PACS: 71.70.-d, 75.10.Dq, 75.30.Et, 76.30.-v

А.А. Прохоров 1 , Л.Ф. Черныш 2 , А.Д. Прохоров 2

ОСНОВНОЕ СОСТОЯНИЕ ПРИМЕСНЫХ ИОНОВ Cr^{3+} В КРИСТАЛЛАХ АЛЮМОБОРАТОВ YAl $_3$ (BO $_3$) $_4$, EuAl $_3$ (BO $_3$) $_4$, TmAl $_3$ (BO $_3$) $_4$

Статья поступила в редакцию 12 июля 2017 года

При изучении спектров электронного парамагнитного резонанса (ЭПР) ионов Cr^{3+} получены новые данные о состоянии примесных ионов Cr^{3+} в монокристаллах $YAl_3(BO_3)_4$, $EuAl_3(BO_3)_4$, $TmAl_3(BO_3)_4$. Определены параметры спинового гамильтониана, описывающего угловую зависимость спектра для трех кристаллов. Показано, что ионы Cr^{3+} замещают трехвалентные ионы алюминия, образуя систему из трех магнитно-неэквивалентных спектров, развернутых друг относительно друга на 120° . Угол, на который ось Z спектра отклонена от оси C_3 , в кристалле $TmAl_3(BO_3)_4$ равен 2.5° , в $YAl_3(BO_3)_4 - 2^\circ$, а в $EuAl_3(BO_3)_4 - 0.7^\circ$. Выявлены существенные изменения параметров g и D от температуры, а также значительное уширение линий ЭПР в кристаллах $EuAl_3(BO_3)_4$ и $TmAl_3(BO_3)_4$. Обнаруженные эффекты вызваны взаимодействием основного состояния иона Cr^{3+} с возбужденными состояниями ионов Eu^{3+} и Tm^{3+} .

Ключевые слова: ЭПР-спектр, редкая земля, алюмоборат, спиновый гамильтониан, ванфлековский парамагнетик

Введение

Бораты с общей формулой $RM_3(BO_3)_4$ (где R – редкоземельные ионы или иттрий, а M – Al, Fe, Ga, Cr) обладают хорошими люминесцентными и нелинейными оптическими свойствами, сочетающимися с высокой термической, химической и механической устойчивостью, что позволяет рассматривать их как перспективные среды для твердотельных лазеров. Благодаря способности кристаллов вмещать большую концентрацию примесных ионов их можно использовать при создании компактных лазеров для применения в приборах современной оптоэлектроники [1–4].

Возможность вводить в кристаллы как редкоземельные ионы, так и ионы группы железа делает их привлекательными с точки зрения магнетизма, поскольку взаимодействие двух магнитных подсистем приводит к появлению ряда особенностей [5–8]. Несмотря на значительное число работ, посвящен-

¹Institute of Physics AS CR, Prague, Czech Republic

²Донецкий физико-технический институт им. А.А. Галкина

ных исследованиям кристаллов данного семейства, весьма мало сведений о спектрах ЭПР, а следовательно, об основном состоянии примесных парамагнитных ионов. Известны работы по изучению некоторых ионов группы железа [9–13], а также ионов редких земель [14–17].

Особый интерес представляют исследования примесных ионов в ванфлековских парамагнетиках, у которых основным уровнем является синглет. Взаимодействие парамагнитной примеси с ионами хозяйской решетки проявляется в статических и динамических характеристиках спектра.

Цель настоящей работы — изучение спектра ЭПР иона Cr^{3+} , внедренного в качестве примеси в кристаллы $YAl_3(BO_3)_4$, $EuAl_3(BO_3)_4$ и $TmAl_3(BO_3)_4$, в широком интервале температур. Исследуемые кристаллы представляют собой изоморфный ряд с несколько отличающимися параметрами решетки, причем кристаллы, имеющие в своей основе ионы Eu и Tm, относятся к ванфлековским парамагнетикам.

