PACS: 64.70.-p

Г.Г. Левченко¹, А.В. Христов¹, V. Ksenofontov², Y. Garcia², P. Gütlich²

ФАЗОВЫЙ ПЕРЕХОД ВЫСОКИЙ СПИН–НИЗКИЙ СПИН В Fe(Phen)₂(NCS)₂ ПОД ДАВЛЕНИЕМ

¹Донецкий физико-технический институт им. А.А. Галкина НАН Украины ул. Р. Люксембург, 72, г. Донецк, 83114, Украина

²Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg Universität Mainz Staudingerweg 9, 55099 Mainz, Germany

Статья поступила в редакцию 24 октября 2003 года

Изучено поведение под давлением температурно-индуцированного HL-перехода в Fe(Phen)₂(NCS)₂. Установлено, что при нулевом давлении данное соединение обладает температурой перехода 180 K с шириной гистерезиса 3 K. При увеличении давления температура перехода повышается линейно, в то время как ширина гистерезиса уменьшается до нуля, а затем начинает расти. С использованием экспериментально определенных значений изменения объема элементарной ячейки, приходящегося на одну спинизменяющую молекулу при HL-переходе, объема элементарной ячейки и параметра Грюнайзена рассчитаны значения упругой энергии и константы взаимодействия спинизменяющих комплексов. Установлено, что общепринятое выражение для константы взаимодействия не описывает наблюдаемые ее значения.

1. Введение

В настоящее время уделяется большое внимание исследованию влияния давления на фазовые превращения высокий спин–низкий спин (HL-переход) в координированных железосодержащих органических соединениях [1–14]. Это связано с наблюдаемой неоднозначностью поведения металлоорганических соединений при всестороннем сжатии.

Первые работы по исследованию влияния давления на HL-переход показали, что температура перехода $T_{1/2}$ увеличивается с ростом давления, что соответствует представлениям приближения молекулярного поля [8] и связано с тем, что ион железа в низкоспиновом состоянии занимает меньший объем, чем в высокоспиновом. Поэтому обоснованно считалось, что давление, уменьшая объем кристалла в целом, стабилизирует низкоспиновое состояние и увеличивает $T_{1/2}$, а также уменьшает величину гистерезиса и способствует превращению фазового перехода I рода в переход II рода [8]. К удивлению, в одном из первых измерений влияния давления на температурно-индуцированный переход в [Fe(phy)₂](BF₄)₂ был обнаружен эффект увеличения ширины гистерезиса $\Delta T_{1/2}$ ($\Delta T_{1/2} = T_{1/2}^{\uparrow} - T_{1/2}^{\downarrow}$, где $T_{1/2}^{\uparrow}$ и $T_{1/2}^{\downarrow}$ – температура перехода соответственно при повышении и понижении температуры) с ростом давления [9,10].

Следующей неожиданностью стало обнаружение уменьшения температуры перехода $T_{1/2}$ под давлением [11].

В [10] сделана попытка теоретического описания такого разнообразия поведения металлоорганических соединений, содержащих двухвалентное железо Fe(II), под давлением. Предложенная модель использует формализм теории регулярных растворов и позволяет получить различные зависимости температуры перехода и ширины гистерезиса от давления. Изменение $T_{1/2}$ и $\Delta T_{1/2}$ под давлением в соответствии с [10] определяется: величиной приложенного давления; значениями $T_{1/2}$, $\Delta T_{1/2}$ и критической температуры T_c при атмосферном давлении; изменением энтропии ΔS_{HL} , теплоемкости ΔC_{HL} и объема δv_{HL} при фазовом переходе; модулем упругости K; константами Грюнайзена γ^{G} и Эшелби γ_{0} ; упругой энергией Δ_{elast} , возникающей при изменении объема молекулы, связанного с изменением ее спина, и константой упругой энергии взаимодействия спинизменяющих молекул между собой Γ .

