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An initial boundary value problem for the linear Schrödinger equation with nonlinear 
functional boundary conditions is considered. It is shown that an attractor of the problem 
contains periodic piecewise constant functions on the complex plane with a finite number 
of the points of discontinuities on a period. The method of reduction of the problem to a 
system of integro-difference equations has been applied. Applications to optical resona-
tors with feedback have been considered. The elements of the attractor can be interpreted 
as white and black solitons in nonlinear optics. 
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Introduction 

In this paper, an initial boundary value problem (IBVP) is considered, which 
describes dynamics of two free particles characterized by opposite impulses that 
are placed into a quantum box. Thus, we analyze the dynamics of a kicked 
charged particle moving in a double-well or a more complex potential which is 

placed at flat walls of the box. In [1], a deterministic version of classical Langevin 
problem has been studied, where the movement of a charged particle in a double-
well potential is analyzed. It is shown that the Langevin problem can be reduced 
to the study of a family of iterated function systems containing a complex logistic 
map. This result provides physical meaning for the Julia set. Similar approach [2] 
is applied to the study of the initial value boundary problem for the Liouville 
equation with nonlinear dynamic boundary conditions. The problem describes a 
velocity of time evolution of the probability of particles at walls that confine the 
particles. Note that these velocities are nonlinear functions of the density of the 
probability of particles that occupy flat walls. The attractor of the problem has 
been constructed. This attractor contains periodic piecewise constant functions 
with finite, countable or uncountable (homeomorphic to the Cantor set) lines of 
discontinuities on a period, which propagate along the characteristics of the Liou-
ville equation. Such elements of the attractor are called the limit generalized dis-
tributions of relaxation of pre-turbulent and turbulent type, with respect to the 
Sharkovsky classification [3]. In the present paper, we expand the results reported 
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in [1,2] to the IBVP, where the motion of free particles characterized by different 
impulses is described by the generalised Shrödinger-type equations. The related 
operators are linear with small parameters, and with symbols that are polynomial 
functions 
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0

n
j

n j
j

P p a p


  ,   1, 2,3,...n  .                                   (1) 

Here, p R , p corresponds to the operator ˆ d dp ih x  , where h > 0 is a small 

parameter. If n = 2 then we deal with the Shrödinger equation. Let us define 

Ê ih
t





,   

d
ˆ

d
p ih

x
                                      (2) 

and consider the uncoupled system of equations 

    1ˆ ˆ , 0n kE P p y x t   ,   1,2k  .                        (3) 

Let initial conditions to be of a special form 
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.                                   (4) 

Then we can find a solution in the form 
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where j
i R  , , 1,2i j  . 

The corresponding initial problem has been solved in [4], where it is shown 
that the problem may be reduced to the Hamilton–Jacobi equations 

 1 1 1
2 1 0nP    ,    2 1 2

2 1 0nP                                    (6) 

and to a system of transport equations, respectively: 
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Let us define 
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Then 
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1 1
1 0

t x

 
  

 
,                                       (10) 

2 2
2 0

t x

 
 

 
                                        (11) 

where we assume that 1 0   and 2 0  . 

Now we consider functional boundary conditions 

   1 20, 0,t t   ,       2 1, ,l t l t    .                        (12) 

Integration of these ODEs along the characteristics with account of boundary 
conditions (12) results in the relations: 

                                      1 1 1 2 1, 0, 0,l t t l t l          =         

=     1 1 2 1 1 2, , 1l t l l l t l            .                 (13) 

Define 1 2l l     . Then it follows from (13) that 

    1 1, ,l t l t     .                                (14) 

The solutions of (14) can be found by step-by-step iteration of the initial function 

1( )h t  over [ ,0) . Let us define 1( ) ( , )y t l t  . Then 1( )h t  can be determined by 

the method of characteristics, so that 1( ) ( ) ( )y t t t     for 2[ 1/ ,0)t    and 

2 1( ) ( ) ( )t t t     ,  10,1t   (see [5], Fig. 85). 

1. Hamilton–Jacobi equations 

The Hamilton–Jacobi equations have solutions 

 1 2 1
1 1 1 2, nP       ,    1 2 2

2 1 2 2, nP       .          (15) 

Thus 

   , k
k k n kS x t x P t    ,   1,2k  .                   (16) 

For the solvability of the IBVP we should assume that 
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0
nP

p
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
.                                                (17) 

Now for the Hamilton–Jacobi equations, 

1 0kk
n

S S
P

t t

  
  

  
,   1,2k  ,                          (18) 

we postulate the periodic boundary conditions 

   1 10, ,S t S l t ,     2 20, ,S t S l t   0t  ,             (19) 
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   0
1 1,0S x S x ,     2 1,0 lS x S x ,  0 x l  .                   (20) 

Next, we extended the initial conditions to x R  l-periodically. In this case, solu-

tions of the initial problem for a phase will be a solution of the boundary problem 
with the aid of periodical extention of the linear phases 1( )S  , 1( )S  , where 

   1 1, , 1, 2, 0, 1, ...k
k nS x t x P t k n      .                (21) 

