PACS: 71.70.-d, 75.10.Dq, 75.30.Et, 76.30.-v

В.А. Шаповалов

ЭЛЕКТРОННЫЙ ПАРАМАГНИТНЫЙ РЕЗОНАНС ТРЕХВАЛЕНТНОГО ХРОМА Cr³⁺ В МОНОКРИСТАЛЛАХ ЛИТИЙ-ГАЛЛИЕВОЙ ШПИНЕЛИ Li_{0.5}Ga_{2.5}O₄

Донецкий физико-технический институт им. А.А. Галкина

Статья поступила в редакцию 27 февраля 2018 года

Изучены структурная и магнитная неэквивалентности ионов хрома Cr^{3+} в монокристаллах литий-галлиевой шпинели $Li_{0.5}Ga_{2.5}O_4$ методом электронного парамагнитного резонанса (ЭПР). Показано распределение ионов по подрешеткам и структурно-неэквивалентным положениям в элементарной ячейке кристаллической решетки монокристалла $Li_{0.5}Ga_{2.5}O_4$.

Ключевые слова: монокристалл шпинели, комплексы с магнитными ионами, спектроскопия, низкие температуры, $3d^n$ -ионы

1. Введение

До настоящего времени в материаловедении не обращалось достаточного внимания на то, что магнитные оси иона в элементарной ячейке решетки материала ориентируются определенным образом по отношению к кристаллографическим осям комплекса с магнитным ионом. Причем магнитные оси иона могут иметь различную ориентацию по отношению к кристаллографическим осям комплекса. Элементарная ячейка решетки обладает несколькими такими возможностями, зависящими от особенностей структуры материала. Эти возможности появляются при наличии структурно-неэквивалентных положений в элементарной ячейке, в которых может расположиться магнитный ион. Свойства материалов определяются ориентацией магнитных осей ионов относительно кристаллографических осей комплекса, количеством возможных структурно-неэквивалентных положений ионов в элементарной ячейке, а также симметрией кристаллического поля в месте нахождения иона.

В настоящее время ведется активное изучение шпинелей, обусловленное их широкими научными и технологическими применениями [1–3]. В материаловедении, как правило, используются шпинели с определенными примесями, поэтому в обзоре [4] обсуждаются проблемы правильного и достоверного описания структуры химических соединений. Такие примеси располагаются в окта- и тетраэдрических узлах элементарных ячеек кристаллических решеток шпинели, которые с $3d^n$ -ионом образуют комплексы. В этих комплексах магнитный ион находится в определенном окружении.

По катионному распределению в элементарной ячейке кристаллической решетки шпинели подразделяются на нормальные и обращенные. В работах [3,5–9] исследуется структура кристаллических решеток нормальных шпинелей. Авторы [5] отмечают, что основные свойства шпинели $ZnCr_2O_4$ определяются локальной структурой и катионным распределением ионов Zn^{2+} и Cr^{3+} .

В статье [7] обсуждаются тетра- и октаэдрические координации в наночастицах нормальной шпинели ZnAl₂O₄. Катионное упорядочение ионов и искажения решетки нормальной шпинели исследованы в работе [8].

Научный интерес к соединениям со структурой шпинели растет благодаря возможностям синтеза нанокристаллических образцов [9]. Интерпретация свойств нано- и монокристаллических материалов, имеющих одинаковый состав, представлена в [10–14].

Однако в указанных работах не учитываются свойства отдельного комплекса окта- и тетраэдрических узлов с магнитным ионом в используемых композитных материалах (моно- и нанокристаллы, полимеры и др.). Такой комплекс представляет собой часть элементарной ячейки материала. В каждом комплексе металлический ион находится в лигандном окружении, которое имеет определенную кристаллографическую симметрию. Магнитные оси $3d^n$ -ионов располагаются, как правило, вдоль кристаллографических осей комплекса. В работах [10–14] не учитывается существование структурной неэквивалентности магнитных ионов, входящих в элементарную ячейку кристаллической решетки. Поэтому объективная информация об исследуемых соединениях затруднительна. До настоящего времени существует ряд проблем получения достоверных характеристик – определения местоположения иона, его ближайшего окружения, параметров электрического поля в месте расположения иона и др.