Образцы и детали эксперимента

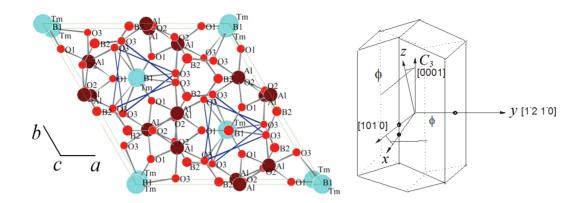

Кристаллы семейства боратов $RM_3(BO_3)_4$ (где R – редкоземельный металл или иттрий, M – трехвалентные ионы Al, Ga, Fe, Sc, Cr) кристаллизуются в структуре хантита $CaMg_3(BO_3)_4$ с пространственной группой R32. Параметры тригональной ячейки исследуемых кристаллов приведены в табл. 1.

Таблица 1 Параметры тригональной ячейки исследуемых кристаллов

Кристалл	a, b	С	Источник
EuAl ₃ (BO ₃) ₄	9.312(1)	7.274(1)	[15]
TmAl ₃ (BO ₃) ₄	9.271(1)	7.213(1)	[15]
YAl ₃ (BO ₃) ₄	9.295(1)	7.243(1)	[18]

В элементарной ячейке $RAl_3(BO_3)_4$ содержится Z=3 формульные единицы. Координационными полиэдрами R^{3+} , Al^{3+} и B^{3+} являются соответственно тригональные призмы, октаэдры и треугольники, образованные ионами кислорода. Кристаллическая структура алюмобората $TmAl_3(BO_3)_4$ показана на рис. 1. Габитус кристаллов $ReAl_3(BO_3)_4$ в виде вытянутой шестигранной призмы представлен на рис. 2.

Кристаллы $RAl_3(BO_3)_4$ с примесью 0.2% Cr^{3+} получали в результате спонтанной кристаллизации из раствора-расплава [18]. В качестве растворителя использовали молибдат калия $K_2Mo_3O_{10}$. Рост осуществляли в платиновых тиглях путем охлаждения раствора от 1150 до 900°C со скоростью 2 deg/h. Исследования проводили на хорошо ограненных кристаллах с размерами 2–3 mm. Спектр ЭПР иона Cr^{3+} измеряли на спектрометрах 3-сантиметрового и 8-миллиметрового диапазонов в интервале температур 4–300 K.

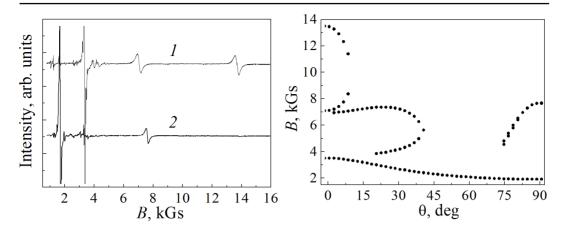

Рис. 1. Кристаллическая структура алюмобората TmAl₃(BO₃)₄. Ион Tm³⁺ находится в середине призмы, образованной шестью ионами кислорода ОЗ (обозначены треугольниками). Ион Al находится в искаженном октаэдре, в вершинах которого расположены ионы кислорода О1, О2 и О3

Рис. 2. Габитус кристаллов $ReAl_3(BO_3)_4$ в виде вытянутой шестигранной призмы. Показаны кристаллографические направления и расположение осей спектра ЭПР иона Cr^{3+}

Экспериментальные параметры спектра

Ион трехвалентного хрома Cr^{3+} имеет электронную конфигурацию $3d^3$. Основной терм 4 F (L=3, S=3/2) расщепляется в кристаллическом поле таким образом, что самым нижним по энергии является орбитальный синглет Γ_2 , состоящий из двух крамерсовых дублетов, которые также расщеплены в кристаллических полях с симметрией ниже кубической. В спектре ЭПР наблюдаются переходы между уровнями данного квартета с правилами отбора $\Delta m_S = \pm 1$. Спектр ЭПР иона Cr^{3+} в кристалле $\operatorname{EuAl}_3(\operatorname{BO}_3)_4$, наблюдаемый на частоте 9.3 GHz при температуре 10 K, представлен на рис. 3 в ориентациях B||Z и B||X. Узкая интенсивная линия принадлежит переходу (+1/2) \leftrightarrow (-1/2), широкие линии в более высоких полях — соответственно переходам (+3/2) \leftrightarrow (-1/2) и (-1/2) \leftrightarrow (+3/2). Аналогичная картина наблюдается в двух других кристаллах $\operatorname{YAl}_3(\operatorname{BO}_3)_4$ и $\operatorname{TmAl}_3(\operatorname{BO}_3)_4$. Очевидно, что энергия кванта меньше энергии начального расщепления двух дублетов. Угловая зависимость спектральных линий в плоскости ZX в кристалле $\operatorname{EuAl}_3(\operatorname{BO}_3)_4$ показана на рис. 4.

