PACS: 61.43.Dq, 64.70.dg, 81.10.Aj

С.В. Васильев^{1,2}, В.И. Парфений^{1,2}, Т.В. Цветков¹, В.И. Ткач¹

СВЯЗЬ МЕЖДУ ХАРАКТЕРИСТИКАМИ НЕСТАЦИОНАРНОСТИ ПРОЦЕССА ЗАРОЖДЕНИЯ КРИСТАЛЛОВ В МЕТАЛЛИЧЕСКИХ СТЕКЛАХ

¹Донецкий физико-технический институт им. А.А. Галкина

²ГО ВПО «Донбасская национальная академия строительства и архитектуры», Макеевка

Статья поступила в редакцию 6 сентября 2018 года

Разработаны подходы для расчетной оценки показателя Аврами п и отношения характеристических времен нестационарности и кристаллизации Z, характеризующих степень отклонения процесса зарождения кристаллов от стационарного режима в стеклах, кристаллизация которых контролируется диффузией на границе раздела. По результатам расчетов установлена численная связь между параметрами n и Z, и на примере широко известного металлического стекла $Fe_{40}Ni_{40}P_{14}B_6$ по экспериментально определенным значениям показателя Аврами оценены значения характеристических времен нестационарности и кристаллизации. Установлено, что предложенный в работе новый упрощенный метод оценки характеристических времен применим для анализа кинетических кривых процесса кристаллизации с относительно высокой степенью нестационарности (n ≥ 6).

Ключевые слова: кристаллизация стекла, нестационарное зарождение, показатель Аврами, параметр *Z*, характеристические времена нестационарности и кристаллизации

Введение

Экспериментально обнаруженное явление существенного повышения ряда физических свойств металлических стекол, обусловленное образованием в аморфной матрице наномасштабных кристаллов [1,2], послужило причиной резкого возрастания интереса к разработке методов контролируемого формирования в этих материалах микроструктур с определенными значениями структурных параметров. Очевидно, что структурные параметры частично и полностью закристаллизованных стекол зависят от соотношения скоростей зарождения и роста кристаллов, а следовательно, для разработки указанных методов требуется понимание фундаментальных закономерностей этих процессов, протекающих в условиях, далеких от термодинамического равновесия. Необходимо отметить, что кристаллизация стекол была объектом многочисленных и многолетних исследований, результаты которых обобщены в ряде обзоров и монографий (напр., [3–5]). Наиболее важным результатом экспериментального изучения и теоретического анализа этого процесса оказалась установленная принципиальная возможность использования классических теоретических моделей, разработанных для описания скоростей зарождения и роста кристаллов в расплавах при относительно малых переохлаждениях.

Было также показано, что изменения доли закристаллизованного объема X(t) в большинстве металлических стекол удовлетворительно описываются кинетической моделью массовой кристаллизации, разработанной Колмогоровым [6], Джонсоном, Мэлом [7] и Аврами [8] (модель КДМА). С физической точки зрения эта модель устанавливает связь между реальным закристаллизованным объемом и так называемым расширенным объемом $X_{\text{ext}}(t)$, в котором не учитываются столкновения образующихся кристаллов: $X(t) = 1 - \exp(-X_{\text{ext}})$. В обобщенном виде для описания кинетики изотермической кристаллизации уравнение КДМА может быть записано как $X(t) = 1 - \exp[-(Kt)^n]$ [3] или $X(t) = 1 - \exp[-(t/\tau)^n]$ [9], где K – кинетическая константа, зависящая от скоростей зарождения и роста кристаллов, $\tau = K^{-1}$ – некоторое характерное время кристаллизации, n – параметр (показатель Аврами), характеризующий механизм кристаллизации.

Еще один важный экспериментально установленный факт заключается в том, что в широком спектре металлических стекол, синтезированных до настоящего времени, реализуются всего три механизма роста кристаллов: полиморфный и эвтектический, контролируемые диффузией на межфазной границе, а также первичный, скорость которого зависит от объемной диффузии [10]. Зародыши, объемная плотность которых определяет средний размер кристаллитов, могут формироваться как при затвердевании расплава («закалочные» зародыши) [11], так и при нагреве по гомогенному механизму [12]. В последнем случае центры кристаллизации критического размера образуются из гетерофазных флуктуаций, существующих в материнской (жидкой) фазе, при этом условием постоянства скорости зарождения (стационарный режим) является наличие распределения флуктуаций по размерам, равновесного для каждой температуры [3–5].

