PACS: 62.90.+k

О.И. Дацко, В.С. Абрамов, А.Б. Дугадко, Н.И. Матросов, В.В. Чишко, Б.А. Шевченко

ОСОБЕННОСТИ ПОВЕДЕНИЯ ВНУТРЕННЕГО ТРЕНИЯ В МЕДИ ВОЛОКНИСТОГО СТРОЕНИЯ С НАНОРАЗМЕРНЫМИ ВОЛОКНАМИ

Донецкий физико-технический институт им. А.А. Галкина НАН Украины ул. Р. Люксембург, 72, г. Донецк, 83114, Украина

Статья поступила в редакцию 23 июня 2003 года

Показано, что в деформированной медной проволоке, полученной методом много-переходной пакетной гидроэкструзии с волочением и содержащей волокна и элементы субмикро- и нанокристаллической структур, амплитудная и температурная зависимости низкочастотного внутреннего трения (ВТ) обнаруживают резкий и существенный рост при $\varepsilon > 2\cdot 10^{-5}$ и $T > 80\, \text{C}$. Это означает, что такая структура в условиях микропластической деформации (МПД) обладает способностью интенсивно увеличивать плотность подвижных дислокаций, обусловливает высокую степень микропластичности материала.

Введение

Высокие степени и специальные приемы деформации позволяют получать в материалах структуры, содержащие волокнистое строение и элементы наноструктуры с размерами зерен до 100 nm. Эти структуры должны иметь свои, присущие им свойства. По-видимому, одно из них может проявиться в поведении дислокаций при МПД материала или в степени его микропластичности.

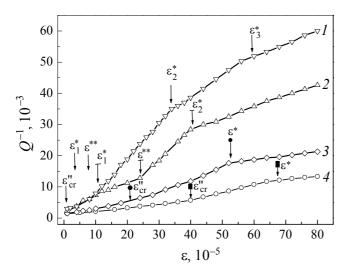
При рассмотрении данного вопроса целесообразно использовать метод ВТ [1]. В этом случае при измерениях уровня ВТ в зависимости от возрастания амплитуды деформации є в дислокационной структуре материала образца следует ожидать изменений (отрыва дислокаций от стопоров, их размножения и взаимодействия с препятствиями), которые будут оказывать влияние на поведение уровня ВТ.

При измерении уровня ВТ в амплитудно-зависимой области от температуры нагрева могут иметь место сходные изменения дислокационной структуры материала, которые также будут оказывать влияние на поведение уровня ВТ. Благодаря этим положениям анализ амплитудных и температурных зависимостей ВТ, полученных на образцах с разной структурой, может позволить сравнить поведение дислокаций в таких структурах при взаимо-

действии их со стопорами, размножении и преодолении препятствий, т.е. сравнить степени микропластичности материала исследуемых образцов.

Методика и выбор образцов для исследований

В качестве объекта исследований представляет интерес использовать образцы проволок из меди, полученные методом многопереходной пакетной гидроэкструзии с волочением [2] и методом обычного волочения из одной заготовки. В первом случае проволока содержит 211³ волоченных элементов из меди MBЭ (чистотой 99.99%), заключенных в 211² промежуточные и 1 наружную оболочку из меди МОб (чистотой 99.97%), в каждой из которых содержится по 211 конструктивных элементов, имеет интегральную деформацию lnR = 19.4 и диаметр 3 mm. Структура проволоки в деформированном состоянии обладает волокнистым строением с размером волокон около 500 nm и элементами субмикро- и нанокристаллической структур. После отжига в диапазоне температур 125-400°С в структуре проволоки сохраняются границы волокон, которые препятствуют росту рекристаллизованных зерен и обеспечивают тем самым формирование мелкозернистой структуры. Во втором случае проволока из меди МВЭ имеет интегральную деформацию lnR = 2.77 и диаметр 2 mm. Структура проволоки в деформированном состоянии обладает полосчатостью, обусловленной текстурой деформации. При нагреве до 250°C в структуре проволоки полосчатость исчезает, процесс рекристаллизации приближается к стадии завершения.


С учетом этих данных можно ожидать, что границы волокон и элементы субмикро- и нанокристаллической структур материала будут оказывать влияние на характер поведения дислокаций при МПД или на степень микропластичности материала. Эффект влияния должен быть выражен сильнее в деформированных образцах, содержащих волокна и обладающих наноструктурой, слабее — в отожженных образцах и отсутствовать в образцах, не содержащих волокон и не имеющих наноструктуры. Задача ставится следующим образом: определить и сравнить характеры амплитудных и температурных зависимостей ВТ в деформированных и отожженных образцах медной проволоки, обладающей волокнистым строением и элементами субмикро- и нанокристаллической структур (образец N 1), и медной проволоки, не имеющей такой структуры (образец N 2).