Угловая зависимость междублетного перехода в плоскости, перпендикулярной оси C_3 (рис. 5,a), убедительно доказывает, что в кристалле наблюдаются три магнитно-неэквивалентных спектра, развернутых на 120° , с одинаковыми параметрами. Угловая зависимость вблизи оси C_3 в кристалле $TmAl_3(BO_3)_4$ показана на рис. 5, δ . Экспериментальные данные свидетельствуют, что в кристаллах $YAl_3(BO_3)_4$, $EuAl_3(BO_3)_4$ и $TmAl_3(BO_3)_4$ ион Cr^{3+} замещает ион Al^{3+} .

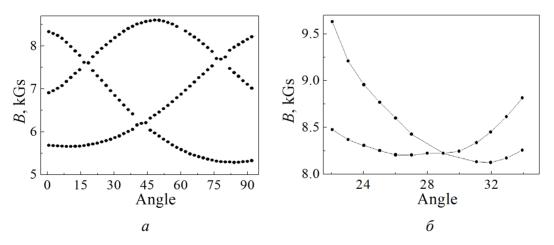

Рис. 3. Спектры ЭПР иона Cr^{3+} в $\operatorname{EuAl}_3(\operatorname{BO}_3)_4$ на частоте 9.3 GHz в ориентациях $B\|Z$ (кривая I) и $B\|X$ (кривая 2)

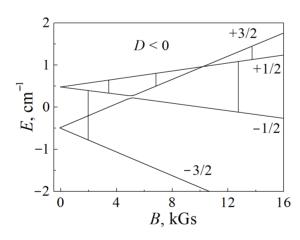
Рис. 4. Угловая зависимость линий ЭПР в плоскости ZX в кристалле $EuAl_3(BO_3)_4$

Для описания спектра ЭПР был использован спиновый гамильтониан, соответствующий ромбической симметрии [19]:

$$H = \beta \mathbf{B} g \hat{\mathbf{S}} + D \left(\hat{S}_Z^2 - 5/4 \right) + E \left(\hat{S}_X^2 - \hat{S}_Y^2 \right), \tag{1}$$

где β — магнетон Бора; **B** — вектор магнитной индукции; $\hat{\mathbf{S}}$ — оператор электронного спина; \hat{S}_X , \hat{S}_Y , \hat{S}_Z — спиновые операторы; g, D, E — определяемые параметры.

Рис. 5. Угловые зависимости междублетного перехода $(+1/2) \leftrightarrow (+3/2)$ в плоскости, перпендикулярной оси C_3 (a), и вблизи оси C_3 (δ) в кристалле TmAl₃(BO₃)₄


Полученные параметры спинового гамильтониана, измеренные при температуре 15 K, представлены в табл. 2. Параметр g практически изотропный, а начальное расщепление спектра определяет параметр D. Параметр E, определяющий ромбичность, в кристалле $TmAl_3(BO_3)_4$ больше, чем в изо-

морфных кристаллах $YAl_3(BO_3)_4$ и $EuAl_3(BO_3)_4$. Угол, на который ось Z спектра отклонена от оси C_3 , для кристалла $TmAl_3(BO_3)_4$ равен 2.5°, для $YAl_3(BO_3)_4 - 2$ °, а для $EuAl_3(BO_3)_4 - 0.7$ °.

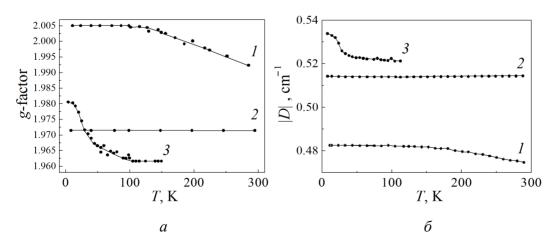
Таблица 2 Параметры спинового гамильтониана (1)