Ввиду того, что атомная структура стекла при комнатной температуре представляет собой структуру расплава, замороженного в некотором диапазоне температур (стеклообразного перехода), а для установления стационарного распределения флуктуаций при температуре изучения кристаллизации необходимо определенное время, скорость гомогенного зарождения кристаллов в стеклах в изотермических условиях может зависеть от времени. Действительно, экспериментальные оценки и анализ кинетики кристаллизации ряда металлических и оксидных стекол показали, что скорость зарождения в них кристаллов J является возрастающей функцией времени [13,14]. Очевидно, что в зависимости от характера изменений J(t) в процессе кристаллизации структурные параметры закристаллизованного стекла могут существенно изменяться, однако до настоящего времени закономерности нестационарного поведения скорости зарождения в стеклах и факторы, определяющие его характер, остаются практически неизученными.

Одним из важных элементов анализа нестационарного поведения скорости зарождения является выбор параметра, характеризующего этот процесс. В частности, для кристаллизации, контролируемой диффузией на границе раздела фаз, в качестве индикатора нестационарной природы процесса зарождения может служить определенное по экспериментальной кинетической кривой значение показателя Аврами n > 4 [3], что наблюдалось для ряда металлических стекол [9,13,15]. Параметр n оценивается просто, но его значение не связано непосредственно с параметрами процессов зарождения и роста кристаллов. С другой стороны, как показано в ряде работ [5,9,14], возрастание скорости зарождения наиболее адекватно описывается в рамках модели, предложенной в 1969 г. Д. Кэщиевым [16]. Эта модель содержит единственный параметр – характерное время нестационарности τ_{ns} , значение которого определяется путем сопоставления расчетных данных с экспериментальными оценками возрастания плотности центров кристаллизации [14] или доли закристаллизованного объема [9,13,17]. Оценки т_п показали, что значения данного параметра для конкретных стекол снижаются с повышением температуры отжига. Эти изменения удовлетворительно аппроксимируются аррениусовской температурной зависимостью [13,14,17], однако абсолютные значения характерного времени нестационарности не отражают степень отклонения процесса зарождения от его стационарного состояния.

Проведенные недавно экспериментальные исследования изотермической кристаллизации металлического стекла $Fe_{40}Ni_{40}P_{14}B_6$ свидетельствуют, что повышение температуры отжига от 617 до 662 К приводит к снижению показателя Аврами *n* от 6.79 до 4.36 [17]. С другой стороны, анализ кинетических кривых в рамках аналитической модели, представляющей собой комбинацию моделей КДМА и Кэщиева [9], показал [17], что единственный подгоночный параметр этой модели *Z*, равный отношению характерных времен нестационарности τ_{ns} и кристаллизации τ_c , при повышении температуры отжига также снижается от 1.47 до 0.025. Полученный результат позволил предположить, что параметр *Z* может быть использован в качестве количественной оценки степени нестационарности процесса кристаллизации.

Очевидно, что параметр Z, базирующийся на временах τ_{ns} и τ_c , имеет более строгий физический смысл по сравнению с показателем Аврами. Но величина Z определяется путем подгонки экспериментальной кинетической кривой в рамках относительно громоздкой аналитической модели, включающей в себя знакочередующийся ряд, выбор числа членов которого зависит от степени нестационарности процесса зарождения [9]. Напротив, величина *n* находится просто как «среднее» значение наклона экспериментальной кинетической кривой X(t), аппроксимированной линейной функцией в координатах $\ln \left[-\ln (1-X) \right]$ от $\ln t$, однако, как отмечалось выше, значение

показателя Аврами не связано непосредственно с параметрами, определяющими скорости зарождения и роста кристаллов. Из сказанного следует, что процедура анализа процесса кристаллизации стекол может быть упрощена, если будет установлена связь между значениями параметров Z и n, что и было основной задачей настоящей работы.