В данной работе проведены экспериментальные исследования по обнаружению и изучению спектров ЭПР ионов Cr^{3+} в монокристаллах шпинели $Li_{0.5}Ga_{2.5}O_4$ в интервале температур от гелиевых до комнатных. Цель работы – показать природу многоминимумности потенциала кристаллического поля в монокристаллах.

2. Материал и методика исследования

Для изучения комплексов окта- и тетраэдрических узлов с ионами Cr³⁺ в монокристалле шпинели Li_{0.5}Ga_{2.5}O₄ применяли один из наиболее информативных методов исследования электронной структуры соединений с точечными примесями – метод ЭПР [15]. Концентрация хрома составляла 0.1 wt%.

Трехвалентный хром имеет электронную конфигурацию $3d^3$. Так как L = 3 и S = 3/2, основным спектроскопическим состоянием является ${}^4F_{9/2}$, имеющее семикратное орбитальное вырождение (2L + 1 = 7), каждое из которых четырехкратно вырождено по спину. Кубическое поле октаэдрической симметрии снимает орбитальное вырождение, и уровень ${}^4F_{9/2}$ расщепляется на низший синглет и два лежащих выше триплета. При воздействии кристал-

лических полей с симметрией ниже кубической и спин-орбитальной связи четырехкратное спиновое вырождение снимается, и образуются два крамерсовых дублета, которые во внешнем магнитном поле расщепляются и с увеличением поля в случае аксиальной симметрии линейно расходятся.

Поскольку нижним уровнем энергии является орбитальный синглет, а расстояние до вышележащего триплетного уровня достаточно велико (~ 10^4 cm⁻¹), то предполагали, что спектр будет наблюдаться при довольно высоких температурах, а анизотропия фактора спектроскопического расщепления будет небольшой.

Спектр ЭПР ионов Cr^{3+} изучали на радиоспектрометре с частотой v = = 36 GHz при температурах 4.2–300 К. Угловую зависимость положения линий спектра ЭПР иона Cr^{3+} снимали в плоскостях {110}, {111} и др.

3. Результаты и их обсуждение

В общем случае в эксперименте наблюдали спектр, состоящий из 36 линий. Изучение угловых зависимостей позволило интерпретировать эти линии как тонкую структуру спектра ЭПР от 12 магнитно-неэквивалентных положений ионов Cr^{3+} в элементарной ячейке $Li_{0.5}Ga_{2.5}O_4$ и описать каждое из них спин-гамильтонианом ромбической симметрии:

$$H = \beta \left(g_x H_x S_x + g_y H_y S_y + g_z H_z S_z \right) + D \left(S_z^2 - \frac{5}{4} \right) + E \left(S_x^2 - S_y^2 \right),$$

где β – магнетон Бора; *g* – фактор основного мультиплета *S* = 3/2; *H* – магнитное поле, направленное вдоль кристаллографических осей *x*, *y*, *z*; *S_x*, *S_y*, *S_z* – компоненты спинового оператора; *D*, *E* – параметры начального расщепления, *D* характеризует поле осевой симметрии, *E* – ромбическую компоненту поля.

Магнитные оси *x*, *y*, *z* были выбраны вблизи направлений соответственно $\langle 110 \rangle$, $\langle 112 \rangle$, $\langle 111 \rangle$.

На рис. 1 показана угловая зависимость спектра ЭПР иона Cr^{3+} в Li_{0.5}Ga_{2.5}O₄ в плоскости {*z*-*y*} для одной позиции при *T* = 290 К. Как видно из рисунка, тонкая структура спектра ЭПР состоит из трех линий согласно спину *S* = 3/2. Две линии (высоко- и низкополевая) являются анизотропными и в случае немонокристаллических соединений не наблюдаются.

Экспериментальные исследования показали, что оси *z* трех положений центра Cr³⁺ близки к направлению (111) и симметрично отклонены от него на угол $\beta = 5 \pm 1^{\circ}$, отклонены и магнитные оси *x* и *y* от близлежащих кристаллографических осей (110), (112), что видно из рис. 2, на котором выделены одна из осей *z* и соответствующие ей оси *x* и *y*. Все три магнитные оси развернуты в плоскости {111} на угол $\alpha = 4 \pm 1^{\circ}$. Ось *y* отклонена от плоскости {111} на угол $\beta = 5 \pm 1^{\circ}$.