Кристалл	<i>g</i> -фактор	D, cm ⁻¹	E, cm^{-1}	Источник	
YAl ₃ (BO ₃) ₄	1.978 ± 0.005	0.52 ± 0.02	0.01 ± 0.005	[9]	
	1.980 ± 0.002	0.518 ± 0.01	0.012 ± 0.001	[10]	
	1.971 ± 0.005	-0.523 ± 0.02	-0.012 ± 0.005	[11]	
EuAl ₃ (BO ₃) ₄	2.0054 ± 0.0005	-0.487 ± 0.002	$+0.002 \pm 0.001$		
TmAl ₃ (BO ₃) ₄	1.975 ± 0.002	-0.529 ± 0.001	0.027 ± 0.005	[12]	

Измерения спектра были проведены также на частоте 37 GHz. На данной частоте выполняется условие сильного поля, т.е. измерительный квант больше начального расщепления, и поэтому должны наблюдаться переходы $(+3/2) \leftrightarrow (+1/2)$ и $(-3/2) \leftrightarrow (-1/2)$. Низкополевой переход наблюдается в поле 2.8 kGs, высокополевой должен располагаться в поле 23 kGs, и, естественно, он не фиксируется (максимальное магнитное поле, достигаемое на применяемом в установке электромагните, 17 kGs). Схема энергетических уровней иона Cr^{3+} в $\operatorname{EuAl}_3(\operatorname{BO}_3)_4$ и наблюдаемые переходы в $\operatorname{Z-}$ ориентации (B||Z) показаны на рис. 6.

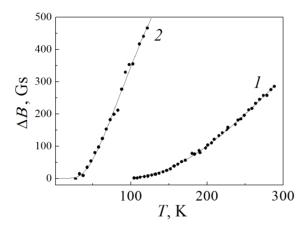
Рис. 6. Схема уровней энергии Cr^{3+} в $\operatorname{EuAl}_3(\operatorname{BO}_3)_4$ от магнитного поля (B||Z). Показаны переходы, наблюдаемые на частотах 9.3 и 37 GHz

Для определения знака параметра D спектр был измерен при температурах жидкого гелия и жидкого азота. Изменение относительной интенсивности различных переходов позволило сделать вывод, что в трех исследованных кристаллах D < 0. Таким образом, нижним по энергии оказывается дублет $\pm 3/2$, а дублет $\pm 1/2$ в кристалле $TmAl_3(BO_3)_4$ расположен выше на $1.058~cm^{-1}$, в $EuAl_3(BO_3)_4$ — на $0.974~cm^{-1}$, в $YAl_3(BO_3)_4$ — на $1.046~cm^{-1}$.


Ширины линий поглощения, относящихся к переходам между уровнями энергии с различными квантовыми числами, сильно отличаются. При T=

=15 К ширина перехода ($\pm 1/2$) составляет 23 Gs, а междублетного перехода -250 Gs. Ширина линии поглощения определяется несколькими факторами: спин-спиновым взаимодействием между ионами хрома, неоднородностью кристаллического поля, электронно-ядерным взаимодействием ионов Cr^{3+} с ядерными моментами окружающих их соседей. Последний фактор является одной из причин уширения центрального перехода (+1/2) \leftrightarrow (-1/2). В ближайшем окружении иона Cr^{3+} находятся ядра бора (ядерный спин 3/2 и магнитный момент 2.688 ядерных магнетонов Бора, относительная распространенность 80.39%), алюминия (соответственно 5/2, 3.64, 100%), а также тулия (соответственно 1/2, 0.229, 100%). Причиной уширения междублетного перехода является неоднородность кристаллического поля в месте расположения парамагнитного иона.

Температурные изменения спектра


Измерения спектров, проведенные в широком интервале температур, позволили выявить ряд особенностей спектра ЭПР и пронаблюдать отличия в поведении спектров иона Cr^{3+} в кристаллах $\operatorname{TmAl}_3(\mathrm{BO}_3)_4$, $\operatorname{YAl}_3(\mathrm{BO}_3)_4$ и $\operatorname{EuAl}_3(\mathrm{BO}_3)_4$.

На рис. 7,a показано изменение g-фактора в исследованных кристаллах. Если в $YAl_3(BO_3)_4$ он остается неизменным и равен 1.971, то в $EuAl_3(BO_3)_4$ существенно уменьшается от величины 2.0054 при 4 K до 1.9924 при комнатной температуре. В кристалле $TmAl_3(BO_3)_4$ g-фактор довольно резко понижается в температурной области до 50 K, а затем плавно уменьшается. При температуре выше 150 K линии ЭПР не наблюдаются из-за сильного уширения. В $TmAl_3(BO_3)_4$ в интервале от 4 до 150 K g-фактор уменьшается на величину 0.019, что на порядок больше, чем в $EuAl_3(BO_3)_4$ в том же температурном интервале.