В работах [15,16] были рассчитаны изменения T_c и Δ_{elast} , а также ряд других параметров под давлением для нескольких соединений. Полученные значения Δ_{elast} (всегда отрицательные по величине и большие по абсолютному значению) не соответствовали общепринятым представлениям. Считалось [1], что Δ_{elast} должно приближенно равняться удвоенной константе взаимодействия (2Г) или $4k_{\rm B}T_c$. Недостатком этих расчетов является то, что вместо измеренных величин использовались оценочные значения параметров изменения объема под давлением и модуля упругости. С точки зрения проведения оценок Г и Дelast очень удобным объектом исследования является фенантролин Fe(Phen)₂(NCS)₂ – соединение, на котором проведены рентгеноструктурные исследования под давлением [17]. Это соединение является практически всесторонне исследованным с использованием разнообразных методик: магнитной, эффекта Мессбауэра, IR- и UV-оптической спектрометрии, рентгеноструктурного дифракционного и абсорбционного анализов, калориметрического анализа [18]. Роль давления в HL-переходе изучалась в работах [2,4,19–21]. Первые измерения магнитной восприимчивости фенантролина под давлением проведены в [21] в диапазоне давлений 1–10 kbar. Было обнаружено, что переход HS \rightarrow LS при комнатной температуре инициируется достаточно небольшими давлениями (≈ 2 kbar) и полная трансформация достигается при 10 kbar.

Но из-за отсутствия данных по относительной части комплексов в высокоспиновом состоянии γ по этим измерениям трудно определить $T_{1/2}(P)$. Вот почему возникла необходимость повторить измерения под давлением.

2. Эксперимент

2.1. Измерения

Образец приготовлен по известной методике [21].

В работе проведены измерения температурной зависимости намагниченности в диапазоне температур 4.2–310 К на фонеровском магнитометре PAR-151 в диапазоне давлений от атмосферного до 5.7 kbar. Камера высокого давления (КВД) с силиконовым маслом в качестве среды, передающей гидростатическое давление, описана в работе [22]. Ее гидростатичность была проверена в ряде исследований [10,11,23,24]. Давление измеряли, используя зависимость температуры сверхпроводящего перехода от давления помещенного в КВД олова высокой чистоты. Для определения абсолютных значений намагниченности вводили корректировку диамагнитного вклада КВД.

2.2. Результаты

Эффект давления для Fe(Phen)₂(NCS)₂ показан на рис. 1. При атмосферном давлении фенантролин обнаруживает резкий температурно-индуцированный спиновый переход I рода с шириной гистерезиса 3 К (при этом результаты измерений, проведенных на образце до обработки давлением и после, полностью совпадают).

Рис. 1. Температурные зависимости произведения восприимчивости на температуру Fe(Phen)₂(NCS)₂ для разных давлений: □ – P = 0, образец до обработки давлением; $\bigcirc -P = 0$, после обработки давлением; $\blacktriangle -P = 1.7$ kbar; $\nabla -P = 2.6$ kbar; + -P = 5.7 kbar

С увеличением давления переход смещается в область высоких температур (рис. 1). Верхняя часть перехода становится более пологой уже при P = 1.7 kbar, и наблюдается наличие низкоспиновой фазы при комнатной температуре. Дальнейшее повышение давления приводит к увеличению LS-фазы при комнатной температуре. Гистерезис сначала уменьшается до нуля, а затем снова начинает расти (рис. 2,*a*). В отличие от ранее наблюдаемого аналогичного поведения гистерезиса [11], где переход становится растянутым при давлениях выше давления исчезновения гистерезиса, здесь переход остается достаточно резким.