1. Экспериментальные результаты и аналитическая модель

Для решения поставленной задачи в качестве экспериментальной базы была использована серия кинетических кривых изотермической кристаллизации металлического стекла $Fe_{40}Ni_{40}P_{14}B_6$, построенных по результатам измерений электрического сопротивления ленточных образцов при температурах в диапазоне 617–662 К. Методика приготовления лент с аморфной структурой толщиной $22 \pm 1.2 \mu m$ путем спиннингования расплава и методы их исследований подробно описаны в работе [17]. Здесь мы лишь отметим, что отжиги проводили в соляных ваннах, что обеспечивало быстрый (3–5 s) прогрев образцов и предохраняло поверхность лент от окисления.

Рис. 1. Изменения доли закристаллизованного объема *X* как функции времени *t* для металлического стекла $Fe_{40}Ni_{40}P_{14}B_6(a)$ при различных температурах *T*, K (*1* – 617, *2* – 633, *3* – 649, *4* – 662) и представление этих изменений в координатах Аврами (*б*). Штриховые линии – аппроксимация кривых *X*(*t*) в рамках модели КДМА, значения наклонов которых *n*_{lin} приведены в табл. 1

Построенные по измерениям электросопротивления кинетические кривые X(t) имели сигмоидальную форму (рис. 1), типичную для процесса кристаллизации по механизму зарождения и роста, контролируемого диффузией на границе раздела фаз, установленного для исследуемого стекла [9,12,17]. Кристаллизация по такому механизму должна описываться кинетическим уравнением КДМА в общем виде [9]: $X(t) = 1 - \exp[-(t/\tau)^4]$, где характеристическое время кристаллизации τ связано с величинами стационарной

скорости зарождения J_s и роста U следующим соотношением: $\tau = \tau_c = \left[(\pi/3) J_s U^3 \right]^{-1/4}$. В таком случае кривые X(t), построенные в координатах $\ln \left[-\ln (1-X) \right]$ от $\ln t$, должны аппроксимироваться прямыми линиями с наклоном, равным 4. Действительно, зависимости, построенные для доли закристаллизованного объема от 0.1 до 0.9 [15,17], близки к линейным (рис. 1, δ), однако наклоны аппроксимирующих прямых n_{lin} лежат в диапазоне от 6.93 ± 0.05 при 617 К до 4.36 ± 0.03 при 662 К (табл. 1).

Таблица 1

Параметры, характеризующие нестационарный характер процесса зарождения в металлическом стекле Fe₄₀Ni₄₀P₁₄B₆ при различных температурах

<i>T</i> , K	$n_{ m lin}$	Z[17]	<i>t_x</i> , s	$\langle n \rangle$	τ_{ns}^{fit} [17]	τ_{ns}^{est}	τ_c^{fit} [17]	τ_c^{est}
					S			
617	6.93 ± 0.05	1.47	14730	6.79 ± 0.04	9630	8442	6545	7102
619	6.59 ± 0.04	0.848	10165	6.63 ± 0.04	4793	4103	5652	5155
623	6.62 ± 0.01	1.11	7251	6.6 ± 0.03	3981	3789	3574	3718
633	6.32 ± 0.01	0.743	1726	6.32 ± 0.04	745	775	1002	964
649	5.37 ± 0.02	0.233	360	5.36 ± 0.05	69	80	296	263
662	4.36 ± 0.03	0.025	94	4.36 ± 0.03	2.5	4.3	101	83

Ранее отмечалось, что значения показателя Аврами выше 4 служат индикатором возрастающей скорости зарождения [3] и, как показано в работах [9,17], приведенные на рис. 1 кинетические кривые кристаллизации стекла Fe₄₀Ni₄₀P₁₄B₆ строго аппроксимируются уравнением, учитывающим возрастание скорости зарождения по модели Кэщиева [16]:

$$J_{\rm ns}(t) = J_s(T) \left[1 + 2\sum_{m=1}^{\infty} (-1)^m \exp(-m^2 t/\tau_{\rm ns}) \right]$$
(1)