Рис. 7. Температурные зависимости g-фактора (a) и параметра D (δ) иона Cr^{3+} в кристаллах $\operatorname{EuAl}_3(\operatorname{BO}_3)_4$ (кривая I), $\operatorname{YAl}_3(\operatorname{BO}_3)_4$ (кривая I) и $\operatorname{TmAl}_3(\operatorname{BO}_3)_4$ (кривая I)

Параметр D отрицательный во всех кристаллах. При температурах выше 200 K величина D в кристалле $YAl_3(BO_3)_4$ незначительно возрастает: $D=(-0.523-0.025\cdot 10^{-4}T/\mathrm{K})~\mathrm{cm}^{-1}$, а в $EuAl_3(BO_3)_4$ — убывает с гораздо большей скоростью: $D=(-0.487+0.31\cdot 10^{-4}T/\mathrm{K})~\mathrm{cm}^{-1}$. В кристалле $TmAl_3(BO_3)_4$ параметр D при нагревании до $\sim 50~\mathrm{K}$ быстро уменьшается, а дальнейший нагрев приводит к более медленному понижению. На рис. 7, δ показаны изменения параметра D в исследуемых кристаллах.

Рис. 8. Зависимость спин-фононного вклада в ширину линии ЭПР иона Cr^{3+} в кристаллах $\operatorname{EuAl}_3(\operatorname{BO}_3)_4$ (кривая I) и $\operatorname{TmAl}_3(\operatorname{BO}_3)_4$ (кривая 2)

Ширина линии поглощения в кристалле $YAl_3(BO_3)_4$ во всем температурном интервале остается неизменной, а в кристаллах $EuAl_3(BO_3)_4$ и $TmAl_3(BO_3)_4$ существенно увеличивается. На рис. 8 показана зависимость спин-фонового вклада в ширину линии ЭПР иона Cr^{3+} в этих двух кристаллах, обусловленная изменением температуры: $\Delta B = B(T) - B(4 \text{ K})$.

Обсуждение результатов

Величина и знак параметра D при низкой температуре определяются в основном расположением ближайших лигандов (в нашем случае это ионы кислорода). Температурные изменения параметра D в кристалле $YAl_3(BO_3)_4$ связаны с тремя вкладами — теплового расширения, акустических и оптических фононов. Детальный анализ всех вкладов был проведен в работе [20] для примеси Cr^{3+} в кристалле Al_2O_3 , где было показано, что вклад акустических колебаний преобладает и определяет знак dD/dT. По всей видимости, аналогичная ситуация наблюдается и в $YAl_3(BO_3)_4$. Только величина dD/dT в кристалле Al_2O_3 гораздо больше $(-0.13\cdot10^{-4}\text{ cm}^{-1}/\text{K})$, чем в $YAl_3(BO_3)_4$ ($-0.025\cdot10^{-4}\text{ cm}^{-1}/\text{K}$). Такие же механизмы, влияющие на параметр D, действуют и в кристаллах $TmAl_3(BO_3)_4$ и $EuAl_3(BO_3)_4$, но при этом происходят изменения, незначительные по сравнению с теми изменениями, которые наблюдаются в эксперименте. Очевидно, что причина таких существенных отличий заключается во взаимодействии иона Cr^{3+} с матрицей ванфлековского парамагнетика, основу которого составляют ион трехвалентного европия

или ионы трехвалентного тулия. Подобная картина наблюдалась в тулиевом гранате с примесью трехвалентного хрома [21].