2. WKB-approximation with a complex phase 

Thus, we consider IBVP for two linear PDEs with the symbols, which are 
polynomial of order n = 2,3,… [6] and with nonlinear functional or dynamic 
boundary conditions. For example, for n = 2 we have two uncoupled Shrödinger 
equations. The boundary conditions represent the relations between amplitudes 
and phases of (in) and (out) waves at the walls of the quantum box. We consider 
1D case, but the results may be generalized on 3D case. It should be noted that the 
boundary conditions include a phase-dependent exponential factor. The initial 
conditions have the form 

           1 2, ,
0, , , e e 1/i S x t i S x tu x t h A x t O         

           (22) 

where 1 2, 0S S  , 0 are smooth functions. If 

     1 1, , , , 1 /S x t S x t iS x t h                        (23) 

then a solution of (22) has the form 

     
 

 
,

0, , 1 / , e

i
S x t

hu x t h A h x t O h
 
   
 
 

.              (24) 

The solutions are called WKB-solutions. Here, h > 0 is a small parameter. It 
means that we consider high-frequency approximation or approximation of geo-
metric optics, that is called sometimes the approximation of thin laser beams. That 
is, for each fixed 0t  , a solution is «localized» in the vicinity of some curve (see 
[7, p. 33]). The motivation of the introduction of a small parameter 0h   or «in-
ner Planck constant» is that asymptotic solutions of this equations ( 0h  ) are 

used for the quantization ([7, p. 31]). The construction of the asymptotic solutions 
can be provided by the method of reduction of the problem of a system of equa-
tions of quantum mechanics to a system of equations of classic mechanics: to the 
Hamilton–Jacobi equations for phases and transport equations or Liouville equa-
tions for amplitudes. 

The construction of complex solutions of these equations of quantum mechan-
ics for infinitely thin laser beams allows writing WKB-solutions in the form 

   
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, , e , , 1,2k
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iS h k j
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j

u x t h x t h k
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                           (25) 
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where Sk and  ,k
j x t  are solutions of the Hamilton–Jacobi equations and Liou-

ville equations. 

Note that the Hamilton-Jacobi equa-
tions can be solved exactly. The zero 
approximation can be determined with 

accuracy O(h
2
) and one is a real func-

tion, but another functions admit imagi-
nary corrections to a phase, that is for 
each next /2. 

In the present paper, this method of 
reduction is applied to the boundary 
problems of quantum mechanics. The 
results can be transferred to problems 
of nonlinear optics, to the Ginzburg–
Landau equations for a two-component 
order parameter: an example is the sys-
tem of the Gor'kov equations, which 
describes the density of Cooper pairs in 
superconductors of type 2 [9], and so on. 

   1 2
10, 0,u t u t  ,      2 2

2, , , 0u l t u l t t   .         (26) 

Let us consider a system of partial differential equations with constant coeffi-
cients which have polynomial symbols 

 
0

n
j

n j
j

P p a p


                                               (27) 

where Pn(p) is a polynomial of variable 1p R  of power 1, 2,...n  . Formally, the 

transformation of variable p into operator ˆ d dp h x   results in the differential 

operator (27): 

   
 0

d d
ˆ

d d

jn
j

n n j j
j

P p P ih a ih
x x

 
    

 
                         (28) 

with constant coefficients. 

    ˆ ˆ , 0, 1, 2k
k nE P p x t k                                   (29) 

where Ê ih t   . 

3. Beck’s type boundary conditions 

We consider the functional boundary conditions 

    1 1 20, , 0, ,t h S t h   ,       2 2 20, , 0, ,t h S t h               (30) 

and the initial conditions 

Fig. 1. The trajectories of hyperbolic dy-

namical systems with attractive and saddle 

points in a plane 
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   1 1,0, ,x h h x h  ,      2 2,0, ,x h h x h                (31) 

where 1 2, :S S R R  are given functions. As follows from [1], such boundary 

conditions can describe the dynamics of a kicked free particle moving in quantum 
box with a double-well surface potentials. The related classical case is considered 
in [9]. Indeed, as noted by Beck [1], «Though we will usually call the dynamical 
variable in our equations the velocity of a particle», our approach is much more 
general. Double-well potentials have many applications in physics, in subject ar-
eas as diverse as chemical kinetics, non-equilibrium thermodynamics, elementary 
particle physics and cosmology. 
 

 
 

 
 
Fig. 2. Limit solutions of relaxation type 

 
Really, at time t, a free particle gets a strength c a ib   in x-direction. Con-

sider the velocity  ( ) ( ), ( )v t u t w t    and  ( ) ( ), ( )v t u t w t    before and af-

ter the kick. Then we have 

u u a   ,   w w b                                      (32) 

that is equivalent to 

z z c                                                  (33) 
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where c a ib   is a complex constant. Next, we assume that the strength is act-

ing at each of two flat walls of the quantum box. Then we can consider a generali-
zation of (33) in a nonlinear case so that 

    1 20, 0,t t    ,       2 1, ,l t l t                      (34) 

where : I I   is a given function. I is an open bounded interval. Here, Ψ1 = z
+
 

and Ψ1 = z
–
. The index () labels quantities before (–) and after (+) the kick. If Ф:= 