Полученные результаты являются неожиданными, поскольку структура типа «шпинель» рассматривается как кубическая плотная упаковка ионов кис-

лорода (r = 1.32 Å) с металлическими ионами, имеющими радиусы 0.4–1.0 Å и координирующимися в тетра- и октаэдрические положения. Ионы Cr³⁺ в шпинели Li_{0.5}Ga_{2.5}O₄ занимают октаэдрические узлы, в которых они замещают ионы Ga³⁺. В элементарной ячейке шпинели ожидалось 4 магнитнонеэквивалентных положения ионов Cr³⁺ соответственно 4 структурно-неэквивалентным положениям.

Рис. 1. Угловая зависимость спектра ЭПР иона Cr^{3+} в Li_{0.5}Ga_{2.5}O₄ в плоскости {*z*-*y*} для одной позиции при *T* = 290 K, v = 36200 MHz

Рис. 2. Расположение магнитных осей x, y, z иона Cr^{3+} относительно кристаллографических осей типа [110], [112], [111]

Рассмотрим подробнее ближайшее окружение иона Cr^{3+} в окта- и тетраэдрических узлах. В случае расположения иона в октаэдрическом узле его ближайшее окружение состоит из кислородного октаэдра, создающего поле кубической симметрии и имеющего 4 оси типа [111]. Катионное окружение кислорода является неравноценным и состоит из ионов Ga³⁺ и Li⁺. Это приводит к наличию 12 магнитно-неэквивалетных позиций ионов.

На рис. 3 приведено ближайшее окружение иона Cr^{3+} , находящегося в тетраэдрическом узле шпинели $Li_{0.5}Ga_{2.5}O_4$. Оно состоит из кислородного тет-

Рис. 3. Первое и второе окружения иона Cr^{3+} , находящегося в тетраэдрическом узле шпинели $Li_{0.5}Ga_{2.5}O_4$: \bigcirc – ионы O, \bigcirc – ионы Ga^{3+} , • – ионы Li^+ . Аксиальное искажение расположено вдоль обозначенного направления $\langle 111 \rangle$ (масштаб кубов второго окружения уменьшен)

раэдра, создающего поле кубической симметрии, в которое вносятся аксиальные искажения за счет неравноценного катионного окружения, состоящего из 9 ионов Ga^{3+} и 3 ионов Li^+ . Аксиальные искажения направлены вдоль оси (111), вокруг которой расположены только 3 иона Ga^{3+} , в остальных направлениях типа [111] расположено по 2 иона Ga^{3+} и 1 иону Li^+ .

Полученные результаты экспериментов обработаны с помощью спингамильтониана ромбической симметрии и представлены в таблице.

Таблица

Константы	Т, К			
	4.2	77	290	
g_z	1.9831 ± 0.0005	1.9795 ± 0.0005	1.9796 ± 0.0005	
$g_x \approx g_y$	1.9814 ± 0.0005	1.9809 ± 0.0005	1.9803 ± 0.0005	
D, GHz	9.751 ± 0.005	9.757 ± 0.005	9.881 ± 0.005	
E, GHz	0.447 ± 0.005	0.455 ± 0.005	0.515 ± 0.005	
E/D	0.0458	0.0466	0.0521	

Константы	спин-гамильтониана	ромбической	симметт	ЭИИ
1toner an i bi	chini i wannend i onnana	positon reciton	chine i p	,

Знак константы D был определен из сравнения интенсивностей первой и третьей линий тонкой структуры для $H_0 \mid \mid z$ при комнатной (T = 290 K) и гелиевой (T = 4.2 K) температурах. При T = 290 K интенсивности линий одинаковы. При T = 4.2 K интенсивность третьей линии вдвое больше интенсивности первой линии, что свидетельствует о положительном знаке константы D.