Следует обратить внимание на значительное отличие температурных зависимостей параметров спинового гамильтониана д и D, описывающих спектр ЭПР иона Cr^{3+} в кристалле $TmAl_3(BO_3)_4$, от аналогичных зависимостей в кристаллах YAl₃(BO₃)₄ и EuAl₃(BO₃)₄. Можно предположить, что обе зависимости с перегибом в районе 24 К связаны с перестройкой ближайшего окружения иона хрома. Данное предположение нуждается в независимом подтверждении. Основным состоянием Eu^{3+} является ${}^{7}F_{0}$, ближайшее возбужденное состояние 7 F₁ расположено на 350 cm $^{-1}$ выше основного и представляет триплет, который в тригональном кристаллическом поле расщеплен на дублет и синглет. При низких температурах, когда заселенность возбужденных состояний мала, в результате взаимодействия магнитного момента примесного иона с наведенным моментом ванфлековского иона возникает сдвиг параметров д и D, не зависящий от температуры [22]. Когда температура достаточно высока, заселенность возбужденных состояний возрастает, и они вносят свой вклад в сдвиг д-фактора и параметра D, что и наблюдается в эксперименте, представленном на рис. 7.

В предыдущем подразделе говорилось о статических причинах уширения линии ЭПР, но кроме них при повышении температуры проявляется уширение за счет увеличения скорости спин-решеточной релаксации. Как показано в работе [23], уширение линий связано со специфическими механизмами релаксации в ванфлековских парамагнетиках (флуктуационном и валлеровском). Температурная зависимость ширины линии в ванфлековских кристаллах EuAl₃(BO₃)₄ и TmAl₃(BO₃)₄ определяется величинами дипольного и обменного полей, возникающих от магнитного момента иона европия или тулия, и может быть выражена следующим соотношением [24,25]:

$$\Delta B = \Delta B_0 + \left(\sum_n a_n \exp\left(-\Delta_n / kT \right) \right) / Z,$$

где ΔB_0 — независимая от температуры часть линии, измеряемая при низкой температуре; индекс n обозначает номер возбужденного уровня ванфлековского иона; Z — статистическая сумма $\Sigma_n \left(1 + \exp\left(-\Delta_n / kT\right)\right)$.

Согласно данным оптической спектроскопии [26] мультиплет 3 Н₆ в кристаллическом поле алюмобората ${\rm YAl_3(BO_3)_4}$ расщепляется на 9 уровней (5 сиглетов и 4 дублета), из которых экспериментально определены шесть: 0, $\Delta_1 = 29$, $\Delta_2 = 105$, $\Delta_3 = 177$, $\Delta_4 = 219$, $\Delta_5 = 325$ cm $^{-1}$. Используя эти значения для подгонки экспериментальной зависимости, изображенной на рис. 8, получим величины подгоночных параметров a_n : $a_1 = 26.4$, $a_2 = 1358$, $a_3 = 5549$. Остальные возбужденные состояния значимо не улучшают результаты подгонки и могут не учитываться. Наибольший вклад дают состояния с энергией 105 и 177 cm $^{-1}$. По данным оптической спектроскопии изоморфно-

го кристалла $EuFe_3(BO_3)_4$ [27] ближайшие возбужденные состояния имеют значения 328 и 445 cm⁻¹.

Анализ вкладов в ширину линии, аналогичный вышеприведенному, показал, что основной вклад в уширение линии дает уровень 445 cm $^{-1}$. На рис. 8 для сравнения показаны температурные зависимости спин-фононного вклада в ширину линии ЭПР иона Cr^{3+} в кристаллах $\mathrm{TmAl}_3(\mathrm{BO}_3)_4$ и $\mathrm{EuAl}_3(\mathrm{BO}_3)_4$. Оба кристалла содержат ионы с синглетным основным состоянием. Существенная разница объясняется расположением возбужденных состояний ионов Tm^{3+} и Eu^{3+} . В трехвалентном ионе европия первый возбужденный уровень находится значительно выше, чем у иона тулия.

Заключение

Проведенные исследования ЭПР-спектра примесного иона Cr^{3+} в кристаллах $\operatorname{YAl}_3(\operatorname{BO}_3)_4$, $\operatorname{EuAl}_3(\operatorname{BO}_3)_4$ и $\operatorname{TmAl}_3(\operatorname{BO}_3)_4$ показали, что ион трехвалентного хрома находится в позиции Al^{3+} в октаэдре с ромбическими искажениями. Наблюдаются спектры от трех магнитно-эквивалентных ионов, развернутых относительно друг друга на 120° . Отклонение оси Z спектра от кристаллографической оси C_3 составляет в кристалле $\operatorname{TmAl}_3(\operatorname{BO}_3)_4 2.5^\circ$, в $\operatorname{YAl}_3(\operatorname{BO}_3)_4 - 2^\circ$, в $\operatorname{EuAl}_3(\operatorname{BO}_3)_4 - 0.7^\circ$.