в модели Колмогорова:

$$X(\theta) = 1 - \exp(-X_{\text{ext}}(\theta)).$$
⁽²⁾

Здесь

$$X_{\text{ext}}(\theta) = Z^{4} \left[\theta^{4} - \frac{2\pi^{2}\theta^{3}}{3} + \frac{7\pi^{4}\theta^{2}}{30} - \frac{31\pi^{6}\theta}{630} + \Sigma \right],$$
$$\Sigma = \left(\frac{127\pi^{8}}{25200} + 48\sum_{m=1}^{\infty} \frac{(-1)^{m}}{m^{8}} \exp\left(-m^{2}\theta\right) \right),$$

где θ – безразмерное время ($\theta = t/\tau_{ns}$).

70

Проведенная в работе [17] подгонка экспериментальных кинетических кривых в рамках уравнений (1) и (2) позволила определить значения τ_{ns} , τ_c и Z (табл. 1), характер изменений которых совпадает с характером изменений показателя Аврами. Однако последний не содержится в явном виде в кинетическом уравнении (2), и, следовательно, для установления связи между значениями n и Z необходим дополнительный анализ кинетики процесса кристаллизации.

2. Оценки характеристик отклонения процесса зарождения от стационарного режима

На первом этапе анализа были установлены связи между временами θ на различных этапах превращения и параметром Z. Как правило, процесс кристаллизации стекол анализируется в ограниченном диапазоне X (обычно не превышающем 0.1–0.9) [15,17], что связано с особенностями экспериментальных методик. Поэтому значения $\theta_{0.1}$ и $\theta_{0.9}$ в зависимости от параметра Z определяли с использованием уравнения (2). Дополнительно рассчитывали значения практически важного времени θ_x , соответствующие времени максимума скорости кристаллизации. Значения θ_x определяли как решение следующего уравнения:

$$\frac{\mathrm{d}^{2}X}{\mathrm{d}\theta^{2}}\Big|_{\theta_{x}} = \left(\frac{\mathrm{d}^{2}X_{\mathrm{ext}}}{\mathrm{d}\theta^{2}} - \left(\frac{\mathrm{d}X_{\mathrm{ext}}}{\mathrm{d}\theta}\right)^{2}\right)\Big|_{\theta_{x}} \exp\left(-X_{\mathrm{ext}}\left(\theta_{x}\right)\right) = 0.$$
(3)

Подстановка (2) в (3) привела к уравнению

$$\left[12\theta_x^2 - 4\pi^2\theta_x + \frac{7\pi^4}{15} + 48\sum_{m=1}^{\infty} \frac{(-1)^m}{m^4} \exp\left(-m^2\theta_x\right) \right] = Z^4 \left[4\theta_x^3 - 2\pi^2\theta_x^2 + \frac{7\pi^4\theta_x}{15} - \frac{31\pi^6}{630} + 48\sum_{m=1}^{\infty} \frac{(-1)^m}{m^6} \exp\left(-m^2\theta_x\right) \right]^2, \quad (4)$$

численное решение которого дало значения θ_x . Расчеты (рис. 2), проведенные для широкого диапазона значений $Z(10^{-3}-10^2)$, показали, что величины $\theta_{0.1}$, θ_x и $\theta_{0.9}$ убывают с ростом Z, при этом относительная длительность процесса кристаллизации ($\theta_{0.9} - \theta_{0.1}$)/ $\theta_{0.1}$ существенно уменьшается (от 1.16 до 0.24), что обусловлено значительным повышением скорости зарождения. Как видно из рис. 2, расчетная кривая $\theta_x(Z)$ лежит между кривыми $\theta_{0.9}(Z)$ и $\theta_{0.1}(Z)$ и хорошо согласуется с экспериментально найденными величинами θ_x .