= Id, where Id is an identical map, we obtain linear boundary conditions of type (33).  
It is shown in [1] that in an unbounded homogeneous space, complex nonlinear 

mappings  arise as stroboscopic mappings of certain classical particle dynamics. 
In a sense, that is the deterministic version of a typical Langevin problem. Gener-
alization of [1] is considered in [2] by the example of 2D initial boundary value 
problem for the Liouville equation with nonlinear dynamic boundary conditions 
which describes the velocity of time evolution of the probability of particles at the 
walls that confine the particles. These velocities are nonlinear functions of the 
density of the probability of occupation of the flat walls. The attractor of the prob-

lem has been constructed. This attractor contains periodic piecewise constant 
functions with finite, countable or uncountable points of discontinuities per a pe-
riod, which propagates along the characteristics of the Liouville equation. Such 
elements of the attractor are called distributions of relaxation of pre-turbulent and 
turbulent type, respectively. There are also random distributions of particles, 
which can be produced by the nonlinear feedback at the walls. The results has 
been obtained by the reduction of the problem to dynamical system which is de-
scribed by system of difference equations depending on coordinates and mo-
menta. It is shown that a change in these parameters results in period-doubling 
bifurcations of elements of the attractor on a 4-dimensional torus. The problem is 
solved in the class of quasi-periodic functions. 

The main contribution to the behaviour of solutions of IBVP is made by bou-
ndary conditions in complex space because we assume that the equations of quan-
tum mechanics are linear. Next, these equations can be reduced in WKB-appro-
ximation to a canonical system, which represents coupled system of the Hamil-
ton–Jacobi and transport equations for the phases and amplitudes, respectively. 
The problem is reduction of the boundary conditions for the quantum equation to 
the boundary conditions for classical canonical equations. A similar example has 
been done in [1] for the problem which describes the dynamics of a charged particle 
moving in some arbitrary potential and magnetic field under the influence of kicks. 

4. Decomposition on amplitudes and phases 

In this section, the problem of decomposition of density u is discussed: 

1
1e ... e ki Si S

ku u u                                     (35) 

where 1/ h  . Phases Sj should be found. If j = 1 then we have the known WKB-

decomposition. If there is a unique term in the series then only the phase factor 



Физика и техника высоких давлений 2018, том 28, № 3 

 82 

appears. But for many terms, the choice of relative phases for the Cauchy problem 
is important. Special procedure for the determination of phases is presented below. 

We begin with the Cauchy problem. Let the solution be 

   
0

, ,l
l

l

u x t h x t




  .                               (36) 

As an example, we consider the initial problem 

   ˆ ˆ , 0nE P x t   ,                                         (37) 

   1 2
0,0 e

ih x t
x x

 
   .                                       (38) 

The solutions are 

     1 2, e ,
ih x t

y x t x t
 

  .                                     (39) 

Substituting (39) into equation 

 , 0nih P ih y x t
t x

    
        

,                                (40) 

we get 

 2 1 , 0nih P ih x t
t x

      
               

.                         (41) 

The initial conditions are 

     
1

0,0 e ,0 e

i i
x x

h hy x x x
 

    .                               (42) 

It follows from (42) that 

1   ,      0,0x x   .                                     (43) 

Now we not that the term 

2 1nih P ih
t x

    
       

    
                                    (44) 

may is obtained from the function 

   2 1nihE P ihp                                             (45) 

by formal transformation E x    . Now we expand functional (45) into a Tay-

lor series in terms of h so that 

      2 1
0 0

d

! d

k kn

nk
k h

h
F h F h P

k h 

      + 

+       1 1
2

kkn
k kn n

k k
k

P Ph
h iE p i P

p p p

  
        

   
 .                (46) 
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After transformations E
t





 and p

x





 

     2 1 2 1n nih P ih p
t x

    
            

 – 

–  
 

 1 1
2 !

k k kn
n n

k k
k

ihP P
ih

t p x k p x

    
    

     
 .                   (47) 

Relation (47) can be rewritten as 

      
 

2 1 1

,
, n

n

x tP
P x t ih

t p x

 
       

   
 + 

  + 
 

 
 

1
2

,
0

!

k kkn
n

k k
k

ih x tP

k p x

  
 

 
 .                               (48) 

The exact solution of the problem cannot be derived from (47) by the choice of 

constants 1, 2 and function  ,x t . By setting additional terms in expansion 

(48) equal to zero, we can get asymptotic solution on h ( 0)h  . 

Thus we have the equation 

 2 1 0nP                                          (49) 

and 

 1 0
P

t p x

  
   

  
.                                         (50) 

Equation (49) has a solution 

     1 2, , ,n nS x t x P t P           .               (51) 

Equation (49) can be rewritten in more clear form which is equivalent to (50). In-
deed, consider a vector field v at plane ( ; )x t  with coordinates which are inde-

pendent of x; t. The vector field of this type is 

 1 ,1
k

n

k

P
v

p

 
    

,   1,2k  .                                      (52) 

It means that there exists a derivative along the trajectories of vector field v in the 
left-hand part of (50). Then the transport equation is an ODE  

d
0

dt


                                                        (53) 

where d/dt is a derivative along the trajectories of the vector field. It follows from 
(53) that  must be constant along the trajectories. The transport equation allows 
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obtaining of a solution with accuracy O(h
2
). To obtain the succeeding terms of the 

asymptotic series, we must find ( , )x t  as a formal power series in h. For 0, we 

obtain the transport equation again. Then the right-hand part of ODE is of order 

O(h
2
) for each integer 0s  . 