Рис. 2. Зависимость ширины гистерезиса (a) и температуры перехода (б) от давления

Так как по определению T_c – это температура, при которой исчезает гистерезис (при условии неизменности параметра взаимодействия Г под давлением), экспериментально найденное значение можно считать критической температурой. Зависимость $T_{1/2}$ от давления в рамках погрешности эксперимента является линейной (рис. 2, δ). Скорость роста велика и $dT_{1/2}/dP = 35.8$ K/kbar. Скорость уменьшения ширины гистерезиса 1.04 K/kbar. Скорость же роста ширины гистерезиса определить трудно, потому что переход при комнатной температуре происходит не полностью, но она больше, чем 1.8–1.9 K/kbar. Как правило, при наличии структурных превращений под давлением в точке фазового перехода происходит скачкообразное изменение гистерезиса, изменения наклона произведения $\chi_m T(T)$ и наклона $T_{1/2}(P)$ [11]. Отсутствие существенного изменения наклона кривых $\chi_m T(T)$ и наблюдаемая в данном случае линейная зависимость $T_{1/2}$ от давления указывают на то, что изменение знака роста-уменьшения гистерезиса под давлением не связано со структурным фазовым переходом.

2.3. Обсуждение

Целью теоретического анализа полученных экспериментальных результатов является дальнейшая проверка модели [10]. Нам хотелось бы оценить значения ключевого в этой модели параметра Δ_{elast} и соотношение двух силовых параметров Δ_{elast}/Γ , которое, как считается, должно приблизительно быть равным 2 [1]. Для описания поведения температуры перехода $T_{1/2}$ и ширины гистерезиса $\Delta T_{1/2}$ в зависимости от давления воспользуемся методикой, предложенной в работе [10].

Исходная модель [1,25] рассматривает кристалл как изотропную однородную упругую среду с вкраплениями сингулярных дефектов [26], создающих локальные изотропные напряжения. Упругая среда характеризуется двумя константами: модулем объемной упругости K и константой Эшелби γ_0 . Дефекты однородно распределены в упругой среде. Граница сферы, на которой компенсируются напряжения среды и сингулярности, определяет ненапряженный объем v_0 . Позиции дефектов могут быть заняты объемами $v_{\rm HS}$ и $v_{\rm LS}$.

Потенциал Гиббса в этом случае записывается в виде

$$g(\gamma, T) = \gamma f_{\text{HS}} + (1 - \gamma) f_{\text{LS}} - Ts_{\text{mix}} + g_{\text{int}}(\gamma, T) + pv.$$
⁽¹⁾

Здесь γ – приведенное количество высокоспиновой фазы; s_{mix} – конфигурационная энтропия, $s_{\text{mix}} = \gamma \ln \gamma + (1 - \gamma) \ln(1 - \gamma)$; f_{HS} и f_{LS} – свободные энергии на одну молекулу соответственно в высоко- и низкоспиновом состояниях, отвечающие за электронную часть энергии; $g_{\text{int}} = \Delta_{\text{elast}}\gamma - \Gamma\gamma^2$ – упругая часть энергии, где первое слагаемое определяет взаимодействие молекул в высокоспиновом состоянии с кристаллической решеткой, второе – взаимодействие высокоспиновых комплексов между собой; p – внешнее давление; v – объем элементарной ячейки, приходящийся на одну спинизменяющую молекулу (далее всюду строчными v обозначаются объемы элементарной ячейки, приходящиеся на одну молекулу, в то время как прописной V – объемы само́й элементарной ячейки), $v = v_{\text{LS}}(1 + \alpha_V T) + \delta v_{\text{HL}}\gamma$, где α_V – коэффициент температурного расширения.

Учитывая первые члены разложения упругой энергии, пропорциональные модулю K, можно получить Δ_{elast} и Γ в явном виде [27,28]:

$$\Delta_{\text{elast}} = \frac{1}{2} K \frac{(\gamma_0 - 1)}{\gamma_0} \frac{\delta v_{\text{HL}}}{v_0} (v_{\text{HS}} + v_{\text{LS}} - 2v_0), \qquad (3)$$

$$\Gamma = \frac{1}{2} K \frac{\left(\gamma_0 - 1\right)}{\gamma_0} \frac{\delta v_{\rm HL}^2}{v_c}, \qquad (4)$$

где $\delta v_{\rm HL} = \gamma_0 (v_{\rm HS} - v_{\rm LS}), v_c$ – объем элементарной ячейки, приходящийся на одну молекулу.

