москва (1987).
- 5. Р.И. Кузнецов, В.И. Быков, В.П. Чернышев, В.П. Пилюгин, ПТЭ № 1, 246 (1988).
- 6. Н.А. Ахмадеев, Р.З. Валиев, В.И. Копылов, Р.Р. Мулюков, Металлы № 5, 96 (1992).
- 7. С.Г. Сынков, В.Г. Сынков, А.Н. Сапронов, ФТВД 6, № 2, 141 (1996).
- В.А. Ивченко, В.В. Овчинников, С.О. Чолах, Кристаллографическая идентификация полевых ионных изображений кристаллов, УГТУ–УПИ, Екатеринбург (2001).
- 9. В.А. Ивченко, в кн.: Радиационная физика твердого тела, МГИЭМ, Москва (2002).
- А.Ф. Буренков, Ф.Ф. Комаров, М.А. Кумахов, М.М. Темкин, Пространственные распределения энергии, выделенной в каскаде атомных столкновений в твердых телах, Энергоатомиздат, Москва (1985).
- 11. Б.М. Эфрос, С.Г. Сынков, Е.В. Попова, Т.П. Заика, Л.В. Лоладзе, В.Г. Сынков, В.А. Ивченко, В.Н. Варюхин, ФТВД **12**, № 2, 27 (2002).
- 12. Р.Р. Мулюков, Ю.М. Юмагузин, В.А. Ивченко, Л.Р. Зубаиров, Письма в ЖЭТФ 72, 377 (2000).

V.A. Ivchenko, B.M. Efros, E.V. Popova, N.B. Efros, L.V. Loladze

FIELD IONIC MICROSCOPY OF METALS UNDER SEVERE EXTERNAL INFLUENCES

The represented are the results of original studies of changes in the atomic-spatial structure of different metals after severe external influences. The field ionic microscopy method was used.

Fig. 1. Field ionic image of iridium surface (V = 10 kV): a – initial condition; δ – submicrocrystalline (SMC) state after severe plastic deformation (SPD) ($e \approx 6$) (the arrows show the grain boundaries)

Fig. 2. Field ionic image of iridium surface after the argon ion implantation (E = 20 keV, $D = 10^{18} \text{ ion/cm}^2$, $j = 300 \text{ }\mu\text{A/cm}^2$): a - V = 7.2 kV (a micropore is shown); $\delta - V = 8.4 \text{ kV}$ (crystalline structure defects are shown by arrows); e - V = 8.9 kV

Fig. 3. Field ionic image of SMC nickel surface after SPD ($e \approx 12$) depending on the quantity of atomic layers evaporated from pole (001) (V = 12 kV): a - 557 layers; $\delta - 587$; e - 622; e - 632

Fig. 4. Field ionic image of SMC nickel surface after SPD ($e \approx 12$): a – after removal of 73 atomic layers (26 nm, V = 20 kV); δ – 662 atomic layers (240 nm, V = 12.5 kV) (the arrows show the boundaries of ultradisperse subgrains)

Fig. 5. Field ionic image of SMC copper surface after SPD ($e \approx 7$, $T_{def} \approx 400^{\circ}$ C, V = 15 kV) (the arrows show the boundaries of ultradisperse subgrains)