5. Complex transport equations in a first approximation 

Next, we consider a function ϕ1(x,t). Then, with acuracy of order O(h
2
), we get 

the equation 

   
2 2

01 1
1 12 22

n nP Pi

t p x p x

    
   

    
,                          (54) 

which can be written as 

 
2 2

01
12 2

d

d 2
nPi

t p x

  
 

 
                                       (55) 

by the definition of d/dt. If  ϕ0(x;t) has been determined earlier, the integration of 

(55) allows obtaining ϕ1(x;t). 

Further, we consider the terms of the equation that are of h
3
, h

4
, ... by order. 

Then we obtain a recurrent system of equations, which determine functions 

ϕs(x;t). Each successive function can be obtained from the previous one by inte-

gration along vector field v. 

6. Systems of linear quantum equations with nonlinear boundary conditions 

Consider the following system of equations 

 , , 0k
k kh H x p t

t


   


,   1,2k  ,                              (56) 

with the initial conditions 

     0 0,0 ei h k
k x S x x   ,                                    (57) 

and the boundary conditions 

 1 1 1 2 2 0x
      ,    2 2 2 1 1 1x

                             (58) 

where 1, 2 are assigned functions. Here   is the quantity conjugated to . The 

Hamiltonian of the problem Hk(x; p; t) satisfies the estimation 

   ,, , 1
m

x p kD D H x p t C x p 
                                (59) 

where 0m   is a fixed number, ,  are multi-indexes, Cαβ are constants. 

If  k
k nH P  then the problem can be reduced to a system of equations with 

accuracy O(h
2
): 
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 
10 0

1 1
1 0nP

t p x

 
  

  
,                                (60) 

 
20 0

2 2
2 0nP

t p x

 
  

  
,                                       (61) 

with the boundary conditions 

2 20 0
1 1 2

0x

 
    

 
,   

2 20 0
2 2 1

1x

 
    

 
                      (62) 

and the initial conditions 

   0 ,0k kx h x  ,   1,2k  .                                      (63) 

A solution has the form 

   0
1 1,u x t y t x   ,      0

2 2,u x t y t x                         (64) 

where  1,2
1,2 1,2nP p     , 0,1,2,...n   are coefficients of the related hyper-

bolic equations. Assume that 1 2 0   . Then we get (see [9,5]): 

    2y t y t    ,    1,t   ,   1 2l V l V                    (65) 

accompanied by the initial condition 

[ 1,1)
( ) ( )y t h t


 ,                                              (66) 

where 1( ) ( )h t t    at [ 1,0)t   and 2( ) ( )h t t    at [0,1)t . A difference 

equation can be obtained by simple substitution of a solution in form (64) into the 

boundary conditions. Here   belongs to class C
2
(I; I), the map is structurally sta-

ble. In particular, we can consider well-known unimodal maps [10], for example, 

the quadratic map 2u u  . For some R , the maps have an infinite number 

of periodic points. Note that point u and trajectory O(u) are called periodic with 

period m if ( ) ( )mf u u , ( ) ( )jf u u , 0 j m  . For example, a periodic trajec-

tory with period 2 contains two points u0, u1 = f(u0), f 
(2)

(u0) = u0, f 
(2)

(u1) = u1. 

For  = –2 the map has an invariant measure which is absolutely continuous with 
respect to the Lebesgue measure. It means that the trajectories of the related dy-
namical system are «stochastic».  

In a structurally stable case we define separator D of   as a set 

0
n

nD h P 
  . Here P  is closer of set P  where P  is a set of repelling 

points ofthe map. The separator represents a closed set of zero Lebesgue measure 
nowhere dense on interval I, which is finite, countable or uncountable. In particu-
lar, there is the following theorem [5]: D is uncountable if and only if   has cir-

cles with periods which are different from 2
i
 ( 0,1,...)i  . Using D, we can con-
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struct a set  1h D    where h  depends on the initial data of the boundary prob-

lem. In a structurally stable case, h(t) satisfies the condition h(t) ≠ 0, t . Then 

topological properties of   are identical to the topological properties of separator 
D.   is closed and nowhere dense in [0; 1] with the measure meas( ) = 0.   de-
termines a set of the points of 'discontinuities' for the solutions of the canonical 
system of equations in zero approximation (as h = 0). 

The main statement of the present paper is that solutions of IBVP for the ca-
nonical system of equations are asymptotically stable in Skorohod or Hausdorff 

metrics if the small parameter h < h0, where h0 is determined by the parameters of 

the quantum problem. The Hausdorff metric is well-known. It is the distance be-
tween the graphics of solutions in the corresponding topology. This metric is ap-
plied to deterministic solutions. The Skorohod metric can be applied to the random 
solutions which represent an attractor of the problem. The Skorohod metric is [5]: 

      0 0, ,
, sup

C I I C
s v v v v Id

   


                          (67) 

Where   is a set of homeomorphisms, Id is identical homeomorphism. Further 
on, it will be shown that the solutions of the canonical problem are stable in zero 
approximation with respect to perturbations of the initial and boundary conditions 
in Skorohod and Hausdorff metrics. It must be noted that there exist a specific 
«stability» under specific initial conditions, which determine «solitons». Indeed, 
the initial functions must be taken from an area of attraction in zero approxima-
tion. Then it can be proved that in the succeeding approximations, all solutions of 
an attractive region tend to the limit solution in zero approximation as t   

with accuracy O(h
2
), O(h

3
) for the first, second approximation, respectively, and 

so on. In this case, we deal with an approximated attractor of the original IBVP. 
We can confine ourselves by the approximation with accuracy O(h). 