Рассматривая только члены, пропорциональные γ , энергия Гиббса записывается в следующем виде:

$$g(\gamma, T) = (f_{\rm HS} - f_{\rm LS} + \Delta)\gamma - Ts_{\rm mis} - \Gamma\gamma^2 + p\delta v_{\rm HL}\gamma.$$
⁽²⁾

Вводя критическую температуру $T_c = \Gamma/2k_B$ (где k_B – постоянная Больцмана), можно получить выражение для $dT_{1/2}/dp$:

$$\frac{\mathrm{d}T_{\mathrm{l/2}}}{\mathrm{d}p} = \frac{T_c}{\varepsilon_0} \left[\frac{1}{\sigma_c} A + \frac{\Delta C_{\mathrm{HL}}}{2k_{\mathrm{B}}\sigma_c} \left(1 - \frac{T_{\mathrm{l/2}}}{T_c} \right) \right],\tag{5}$$

где

$$A = \frac{2\gamma_0 - 1}{\gamma_0} \frac{\varepsilon_0 \,\delta v_{\rm HL}}{2k_{\rm B}T_c} + \frac{\Delta_{\rm elast} - 2k_{\rm B}T_c}{2k_{\rm B}T_c} \,. \tag{6}$$

Здесь $\sigma_c = \frac{\Delta S_{\rm HL}}{2k_{\rm B}}$, $\varepsilon_0 = \frac{K}{2\gamma^{\rm G}+1}$, где $\gamma^{\rm G}$ – константа Грюнайзена.

Используя экспериментально полученные значения K, $\delta v_{\rm HL}$ [17], σ_c [29], $dT_{1/2}/dp$ и получив T_c и соответственно Γ по описанной в [10] процедуре, можно рассчитать

$$\Delta_{\text{elast}} = \Delta S_{\text{HL}} \left(\varepsilon_0 \frac{\mathrm{d}T_{1/2}}{\mathrm{d}p} - \frac{\Delta C_{\text{HL}}}{\Delta S_{\text{HL}}} \left(T_c - T_{1/2} \right) \right) + 2k_{\text{B}}T_c - \frac{2\gamma_0 - 1}{\gamma_0} \varepsilon_0 \,\delta v_{\text{HL}} \,. \tag{7}$$

Для определения Δ_{elast} Fe(Phen)₂(NCS)₂ возьмем так же, как и в [10], наиболее типичное значение константы Эшелби $\gamma_0 = 1.5$. Коэффициент объемной упругости для фенантролина K = 93.45 kbar при атмосферном давлении и 121.95 kbar – для давления 10 kbar [17]. Это позволяет, используя соотношение $\frac{\partial K}{\partial p} = 2\gamma^{G}$, вычислить $\gamma^{G} = 1.425$. Изменение объема элементарной ячейки, обусловленное изменением объема лигандного комплекса, $\delta V_{\text{HL}} = 72$ Å³ [17]. Но так как в фенантролине одну элементарную ячейку занимают четыре спинизменяющие молекулы, то $\delta v_{\text{HL}} = 18$ Å³. Аналогично, беря из [17] значение V(P), получаем v_c – объем элементарной ячейки, приходящийся на один лигандный комплекс; $V(P) = V_0 - \Delta V_1 P - \delta V_{\text{HL}}\gamma$, где $V_0 = 2346$ Å³ – объем элементарной ячейки при атмосферном давлении, $\Delta V_1 = 226$ Å³/GPa – линейный коэффициент, не зависящий от спиновой фазы.