Определены параметры спинового гамильтониана, описывающего спектр при $T=15~\rm K$. Значительные температурные изменения параметров спинового гамильтониана, а также зависимость ширины линии от температуры в кристаллах $\rm EuAl_3(BO_3)_4$ и $\rm TmAl_3(BO_3)_4$ вызваны взаимодействием основного состояния ионов $\rm Cr^{3+}$ с возбужденными состояниями ионов $\rm Eu^{3+}$ и $\rm Tm^{3+}$.

- 1. J. Liu, Y. Wan, X. Tian, Z. Zhou, W. Han, J. Li, H. Zhang, J. Wang, Appl. Phys. **B111**, 233 (2013).
- 2. W. Liang, X.H. Zhang, J. Xia, G.Y. Jin, L.J. Xu, G.C. Sun, Z.M. Zhao, Laser Physics 21, 861 (2011).
- 3. *P.A. Burns, J.M. Dawes, P. Dekker, J.A. Piper, J. Li, and J.Y. Wang*, Opt. Commun. **207**, 315 (2002).
- 4. A. Brenier, C.Y. Tu, Z.J. Zhu, J.F. Li, Y. Wang, Z.Y. You, B.C. Wu, Appl. Phys. Lett. **84**, 16 (2004).
- 5. A.D. Balaev, L.N. Bezmaternykh, I.A. Gudim, V.L. Temerov, S.G. Ovchinnikov, S.A. Kharlamova, JMMM **258–259**, 532 (2003).
- 6. M.N. Popova, T.N. Stanislavchuk, B.Z. Malkin, L.N. Bezmaternykh, J. Phys.: Condens. Matter 24, 196002 (2012).
- 7. E.A. Popova, N. Tristan, A.N. Vasiliev, V.L. Temerov, L.N. Bezmaternykh, N. Leps, B. Büchner, R. Klingeler, Eur. Phys. J. **B62**, 123 (2008).
- 8. M. Kobets, K. Dergachev, A. Kovalev, S. Gnatchenko, E. Khatsko, Low Temp. Phys. 40, 151 (2014).
- 9. *В.А. Ацаркин, В.Б. Кравченко, И.Г. Матвеева*, ФТТ **9**, 3353 (1967).
- 10. *J.P.R. Wells, M. Yamaga, T.P.J. Han, M. Honda*, J. Phys.: Condens. Matter **15**, 539 (2003).

- 11. A.D. Prokhorov, E.E. Zubov, A.A. Prokhorov, L.F. Chernush, R. Minyakaev, V.P. Dyakonov, H. Szymczak, Phys. Status Solidi **B250**, 1331 (2013).
- 12. A.A. Prokhorov, J. Mater. Sci. 51, 4762 (2016).
- 13. A.M. Vorotynov, G.A. Petrakovskii, Ya.G. Shiyan, L.N. Bezmaternykh, V.E. Temerov, A.F. Bovina, P. Aleshkevych, Phys. Solid State 49, 463 (2007).
- 14. A. Watterich, P. Aleshkevych, M.T. Borowiec, T. Zayarnyuk, H. Szymczak, E. Beregi, L. Kovacs, J. Phys.: Condens. Matter 15, 3323 (2003).
- 15. A.D. Prokhorov, A.A. Prokhorov, L.F. Chernush, R. Minyakaev, V.P. Dyakonov, H. Szymczak, Phys. Status Solidi **B251**, 201 (2014).
- 16. A.D. Prokhorov, A.A. Prokhorov, L.F. Chernysh, P. Aleshkevich, V. Dyakonov, H. Szymczak, JMMM **326**, 162 (2013).
- 17. A.D. Prokhorov, A.A. Prokhorov, E.E. Zubov, L.F. Chernysh, V. Dyakonov, H. Szymczak, Low Temp. Phys. 40, 730 (2014).
- 18. *N.I. Leonyuk*, *L.I. Leonyuk*, Progress in Crystal Growth and Characterization of Materials **31**, 179 (1995).
- 19. С.А. Альтшулер, Б.М. Козырев, ЭПР соединений элементов промежуточных групп, Наука, Москва (1972).
- 20. W.C. Zheng, S.Y. Wu, Phys. Rev. **B54**, 1117 (1996).
- 21. J.A. Hodges, Physica B + C **86–88**, 1143 (1977).
- 22. F. Mehran, K.W.H. Stevens, Physics Reports 85, 123 (1982).
- 23. L.K. Aminov, Yu.Yu. Kostetskii, Phys. Status Solidi **B158**, 595 (1990).
- 24. K. Sugawara, C.Y. Huang, J. Phys. Soc. Jpn. 41, 1534 (1976).
- 25. S.I. Andronenko, R.R. Andronenko, S.K. Misra, Physica B407, 1203 (2012).
- 26. I. Kebaili, M. Dammak, E. Cavalli, M. Bettinelli, Journal of Luminescence 131, 2010 (2011).
- 27. M.N. Popova, JMMM 321, 716 (2009).