The limit solution can be found, step by step, by the formula 

      4 1 2 2 1 , 4 3,4 1 , 1,2,...mp t h t m t m m m                 (68) 

where m is the least common multiple of the periods of attractive circles of the map 

1 2:   . A set of the points of 'discontinuities' is determined by the formula 

 
1

: 2
R

n

t t n





    .                                       (69) 

 

7. The first approximation 

Consider one of the components ϕ1(x,t) of the system of transport equations. 

Initially, we selected the terms of order h
2
 in the small parameter expansion of the 

original quantum equations. As a result, we obtain a system of uncoupled linear equa-

tions, which determine perturbations for zero approximation with accuracy O(h
2
): 
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   
1 2 1 2 11 1

01 1
1 12 22

n nP Pi

t p x p x

    
    

    
,                          (70) 

   
2 2 2 2 21 1

02 2
2 22 22

n nP Pi

t p x p x

    
    

    
.                        (71) 

Complex functions 1
1 , 1

2  emerge because we use an «incorrect» expansion ([4], 

formula (19)): 

   
0

, ,j
j

j

x t h x t




   .                                        (72) 

The correct expansion is 

     
0

, ,
j

j
j

x t ih x t




   .                                     (73) 

Indeed, it follows from the rigorous theory that general representation of solutions 
on the characteristics is ([6], p. 79): 

0 1
0 1e e ... e ki S i Si S

ku u u u                                      (74) 

where 1/ h  . The diffculty is that this expression does not coincide with the 

formula for the choice of phases Sj. If there is only one term in the sum, then this 

arbitrariness would result only in a rather harmless phase factor. However, in the 
case of several terms, the choice of the relative phases becomes essential. The cor-

rect oscillating terms in (74) are obtained from the projections of semi-density  
that is a solution of the transport equation multiplied by a constant phase factor. 
These factors differ by degree i. 

This problem can be studied by the example of the Lagrange manifolder Λ (see 
[6], p. 79). To solve of the problem, the method of stationary phase has been applied. 

Indeed, the boundary conditions are 

 1 1
1 1 2

0x
    ,    1 1

2 2 1
x l

    .                             (75) 

The main observation is that the right-hand parts of (70), (71) tend to zero as  
t   for almost all characteristic of the difference equations. Then we may con-
clude that, as t  , the solutions of the boundary problem tend to solutions of 

the non-perturbed equations: 

 
11 1

1 1
1 0nP

t p x

 
  

  
,                                        (76) 

 
21 1

2 2
2 0nP

t p x

 
  

  
.                                       (77) 
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Then the problem is reduced to the Sharkovsky problem ([5], p. 247) (without the 
right-hand parts of the hyperbolic equations) with nonlinear boundary conditions: 

 0 1 0 1
1 1 1 2 2

0x
h h


        ,    0 1 0 1

2 2 2 1 1
1x

h h


        .        (78) 

Thus, it follows from (78) that 

   0 1 0 0 0
1 1 1 2 1 2 2

0x
h h



          ,    0 1 0 0 0
2 2 2 1 2 1 2

x l
h h


          ,   (79) 

8. Asymptotics for the quasi-invariant initial data 

If h = 0, we obtain the well-known IBVP with typical attractors which repre-
sent a piecewise constant periodic function with finite or infinite lines of disconti-
nuities that are located at characteristics of hyperbolic equations. Define, for sim-

plicity, 0
1 1u  , 0

2 2u  . Then we find that 

 1 2 1 1u u   ,    2 2 1u u  ,    1 2 1u u  .                     (80) 

Next we define  1 1,0u x a , where a1 is a single attractive fixed point on interval 

I of the map 1 2: :f I I    . Put 2 2 1( ,0) ( ( ,0))u x u x  . Then the problem 

can be reduced to the difference equation [5]: 

    1 1u t f u t  ,   1 2l V l V   ,                          (81) 

where V1, V2 are coefficients of the hyperbolic equations, 1 2 0V V  . Since 

 2 ,f C I I  has a single point 1a P  where P  is a set of attractive fixed 

points, it follows from (81) that 1 1u a , 2 2 1( )u a  as t  . Further, it fol-

lows from structural stability of map f that the same statement is true if 

        1 2 1,0 , ,0 ,u x u x O P P 
  , where Oδ are some neighbourhoods of 

these points. Next, it is known [5] that if f is monotone (without an extremum) 

then set 1( ,..., )nP a a   is finite. The values of piecewise constant limit function 

p P  almost at all points except a finite number of «jumps», where the value of p 

is a «vertical interval». In this case, we deal with the solutions of the relaxation type. 