3. Заключение

Обнаружено, что при введении примеси хрома в матрицу $Li_{0.5}Ga_{2.5}O_4$ ионы Cr^{3+} занимают октаэдрические узлы. Это легко наблюдается при комнатной температуре. Установлено, что в октаэдрических узлах ионы Cr^{3+} замещают ионы Ga^{3+} по следующим причинам:

1) ионные радиусы Cr³⁺ (0.615 Å) и Ga³⁺ (0.620 Å) близки по величине;

2) при указанном замещении не требуется зарядовая компенсация;

3) симметрия электрического кристаллического поля, в котором находятся ионы Li⁺, является аксиальной, а для Ga³⁺ – ромбической.

По вышеизложенным соображениям можно считать, что при замещении ионов Ga³⁺ ионами Cr³⁺ не должно происходить заметного искажения решетки и параметры кристаллического поля, в котором находится ион Cr³⁺, довольно близки к параметрам истинного кристаллического поля в октаэдрическом узле Ga³⁺ в монокристаллах упорядоченной шпинели Li_{0.5}Ga_{2.5}O₄.

- 1. L. Maigny, M. Dupont, Spinels: Occurrences, Physical Properties and Applications, Nova Science Publishers, Inc, New York (2013).
- 2. I. Ganesh, Int. Mater. Rev. 58, 63 (2013).
- 3. Y. Zou, S. Gréaux, T. Irifune, B. Li, Y. Higo, J. Phys. Chem. C117, 24518 (2013).
- 4. M. Li, D. Li, M. O'Keeffe, O.M. Yaghi, Chem. Rev. 114, 1343 (2014).
- 5. Shuangming Chen, Yanfei Wu, Peixin Cui, Wangsheng Chu, Xing Chen, Ziyu Wu, J. Phys. Chem. C117, 25019 (2013).
- 6. A. Le Nestour, M. Gaudon, G. Villeneuve, M. Daturi, R. Andriessen, A. Demourgues, Inorg. Chem. 46, 4067 (2007).
- 7. D. Xiulan, Y. Duorong, Yu. Fapeng, Inorg. Chem. 50, 5460 (2011).
- 8. E.-S. Lee, K.-W. Nam, E. Hu, A. Manthiram, Chem. Mater. 24, 3610 (2012).
- 9. K.E. Sickafus, J.M. Wills, J. Am. Ceram. Soc. 82, 3279 (1999).
- 10. A.M. Malyarevich, K.V. Yumashev, J. Appl. Spectr. 76, 1 (2009).
- 11. A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier, Amsterdam (1984).
- 12. C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chem. Rev. 105, 1025 (2005).
- 13. D.V. Talapin, J.S. Lee, M.V. Kovalenko, E.V. Shevchenko, Chem. Rev. 110, 389 (2010).
- 14. F. Träger, Appl. Phys. B73, 291 (2001).
- 15. A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Clarendon press, Oxford, UK (1970).

V.A. Shapovalov

ELECTRON PARAMAGNETIC RESONANCE OF THE TRIVALENT Cr³⁺ ION IN SINGLE CRYSTALS OF LITHIUM-GALLIUM SPINEL Li_{0.5}Ga_{2.5}O₄

Structural and magnetic inequivalency of the Cr^{3+} ions in single crystals of lithiumgallium spinel Li_{0.5}Ga_{2.5}O₄ are studied by electron paramagnetic resonance (EPR). Ion distribution over the sublattices and structurally inequivalent sites of a unit cell of singlecrystal Li_{0.5}Ga_{2.5}O₄ is demonstrated.

Keywords: single-crystal spinel, complexes with magnetic ions, spectroscopy, low temperatures, $3d^n$ -ions

Fig. 1. Angular dependence of the EPR spectrum of the Cr^{3+} ion in $Li_{0.5}Ga_{2.5}O_4$ at $\{z-y\}$ plane for one position at T = 290 K, v = 36200 MGz

Fig. 2. Location of magnetic axes x, y, z of the Cr^{3+} ion with respect to crystallographic axes of [110], [112], [111] type

Fig. 3. The first and second neighborhood of the Cr^{3+} located at a tetrahedral site of the $Li_{0.5}Ga_{2.5}O_4$ spinel: \bigcirc – ions of O, \bigcirc – ions of Ga^{3+} , \bullet – ions of Li^+ . Axial distortion is positioned along the marked direction $\langle 111 \rangle$ (the scale of the cubes of the second neighborhood is reduced)