Полученные таким образом значения Δ_{elast} , Г, T_c для Fe(Phen)₂(NCS)₂ собраны в таблице, из которой видно, что Δ_{elast} имеет, в отличие от результатов работ [15,16], положительное значение и по абсолютной величине приблизительно в 2.5–3 раза больше Г. Значения Г и Δ_{elast} близки к физически ожидаемым. Параметр взаимодействия Г для данного соединения можно рассчитать и по выражению (4), поскольку нам известны δv_{HL} , v_c и K. Рассчитанные таким образом значения Г для трех давлений приведены в таблице в столбце Γ_1 . Видно, что по выражению (4) получено аномально низкое значение Г, которое ниже даже $T_{1/2}$. Так как все переменные в (4) (кроме γ_0) взяты из эксперимента, то изменить Г можно, только варьируя γ_0 . Но, уменьшив γ_0 до 1, мы получим уменьшение Г, а, увеличивая γ_0 до бесконечности, получаем увеличение Г всего в три раза, чего явно недостаточно. Таким образом, из проведенных расчетов можно сделать вывод, что вы-

ражение (4) для Γ не согласуется с рассчитанным его значением из критического поведения фенантролина, и данная ситуация требует дополнительного исследования.

Таблица

<i>P</i> , kbar	<i>T</i> _{1/2} , K	<i>T_c</i> , K	Г, К	Δ_{elast}, K	Γ ₁ , К
0	180	202	404	1153	62
1.7	247	248	450	1370	67
2.6	273	289	578	1360	72

3. Заключение

Результатом работы явилось изучение поведения под давлением температурно-индуцированного HL-перехода в Fe(Phen)₂(NCS)₂. Установлено, что при нулевом давлении данное соединение обладает температурой перехода $T_{1/2} = 180$ K с шириной гистерезиса 3 K. При увеличении давления $T_{1/2}$ растет линейно, а ширина гистерезиса уменьшается до нуля, а затем возрастает. С использованием экспериментально определенных значений $\delta v_{\rm HL}$, v_c и $\gamma^{\rm G}$ рассчитаны параметры взаимодействия Γ и $\Delta_{\rm elast}$. Установлено, что общепринятое выражение для параметра $\Gamma = \frac{1}{2} K \frac{(\gamma_0 - 1)}{\gamma_0} \frac{\delta v_{\rm HL}^2}{v_c}$ не описывает его наблюдаемых значений.

- 1. *P. Gütlich, A. Hauser, H. Spiering*, Angew. Chem. **106**, 2109 (1994); Angew. Chem. Int. Ed. **33**, 2024 (1994).
- 2. D.C. Fisher, H.G. Drickamer, J. Chem. Phys. 54, 4825 (1971).
- 3. C.B. Bargeron, H.G. Drickamer, J. Chem. Phys. 55, 3471 (1971).
- 4. J. Pebler, Inorg. Chem. 22, 4125 (1983).
- 5. G.J. Long, L.W. Becker, Adv. Chem. Ser. 194, 453 (1982).
- 6. E. Meissner, H. Köppen, H. Spiering, P. Gütlich, Chem. Phys. Lett. 95, 163 (1983).
- 7. E. König, G. Ritter, H. Grünsteudel, J. Dengler, J. Nelson, Inorg. Chem. 33, 837 (1994).
- 8. C.P. Köhler, R. Jakobi, E. Meissner, L. Wiehl, H. Spiering, P. Gütlich, J. Phys. Chem. Solids 51, 239 (1990).
- 9. E. König, G. Ritter, J. Waigel, H.A. Goodwin, J. Chem. Phys. 83, 3055 (1985).
- V. Ksenofontov, H. Spiering, A. Schreiner, G. Levchenko, H.A. Goodwin, P. Gütlich, J. Phys. Chem. Solids 60, 393 (1999).
- 11. V. Ksenofontov, G. Levchenko, H. Spiering, P. Gütlich, J.-F. Létard, Yacine Bouhedja, O. Kahn, Chem. Phys. Lett. 294, 545 (1998).
- 12. Y. Garcia, V. Ksenofontov, G. Levchenko, P. Gütlich, Chem. Mater. 10, 2274 (2000).
- 13. O. Kahn, Molecular magnetizm, VHC Publishers, Inc., New York (1993).
- 14. C.P. Slichter, H.G. Drickamer, J. Chem. Phys. 56, 2142 (1972).
- 15. Г.Г. Левченко, V.G. Ksenofontov, А.В. Ступаков, А.Н. Ульянов, Н. Spiering, J.-F. Létard, Y. Garcia, P. Gütlich, ФТВД **10**, № 4, 115 (2000).