9. Asymptotics of the limit solutions 

As a result, the solutions of the transport equations (41), (42) can be repre-
sented as 

    1
0, k k

k nx t t P x
 

     
 

,   1,2k  .                           (82) 

Then it follows from (82) that the solutions of equations with perturbations can be 
represented as 
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        0 1, k k k k k
k n n kx t t P x ih t P x

   
           

  
,   1,2k  .      (83) 

The asymptotics of these solutions are 

     2 1
1, ei k

k n kx t h t P x  
     

 
,   1,2k  .                (84) 

10. The second approximation 

In this case, with accuracy O(h
3
), we obtain a similar system of equations 

     
1 2 1 3 1 3 12 2 2 1

01 1 1
1 1 12 2 3 32! 3!

n n nP P Pi i

t p x p x p x

       
      

      
,         (85) 

     
1 2 2 3 2 3 22 2 2 2

02 2 2
1 2 22 2 3 32! 3!

n n nP P Pi i

t p x p x p x

       
      

      
.      (86) 

Note that the second derivatives of the zero and first approximations tend to zero 
as time tends to infinity for almost all points on characteristics. It means that the 
limit asymptotics can be described by the limit equations: 

   
1 2 1 2 12 2

01 1
1 12 22!

n nP Pi

t p x p x

    
    

    
,                         (87) 

   
1 2 2 2 22 2

02 2
1 22 22!

n nP Pi

t p x p x

    
    

    
.                        (88) 

Remind that for the succeeding approximations, the boundary conditions have the 
form 

 0 1 2 1 0 1 2 1
1 1 2 1 2 1 2

0x
h h h h


            ,                         (89) 

 0 1 2 2 0 1 2 2
2 2 2 2 1 1 1

0x
h h h h


            .                        (90) 

Then, as above, on the limit solution (p1; p2), where 1p P  and P
+
 belongs to a 

set of attractive points of map 1 2  ,  2 2 1p p  , we obtain linearised 

boundary conditions (89), (90) 

 1 1
1 1 1 2

0x
p


    ,     1 1

2 2 2 1
1x

p


    .                        (91) 

Define 2 2
1 1i   and 2 2

2 2i  . As a result, for nonperturbed system (85), (86), 

we obtain the difference equation 

        2 2
1 1 2 11, 1,t p p t        ,   1 2l V l V   .              (92) 
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Since    1 2 1p p    , then  2
1 1, 0t   as t  . For the non-perturbed sys-

tem, function 1
1  is of the same properties. 

It will be shown below that for the perturbed system, the functions  1 ,k x t , 

1,2k   are of the same properties, too. Formally, it is possible because there is 

factor  2 2
0 ,k x t x   , 1,2k  , in the right-hand part of the perturbed system 

which tends to zero as t  . 

Then, with accuracy O(h
2
), we obtain the following system 

   
1

11 1
1 1 0

nPu u
F

t p x

 
   

  
,                                    (93) 

   
2

12 2
2 2 0

nPu u
F

t p x

 
   

  
,                                  (94) 

where 1
1 1u   , 1

2 2u   . 

The boundary conditions are 

 1 1 2 0x
u p u


  ,    2 2 1 1x

u p u


  .                            (95) 

The problem of existence and uniqueness of solutions has been considered in [11]. 
Next, by integration along the characteristics, we can show that this solution satis-
fies a system of integro-difference equations: 

      
0

0 1

2 1
0

1 0 1 0 1 1 1 1 0 12
, 0, , d

t

t l V

u l t u t l V V V t V t l V t t
x

 
    


  = 

=      
0

0 1

2 1
0

1 2 0 1 1 1 1 0 12
0, , d

t

t l V

u t l V V V t V t l V t t
x

 
    


  = 

=      
0 1

0 1 2

2 2
0

1 2 1 0 1 2 2 2 2 0 12
0, , d

t l V

t l V l V

u t l V l V V V t V t l V t t
x



 

         
 
 

  + 

+   
0

0 1

2 1
0

1 1 1 0 12
, d

t

t l V

V V t V t l V t t
x

 
 


 ,                         (96) 

     
0

0 2

2 2
0

2 0 2 0 2 2 2 2 02
, , , d

t

t l V

u l t u l t l V V V t l V t t t
x

 
    


  = 

=      
0 2

0 1 2

2 1
0

2 1 2 0 1 2 1 1 0 2 12
, , d

t l V

t l V l V

u l t l V l V V V t t l V l V t t
x



 

          
 
 

  + 
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+  
0

0 2

2 2
0

2 2 2 02
, d

t

t l V

V V t l V t t t
x

 
 


 .                     (97) 

We deduce from (96), (97) that 

          
2 1 2 1

0 0
1 0 1 0 1 0 1 1 2 0 1 0 22 2

, 0, 0,u l t u t l V l t l V u t l V l t l V
x x

   
        

 
 = 

=       
2 1 2 2

0 0
1 2 1 0 1 2 0 1 0 22 2

0,u t l V l V l t l V l t l V
x x

    
           

,   (98) 

          
2 1 2 1

0 0
2 0 2 0 2 0 1 1 2 0 1 0 22 2

, , 0,u l t u l t l V l t l V u t l V l t l V
x x

   
        

 
 = 

       
2 1 2 1

0 0
2 1 2 0 1 2 0 1 0 22 2

,u l t l V l V l t l V l t l V
x x

    
            