На втором этапе анализа установлена связь между значениями показателя Аврами *n* и характеристическим временем θ_x . Для этого определяли локальные значения *n* как производные функции $Y = \ln \{-\ln[1 - X(t)]\}$ по логарифму времени ($u = \ln(t)$):

$$n(t) = \frac{\mathrm{d}Y}{\mathrm{d}u} = \frac{\mathrm{d}Y}{\mathrm{d}t}\frac{\mathrm{d}t}{\mathrm{d}u} = \frac{\mathrm{d}}{\mathrm{d}t}\ln\left[X_{\mathrm{ext}}(t)\right]\frac{\mathrm{d}t}{\mathrm{d}u} = \frac{t}{X_{\mathrm{ext}}(t)}\frac{\mathrm{d}X_{\mathrm{ext}}(t)}{\mathrm{d}t}.$$
 (5)

Подставляя явное выражение для расширенного объема из уравнения (2), получим

$$n(\theta) = \frac{4\theta^4 - 2\pi^2 + \frac{7\pi^4\theta^2}{15} - \frac{31\pi^6\theta}{630} - 48\theta \sum_{m=1}^{\infty} \frac{(-1)^m}{m^6} \exp\left(-m^2\theta\right)}{\theta^4 - \frac{2\pi^2\theta^3}{3} + \frac{7\pi^4\theta^2}{30} - \frac{31\pi^6\theta}{630} + \frac{127\pi^8}{25200} + 48\sum_{m=1}^{\infty} \frac{(-1)^m}{m^8} \exp\left(-m^2\theta\right)}.$$
 (6)

Рис. 2. Зависимость безразмерных времен, характеризующих кинетику кристаллизации, от параметра *Z*: *1*, *2* и *3* – соответственно времена $\theta_{0,1}$, θ_x и $\theta_{0,9}$; точки – значения θ_x , определенные по экспериментальным кривым *X*(*t*)

Рис. 3. Локальные значения показателя Аврами, рассчитанные по уравнению (6) в зависимости от безразмерного времени

Из уравнения (6) видно, что показатель Аврами в явном виде не связан с параметром нестационарности Z, а сама зависимость $n(\theta)$ (рис. 3) носит универсальный характер («master curve»). С другой стороны, поскольку процесс кристаллизации анализируется в определенном диапазоне долей превращенного объема, это обусловливает неявную зависимость n от Z в силу зависимости $\theta_{0.1}$ и $\theta_{0.9}$ от Z. Учитывая указанное обстоятельство, для характеристики процесса кристаллизации в заданном диапазоне значений X можно использовать величину среднего показателя Аврами, рассчитанного из соотношения

$$\langle n \rangle = \frac{\int_{0.9}^{\theta_{0.9}} n(\theta) d\theta}{\theta_{0.9} - \theta_{0.1}}.$$
(7)

Результаты расчетов показателя Аврами в моменты времени $\theta_{0.1}$, $\theta_{0.9}$ и θ_x по уравнениям (2) и (6) в зависимости от параметра Z приведены в табл. 2 и представлены графически на рис. 4. Как видно из рисунка, расчетная зависимость $\langle n \rangle$ от Z оказалась близка к $n(\theta_x)$. Кроме того, значения показателей n на всех этапах превращения, а также различия между $n(\theta_{0.1})$ и $n(\theta_{0.9})$ возрастают с увеличением параметра Z, т.е. с повышением степени отклонения процесса зарождения от стационарного режима. Примечательно, что для одной и той же величины Z значения $n(\theta)$ снижаются по мере увеличения θ , что свидетельствует о монотонном уменьшении локального показателя Аврами в процессе кристаллизации с нестационарной (возрастающей) скоростью зарождения.