Физика и техника высоких давлений 2004, том 14, № 1

- 16. G.G. Levchenko, V. Ksenofontov, A.V. Stupakov, H. Spiering, Y. Garcia, P. Gütlich, Chem. Phys. 227, 125 (2002).
- 17. T. Granier, B. Gallois, J. Gaultier, J.-A. Real, J. Zarembowitch, Inorg. Chem. 32, 5305 (1993).
- 18. B. Gallois, J.-A. Real, C. Hauw, J. Zarembowitch, Inorg. Chem. 29, 1152 (1990).
- 19. J.R. Ferrarom, J. Takemoto, J. Appl. Spectrosc. 28, 66 (1974).
- 20. D.M. Adams, G.J. Long, A.D. Williams, Inorg. Chem. 21, 149 (1982).
- 21. S. Usha, R. Srinivasan, C.N.R. Rao, Chem. Phys. 100, 447 (1985).
- 22. В.П. Дьяконов, Г.Г. Левченко, Приборы и техника эксперимента № 5, 236 (1983).
- 23. Y. Garcia, P.J. van Koningsbruggen, R. Lapouyade, L. Fournés, L. Rabardel, O. Kahn, V. Ksenofontov, G. Levchenko, P. Gütlich, Chem. Mater. **10**, 2426 (1998).
- 24. Y. Garcia, V. Ksenofontov, G. Levchenko, G. Schmitt, P. Gütlich, J. Phys. Chem. B104, 5045 (2000).
- 25. H. Spiering, E. Meissner, H. Köppen, E.W. Müller, P. Gütlich, Chem. Phys. 68, 65 (1982).
- 26. J.D. Eshelby, J Appl. Phys. 25, 255 (1954).
- 27. N. Willenbacher, H. Spiering, J. Phys. C21, 1423 (1988).
- 28. H. Spiering, N. Willenbacher, J. Phys.: Condens. Matter 1, 10089 (1989).
- 29. E. König, G. Ritter, S.K. Kulshreshtha, Chem. Rev. 85, 219 (1985).

G.G. Levchenko, A.V. Khristov, V. Ksenofontov, Y. Garcia, P. Gütlich

HIGH SPIN–LOW SPIN PHASE TRANSITION IN Fe(Phen)₂(NCS)₂ UNDER PRESSURE

The behaviour of temperature-induced HL-transition in $Fe(Phen)_2(NCS)_2$ has been studied under pressure. It has been found that for zero pressure the transition temperature of the compound equals 180 K with a 3 K width of the hysteresis. With pressure increase there is a linear increase in transition temperature, while the hysteresis width is decreasing to zero and then becomes growing. The experimentally determined values of changes in unit-cell volume per one spin-changing molecule under the HL-transition and those of Grüneisen parameter were used to evaluate the elastic energy and the interaction constant for the spin-changing complexes. It has been found that the conventional expression for the interaction constant does not describe its values observed experimentally.

Fig. 1. Temperature dependences of the product of susceptibility into temperature of Fe(Phen)₂(NCS)₂ for different pressure: $\Box - P = 0$, sample prior to pressure treatment; $\circ - P = 0$, past pressure treatment; $\blacktriangle - P = 1.7$ kbar; $\nabla - P = 2.6$ kbar; + -P = 5.7 kbar

Fig. 2. Dependence of the width of hysteresis (a) and transition temperature (δ) on pressure