.    (99) 

Note that one of components 1,2
0  satisfies the difference equation 

    u G u                                           (100) 

where 1 2l V l V    and 1 2:G     or 2 1:G    . Since G is hyperbolic, it fol-

lows from (100) that 

      u G u u                                         (101) 

where    u O P
    and P  is a set of attractive points of the map. Then 

            
2

u G u u G u u               .         (102) 

It follows from (102) that 

   u u       ,                                       (103) 

where 1  . Hence,   0u    as t  . Then we obtain from (102) that 

  0u    as t  . The linearised equation 

   u u                                               (104) 

has a positive solution      0
0 e

k t t
u u


    where 

1
lnk  


 and 1   at each 

fixed point. Thus 

   0

22
0

2
e ,    1, 2,    0j j

j
k t l Vj

j j
j

k
t l V j k

Vx

  
    

   
.              (105) 
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From (98), (99) (105), we arrive at 

          1 0 1 2 0 2

2 2

1 2
1 0 1 0 1 1 2 0 1

1 2

, 0, e 0, e
k t l V k t l Vk k

u l t u t l V l u t l V l
V V

    
         

   
 = 

=       1 0 1 2 0 2

2 2

1 2
1 2 1 0 1 2

1 2

0, e e
k t l V k t l Vk k

u t l V l V l l
V V

 
    
         
     

,   (106) 

        1 0 1

2

1
2 0 2 0 2

1

, , e
k t l Vk

u l t u l t l V l
V

 
    

 
 = 

  =       1 0 1 1 0 1

2 2

1 1
2 1 2 0 1 2

1 1

, e e
k t l V k t l Vk k

u l t l V l V l l
V V

 
    
         
     

.   (107) 

Without a loss of generality, we assume that Ф2 := Id where Id is an identical 

map. Then we obtaint from the above equations that 

       1 0 1 1 0 2

2 2

2 2
1 0 1 1 0 1 2

1 2

, 0, e e
k t l V k t l Vk k

u l t u t l V l V l
V V

 
    
        
     

, (108) 

       1 0 1 2 0 1

2 2

1 1
2 0 1 2 0 1 2

1 1

, 0,
k t l V k t l Vk k

u l t u t l V l V e l e
V V

 
    
         
     

. (109) 

Since 1,2k  are negative it is easy to see that in these difference equations with 

non-autonomic perturbations, the exponential factors tend to zero as t  . 

Then it can be shown that an asymptotics of solutions can be determined as as-
ymptotics of limit difference equations 

      1 0 2

2

2
1 0 1 1 0

2

, , e
k t l Vk

u l t u l t l
V

 
     

 
,                   (110) 

    2 0 1 2 0, ,u l t u l t   ,   1 2l V l V   .                    (111) 

But we know that for an unimodal map (with one extremum), the solutions of this 
equations tend to piecewise constant periodic functions with finite or infinite 
points of discontinuities on a period. 

11. Applications to non-coherent optical solitons 

The phenomenon of appearing optical solutions is determined by the dynami-
cal balance between the concurrence of two factors: (1) detention of the optical 
beam to expand over the media provided by diffraction; (2) detention of the beam 
to restrict the media due to self-focusing [12]. Experiments (see [12]) show the 
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possibility of the existence of solitons which are spatially non-coherent and quasi-
monochromatic or non-coherent together with spatial-temporal variables. These 
experiments initiated a set of theoretical works which concern to the non-coherent 
solitons (see [12,13]). However, these works have been confined by the research 
of the last case. It means that the corresponding theory could not model non-
coherent white light for example that is studying of spatial-temporal coherent 
properties of the solitons and the evolution of the spectral density. In the present 
paper this problem is studied, and in this section a simplest clear example of such 
situation will be considered. Indeed, below we consider the light that is spatial-
temporal on (x; t). We assume that the spatial profile of the light belongs to the 

interval of frequencies  , d   ; spatial correlation length (across of a soliton) 

is always larger at low frequencies and smaller at high frequencies (see [12]). 
We begin the research from the following equation: 

   
2

2
0

1
, , 0

2

kf f f
i n I f x z

z x k nx

  




   
           

.           (112) 

Here f   is the coherent density of the optical beam at a fixed frequency, 

0k n c    where n0 is the refractive index,  is frequency, c is the velocity of light, 

 determines the angle between the direction of light (at plane (z; x)) and Oz axes. 
Spatial-temporal coherent properties of a beam may be studied in terms of 

spectral density 

       1 2 1 2 1 2, , d exp , , , ,B x x z ik x x f x z f x z


 
 



       .      (113) 

Note that equation (112) is equivalent to the related equation (113). 
We suppose that an optical medium is dispersive. If we assume that 
( ) / 0n I t    then the dispersion may be included in the consideration with the 

aid of dependence n0 = n0(). Then instead of the classical equation (112), we 
consider the Shrödinger equation in laboratory system of coordinate with an opti-
cal source confined by the one-dimensional case. 