Таблица 2

$Z = \tau_{\rm ns} / \tau_c$	$\langle n \rangle$	Θ_x	$n(\theta_x)$	$Z = \tau_{\rm ns} / \tau_c$	$\langle n \rangle$	Θ_x	$n(\theta_x)$
10 ⁻³	4.008	932.25	4.007	3.5	8.3463	0.97111	8.1461
0.0025	4.02	373.88	4.0176	3.75	8.4585	0.93919	8.2549
0.005	4.0397	187.76	4.035	4	8.5648	0.91065	8.358
0.0075	4.0592	125.72	4.0522	4.25	8.6658	0.88493	8.4561
0.01	4.0784	94.691	4.0692	4.5	8.7621	0.86161	8.5496
0.025	4.1886	38.834	4.1676	4.75	8.8541	0.84034	8.639
0.05	4.3545	20.187	4.3182	5	8.9422	0.82085	8.7246
0.0625	4.3876	16.448	4.3876	5.5	9.1082	0.78629	8.8859
0.075	4.5012	13.951	4.4536	6	9.2621	0.75653	9.0355
0.0875	4.5685	12.162	4.5162	6.5	9.4056	0.73056	9.1752
0.1	4.6322	10.817	4.5759	7	9.5403	0.70764	9.3063
0.175	4.9562	6.7447	4.8822	7.5	9.6671	0.68722	9.4297
0.25	5.2118	5.0784	5.1257	8	9.787	0.66889	9.5465
0.375	5.5491	3.743	5.4484	8.5	9.9007	0.65232	9.6573
0.5	5.8191	3.0492	5.7073	9	10.009	0.63723	9.7628
0.625	6.0465	2.6182	5.9256	9.5	10.112	0.62342	9.8634
0.75	6.244	2.3215	6.1155	10	10.211	0.61073	9.9596
0.875	6.4195	2.1032	6.2842	11	10.396	0.58813	10.14
1	6.5777	1.935	6.4365	12	10.568	0.56856	10.308
1.125	6.7221	1.8008	6.5756	13	10.727	0.5514	10.464
1.25	6.8551	1.6908	6.7039	14	10.877	0.53619	10.609
1.375	6.9786	1.5988	6.8227	15	11.017	0.52259	10.746
1.5	7.0939	1.5205	6.9343	16	11.149	0.51033	10.876
1.625	7.2022	1.4529	7.0386	17	11.275	0.4992	10.999
1.75	7.3044	1.3938	7.1371	18	11.394	0.48904	11.115
1.875	7.4011	1.3417	7.2303	19	11.507	0.47971	11.226
2	7.4929	1.2952	7.3197	20	11.616	0.47111	11.332
2.25	7.6641	1.2159	7.4853	25	12.095	0.43629	11.801
2.5	7.8211	1.1504	7.6372	50	13.66	0.35015	13.336
2.75	7.9662	1.0953	7.7777	75	14.625	0.31149	14.285
3	8.1012	1.0481	7.9084	100	15.33	0.28802	14.979

Связь между параметрами, характеризующими кинетику кристаллизации металлических стекол и нестационарный характер зарождения

Приведенные на рис. 4 зависимости $n(\theta)$ получены расчетным путем, поэтому представлялось интересным сравнить значения n_{lin} , оцененные по экспериментальным кривым X(t) (см. рис. 1,*a*), со значениями $\langle n \rangle$, рассчитанными для значений Z, полученных подгонкой. Сравнительный анализ, результаты которого приведены в табл. 1 и на рис. 5, показал, что значения n_{lin} и $\langle n \rangle$ близки по величине.

Рис. 4. Расчетные зависимости показателей Аврами *n* от параметра нестационарности *Z* в различные моменты времени: $1 - \theta_{0.1}$, $2 - \theta_{0.9}$, $3 - \theta_x$; штриховой линией показаны значения $\langle n \rangle$

Рис. 5. Расчетная зависимость параметра *Z* от $\langle n \rangle$ (штриховая линия), построенная по данным табл. 1. Точками показаны значения *Z*, оцененные по наклонам n_{lin}

Установленные корреляции между параметрами Z и n_{lin} (рис. 5) и между θ_x и Z (см. рис. 2) позволяют оценить времена τ_{ns} и τ_c без процедуры подгонки, используя две характеристики экспериментальных кинетических кривых X(t) – показатель Аврами n_{lin} и время, соответствующее максимуму скорости превращения t_x . Для удобства проведения такого рода оценок представленные на рис. 2 и 6 расчетные кривые были протабулированы (см. табл. 2) с переменным шагом по параметру Z. Оцененные по значениям n_{lin} величины параметра Z, а также характеристических времен нестационарности $\tau_{\text{ns}}^{\text{est}}$ и кристаллизации τ_c^{est} отличались от соответствующих значений, полученных подгонкой кинетических кривых τ^{fit} [17] (см. рис. 5, табл. 1). Но, как можно видеть из рис. 6, различия между значениями, полученными различными методами, существенно меньше для кинетических кривых с n > 6.