A.A. Prokhorov, L.F. Chernysh, A.D. Prokhorov

GROUND STATE OF THE IMPURITY IONS Cr³⁺ IN THE CRYSTALS OF ALUMINUM BORATES YAl₃(BO₃)₄, EuAl₃(BO₃)₄, TmAl₃(BO₃)₄

When studying the EPR spectra of the Cr³⁺ ions, new data about the state of the Cr³⁺ impurity ions in single-crystal YAl₃(BO₃)₄, EuAl₃(BO₃)₄, TmAl₃(BO₃)₄ have been obtained. The parameters of spin Hamiltonian representing the angular dependence of the spectra have been established for the three crystals. It was shown that the Cr³⁺ ions substitute trivalent aluminum ions and form a system of three magnetically non-equivalent spectra rotated through 120° relative to each other. The deviation of the *Z*-axis from the *C*₃ axis for Cr³⁺ ions was found to be 2.5° (TmAl₃(BO₃)₄, 2° (YAl₃(BO₃)₄), 0.7° (EuAl₃(BO₃)₄). A significant temperature dependence of g and *D* parameters has been found. Besides, a strong broadening of the EPR lines in the EuAl₃(BO₃)₄ and TmAl₃(BO₃)₄ crystals has been registered. The reported effects are determined by the interaction of the ground state of the Cr³⁺ ion and the excited states of the Eu³⁺, Tm³⁺.

Keywords: EPR spectra; rare-earth, aluminum borates, spin Hamiltonian parameters, Van Vleck paramagnet

Физика и техника высоких давлений 2017, том 27, № 3

- **Fig. 1.** Crystal structure of the TmAl₃(BO₃)₄ aluminum borate. The Tm³⁺ ion is located inside the prism formed by six oxygen ions O3 (marked by triangles). The Al ion is in a distorted octahedron with the oxygen ions O1, O2, O3 placed at the apexes
- **Fig. 2.** Habit of the ReAl₃(BO₃)₄ crystals in the form of an elongated hexagonal prism. The crystallographic directions and the location of the axes of the EPR spectrum of the ion Cr^{3+} are presented
- **Fig. 3.** EPR spectrum of the Cr^{3+} ion in EuAl₃(BO₃)₄ at the frequency of 9.3 GHz in the orientation of B||Z (curve 1), B||X (curve 2)
- Fig. 4. Angular dependence of the EPR lines in the ZX plane in the EuAl₃(BO₃)₄ crystal
- Fig. 5. Angular dependence of the interdoublet transition $(+1/2 \leftrightarrow +3/2)$ in the plane perpendicular to the C_3 axis (a) and in the vicinity of the C_3 axis (δ) in the TmAl₃(BO₃)₄ crystal
- **Fig. 6.** Magnetic-field dependence of energy levels of Cr^{3+} ion in EuAl₃(BO₃)₄ (B||Z). The transitions observed at frequencies of about 9.3 and 37 GHz are shown
- **Fig. 7.** Temperature dependences of *g*-factor (a) and the parameter D of the Cr^{3+} ion (6) in the crystals of $EuAl_3(BO_3)_4$ (curve I), $YAl_3(BO_3)_4$ (curve I) and $TmAl_3(BO_3)_4$ (curve I)
- **Fig. 8.** Temperature dependence of spin-phonon contribution of Cr^{3+} ions to the EPR linewidth in the EuAl₃(BO₃)₄ (curve *I*) and TmAl₃(BO₃)₄ (curve *2*) crystals