Note that semiconductor lasers or laser diodes were considered in [2]. The laser 
is a system characterized by the inverted carrier density. The generation and re-
combination of «solitons» coexist. The released energy can be produced by ther-
mal recombination or optical photon recombination, which is used in semiconduc-
tor lasers. Note also that the electronic oscillator is an electronic circuit that pro-
duces a periodic signal. Oscillators convert direct current to an alternative current 
signal. If we use the feedback oscillator, which can increase amplitudes of signal, 
then we obtain different boundary conditions for phases and amplitudes in the ca-
nonical equations. 

For example, let us consider the region 0 x l  . 0z  , which is occupied by a 

resonator. The equations have the form 
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 
2 2

2
0

0
2

f f h f k
ih n I f

t x k nx

   
      

   
                        (114) 

where index  is omitted. 

The solutions of (114) are found as  : ,f t    where t x V   . Then it fol-

lows from (114) that 

 
2 2

2
0

0
2

h k
ih n I f

t k n

  
    

 
.                             (115) 

Let x k x . Then this equation can be written as 

 
2 2

2
0

0
2

h k
ih n I f

t n

  
    

 
.                              (116) 

The Shrödinger equation has the form 

2 2

2
0

2

h
ih

t

  
  

 
                                         (117) 

with the special initial conditions 

   0

0,0 e
iS x h

x                                            (118) 

where V, S0, 0 are smooth real functions. The Hamiltonian is 

   
2

,
2

p
H p q V q  .                                       (119) 

Asymptotic solutions of the initial problem (117), (118) have the form 

     0 ,
, e ,

iS x t h
x t x t                                         (120) 

where unknown functions ( , )S x t  and  ,x t  are smooth. Substituting (120) into 

(117), we obtain the equation: 

     21 1
0

2 2 2
t x x x t xx xx

ih
S V x S ih S S
     

                    
.     (121) 

It follows from (121) that 

   21
, 0

2
tS V x t S    ,      0,0S S                          (122) 

with the accuracy of 2( )O h  where ( , )t   satisfies the initial problem 

1
0

2
e S S        ,      0,0     .                       (123) 

The result is 
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21
0

2
tS S  .                                              (124) 

The solution of (124) has the form   1 2,S t t       that results in an algebraic 

relation 

2
1 2 0    .                                               (125) 

It follows from (125) that 

  2 2
1

,
2

S t t
 

      
 

                                      (126) 

where 2 can be devived from 

   2
0 2 0 0,0t tS x S x 


      


.                           (127) 

Thus, the phase has the form as follows: 

  1 2,
x

S x t t t
 

     
 

.                                     (128) 

Since the phase is linear, we have Sζζ = 0 and Sζ = 0, so the equation is rewritten as 

 
2

, :t t
 

     
 

.                                        (129) 

Now we consider the boundary conditions 

   10, 0,t t F t     ,      2, ,t l t F l t     ,   0t            (130) 

where F1 and F2 are fixed functions. 

Assume that the system of ODEs is integrable, that is there exists the integral 

   0, , ,W t l t      ,   R .                               (131) 

Suppose that there is an open bounded interval I R  such that for all 

 0,t ,  ,l t I   and at each fixed 0t   relation (131) is solvable so that 

   , 0,l t t                                               (132) 

where : I I   is a unimodal map of C
2
-class. Then 

 
2 2

1
, 1

l
l t t

  
      

    
,                                 (133) 

 
2

1
0, 1t t

  
     

  
.                                      (134) 
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Let 1
21     , t t  and 2L l   . Then functional quality (133) can be writ-

ten as 

   t l t     ,   l t    .                               (135) 

As a result, we obtain a difference equation [3,14]. If  is unimodal, structurally 

stable and hyperbolic then a set of fxed points of this map is finite. Then there is a 

set of initial functions ( )h t ,  ,0t L   such that the solutions of the difference 

equation can be found by step-by-step iterations of the initial function ( )h t  with 

the help of . As a result, for t  , the iterations of h(t) tend to a periodic 

piecewise constant function with finite or infinite points of discontinuities   on a 
period. If   is finite then we say about oscillations of the relaxation type. If   is 
countable then we have oscillations of the pre-turbulent type. If   is uncountable 
then we have oscillations of the turbulent type. 
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И.Б. Краснюк 

ВОЛНОВЫЕ ПАКЕТЫ ТУРБУЛЕНТНОГО ТИПА  
В НЕЛИНЕЙНЫХ ГРАНИЧНЫХ ЗАДАЧАХ КВАНТОВОЙ МЕХАНИКИ 

Рассмотрена начально-краевая задача для линейного уравнения Шредингера с нели-
нейными функциональными граничными условиями. Показано, что аттрактор задачи 
содержит периодические кусочно-постоянные функции на комплексной плоскости с 
конечным числом точек разрыва непрерывности на периоде. Предложен метод све-
дения задачи к системе интегро-дифференциальных уравнений. Рассмотрено прило-
жение к задаче об оптическом резонаторе с обратной связью. Элементы аттрактора 
могут трактоваться как белые и черные солитоны в нелинейной оптике. 

Ключевые слова: уравнение Шредингера, функциональные двухточечные гранич-
ные условия, асимптотические периодические кусочно-постоянные распределения 
релаксационного типа 

Рис. 1. Траектории гиперболических динамических систем с притягивающими и 
седловыми точками на плоскости 

Рис. 2. Ограниченные решения релаксационного типа 

 