Это означает, что предложенная в настоящей работе упрощенная методика оценки параметров, определяющих термическую устойчивость τ_c и характер процесса зарождения τ_{ns} , корректна для процессов формирования кристаллов, скорость зарождения которых значительно ниже стационарной. С другой стороны, оценки, проведенные в работе, показали, что влияние нестационарного характера зарождения на кинетику кристаллизации может быть проигнорировано для $Z \le 0.1$ ($n \le 4.6$), поскольку в этом случае скорость зарождения достигает стационарного значения при доле превращенно-го объема ($X \sim 0.01$), соответствующей времени начала кристаллизации.

Рис. 6. Относительная разность между характеристическими временами нестационарности τ_{ns} (\blacktriangle) и кристаллизации τ_c (\bullet), определенными путем подгонки экспериментальных кинетических кривых (fit) [17] и оцененными по значениям показателя Аврами и времени t_x , соответствующего максимуму скорости кристаллизации (est). Штриховые линии проведены для лучшей визуализации

В заключение отметим, что результаты анализа закономерностей нестационарного характера скорости зарождения кристаллов, проведенного на примере металлического стекла Fe₄₀Ni₄₀P₁₄B₆, носят универсальный характер и непосредственно применимы к широкому кругу металлических стекол, рост кристаллов в которых контролируется диффузией на межфазной границе (полиморфный и эвтектический рост). Для анализа процесса первичной кристаллизации, включающей диффузионно-контролируемый рост кристаллов, необходима разработка более сложной модели, учитывающей не только возможное увеличение скорости зарождения, но и торможение процессов зарождения и роста кристаллов, обусловленное изменением состава матричной фазы.

Выводы

В рамках аналитической модели, описывающей кинетику изотермической кристаллизации стекла по механизму зарождения и роста, контролируемого диффузией на межфазной границе, рассчитаны зависимости между параметрами, характеризующими степень отклонения скорости зарождения от стационарного значения (показателем Аврами *n*, параметром $Z = \tau_{ns} / \tau_c$ и безразмерным временем процесса $\theta = t/\tau_{ns}$).

Проведены расчеты значений локальных (на начальной и конечной стадиях превращения, а также в момент времени θ_x , соответствующий максимуму скорости кристаллизации) и среднего показателей Аврами и установлено, что все они являются возрастающими функциями параметра Z. При этом значения среднего показателя Аврами $\langle n \rangle$ и $n(\theta_x)$ оказались близки.

Для серии экспериментальных кинетических кривых изотермической кристаллизации металлического стекла $Fe_{40}Ni_{40}P_{14}B_6$ в диапазоне температур 617–662 К определены средние значения показателя Аврами n_{lin} и времен t_x , соответствующих максимуму скорости превращения. Установлено, что при повышении температуры отжига они снижаются соответственно от 6.93 до 4.36 и от 14730 до 94 s.

С использованием рассчитанных в работе связей между параметрами n и Z по экспериментальным значениям n_{lin} и t_x были определены величины параметра Z и характеристических времен нестационарности и кристаллизации. Установлено, что отличия значений характеристических времен от значений, полученных подгонкой кинетических кривых, уменьшаются при увеличении степени нестационарности скорости зарождения и для кривых X(t) с $n \ge 6$ лежат в пределах 1–6%. Это позволяет использовать предложенный в работе подход для количественных оценок скоростей зарождения и роста.

- 1. Y. Yoshizawa, S. Oguma, K. Yamauchi, J. Appl. Phys. 64, 6044 (1988).
- 2. H. Chen, Y. He, G.J. Shiflet, S.J. Poon, Scr. Met. Mater. 25, 1421 (1991).
- 3. Дж. Кристиан, Теория превращений в металлах и сплавах, Ч. 1, Мир, Москва (1978).
- 4. В.П. Скрипов, В.П. Коверда, Спонтанная кристаллизация переохлажденных жидкостей, Наука, Москва (1984).
- 5. *K.F. Kelton*, Solid State Physics: Advances in Research and Applications **45**, 75 (1991).
- 6. *А.Н. Колмогоров*, Изв. АН СССР. Сер. матем. **1**, 355 (1937).
- 7. W.A. Johnson, R.F. Mehl, Trans. Am. Inst. Min. Metall. 135, 416 (1939).
- 8. M. Avrami, J. Chem. Phys. 7, 1103 (1939).
- 9. С.В. Васильев, В.И. Ткач, Е.А. Свиридова, А.И. Лимановский, Т.В. Цветков, ФТВД **27**, № 1, 63 (2017).
- 10. *У. Кестер, У. Герольд*, в кн.: Металлические стекла, Г.-И. Гюнтеродт, Г. Бек (ред.), Мир, Москва (1983), с. 323.
- 11. A.L. Greer, Acta Metall. 30, 171 (1982).
- 12. D.G. Morris, Acta Metall. 29, 1213 (1981).
- 13. C.V. Thompson, A.L. Greer, F. Spaepen, Acta Metall. 31, 1883 (1983).
- 14. P.F. James, Phys. Chem. Glasses 15, 95 (1974).
- 15. E. Coleman, Mater. Sci. Eng. 23, 161 (1976).
- 16. D. Kashchiev, Surface Sci. 14, 209 (1969).
- 17. S.V. Vasiliev, V.I. Tkatch, A.S. Aronin, O.V. Kovalenko, S.G. Rassolov, J. Alloys Compounds 744, 141 (2018).

S.V. Vasiliev, V.I. Parfeniy, T.V. Tsvetkov, V.I. Tkatch

RELATION BETWEEN THE CHARACTERISTICS OF TRANSIENT BEHAVIOR OF THE CRYSTAL NUCLEATION IN METAL GLASSES

The approaches for calculated estimations of the Avrami exponent *n* and the ratio of the characteristic time of transiency and crystallization, *Z*, have been developed. The ratio characterizes the deviation of the crystal nucleation from a stationary mode in the glasses where crystallization is controlled by diffusion at the interface. As a result, the numerical relationship between *n* and *Z* has been established. The characteristic times of transiency and crystallization were estimated from the experimentally determined values of the Avrami exponent in the well-known Fe₄₀Ni₄₀P₁₄B₆ metallic glass. It has been found that the proposed new simplified method for evaluation of the characteristic time is applicable for analysis of the kinetic curves for crystallization characterized by a relatively high degree of non-stationarity ($n \ge 6$).

Keywords: glass crystallization, transient nucleation, Avrami exponent, parameter *Z*, characteristic time of transiency and crystallization

Fig. 1. Time dependence of the fraction of the crystallized volume X(t) in the Fe₄₀Ni₄₀P₁₄B₆ metal glass (*a*) at varied temperature *T*, K (1 - 617, 2 - 633, 3 - 649, 4 - 662) K (4) and representation of the time dependence in Avrami coordinates (δ). Dashed line is approximation of the X(t) curves within the frameworks of KDMA model; the values of the curve slope n_{lin} are listed in Table 1

Fig. 2. Dimensionless time that characterizes crystallization kinetics vs Z: numbers 1, 2 and 3 mark time $\theta_{0.1}$, θ_x and $\theta_{0.9}$, respectively; points mark the values of θ_x derived from experimental curves X(t)

Fig. 3. Local values of Avrami exponent calculated by equation (6) with respect to the dimensionless time

Fig. 4. Calculated Avrami exponent *n* vs parameter of transiency *Z* at varied time: $1 - \theta_{0,1}$, $2 - \theta_{0,9}$, $3 - \theta_x$; the dashed line marks the values of $\langle n \rangle$

Fig. 5. Calculated dependence of *Z* on $\langle n \rangle$ (dashed line) plotted by the data of Table 1. The values of *Z* estimated by slopes n_{lin} are marked with dots

Fig. 6. Relative difference of the characteristic time of transiency τ_{ns} (\blacktriangle) and the time of crystallization τ_c (\bullet) derived by fitting of the experimental kinetic curves (fit) [17] and estimated by Avrami exponents and time t_x associated with the maximum crystallization rate (est). Dashed lines are drawn for better visualization