Для измерений уровня ВТ использовали низкочастотный обратный крутильный маятник с частотой колебаний около 1 Hz. Рабочая длина образцов для исследований составляла 40 mm. Амплитудную зависимость ВТ выявляли при постепенном увеличении ε от $2\cdot10^{-5}$ до $80\cdot10^{-5}$, а температурную зависимость — при повышении температуры нагрева материала от 20 до 300° С со скоростью 3° С/min. Эти измерения температурной зависимости ВТ выполняли при максимальной амплитуде деформации $\varepsilon = 10\cdot10^{-5}$, соответствующей амплитудно-зависимой области ВТ. Уровень ВТ определяли путем подсчета числа затухающих свободных колебаний при уменьшении задаваемой амплитуды деформации на 40%. Измерения амплитудных зависимостей ВТ

выполняли вначале на деформированных, а затем – на отожженных образцах, а температурных – при нагреве деформированных образцов. Отжиг производили путем нагрева деформированного образца до 400°C со скоростью 3°C/min.

Результаты исследований и их обсуждение

На рис. 1 представлены результаты измерений амплитудных зависимостей уровня ВТ в деформированных и отожженных образцах № 1 и № 2. Как видно, амплитудно-независимый участок отсутствует. Это означает, что критическое значение амплитуды деформации $\varepsilon'_{cr} < 2.10^{-5}$. С ростом амплитуды деформации є уровень ВТ растет, обнаруживая участки линейного или почти линейного характера, которые в точках излома увеличивают или уменьшают угол наклона касательной к кривой $Q^{-1}(\varepsilon)$. Согласно существующим представлениям [1] такое поведение уровня ВТ с ростом є определяется поведением уровня плотности подвижных дислокаций, возникающих в материале при его МПД. Так, при $\varepsilon \ge \varepsilon_{\rm cr}'$ происходит отрыв существующих в материале старых неподвижных закрепленных дислокаций от закрепляющих их стопоров (вначале слабых, затем – сильных, если они есть). В результате плотность подвижных дислокаций и уровень ВТ растут (вначале слабо, а затем – сильнее). При $\varepsilon \ge \varepsilon_{\rm cr}''$ происходит отрыв дислокаций от узлов дислокационной сетки и размножение новых незакрепленных подвижных дислокаций. В результате плотность подвижных дислокаций и уровень ВТ растут сильнее. При $\varepsilon \ge \varepsilon^*$ новые подвижные дислокации, двигаясь в объеме материала, встречают препятствия, взаимодействуют с ними и частично задерживаются перед препятствиями (вначале перед слабыми, а затем – перед сильными, если они есть) с образованием скоплений, в которых подвижные дислокации взаимно блокируют друг друга. В результате плотность подвижных дислокаций и уровень BT растут слабее. При $\varepsilon \ge \varepsilon^{**}$ дислокации перестают взаимодействовать с препятствиями, преодолевают их. В результате плотность подвижных дислокаций и уровень ВТ растут сильнее.

Рис. 1. Амплитудные зависимости уровня ВТ в деформированном (I, 3) и отожженном (2, 4) нагревом до 400°C материале образцов № 1 (I, 2), № 2 (3, 4)

В связи с тем, что структура реальных кристаллов неоднородна, точки излома на зависимости уровня ВТ от амплитуды деформации размываются на некоторый интервал амплитуд. Поэтому вместо излома в районе $\varepsilon_{\rm cr}^{\prime\prime}$, $\varepsilon_{\rm r}^{**}$ наблюдается особенность типа вогнутой кривой, а в районе $\varepsilon_{\rm r}^{**}$ – типа выпуклой кривой.

Отметим, что в случаях измерений уровня BT при наборе и сбросе амплитуды деформации для $\varepsilon > \varepsilon''_{cr}$ наблюдается гистерезис.

С учетом этих положений наблюдаемые зависимости характеризуют следующее поведение уровня ВТ в исследуемых образцах.

Образец № 1, деформированный (кривая I): начальный уровень повышенный, наблюдается резкий и значительный рост (вплоть до $\varepsilon = 80 \cdot 10^{-5}$); $\varepsilon_{\rm cr}'' \approx 2 \cdot 10^{-5}$, $\varepsilon_1^* \approx 4 \cdot 10^{-5}$, $\varepsilon^{**} \approx 8 \cdot 10^{-5}$, $\varepsilon_2^* \approx 35 \cdot 10^{-5}$, $\varepsilon_3^* \approx 57 \cdot 10^{-5}$. Образец № 1, отожженный (кривая 2): начальный уровень повышенный, наблюдается более слабый резкий и значительный рост (до $\varepsilon = 80 \cdot 10^{-5}$); $\varepsilon_{\rm cr}'' \approx 2 \cdot 10^{-5}$, $\varepsilon_1^* \approx 10 \cdot 10^{-5}$, $\varepsilon^{**} \approx 24 \cdot 10^{-5}$, $\varepsilon_2^* \approx 40 \cdot 10^{-5}$.

Образец № 2, деформированный (кривая 3): начальный уровень пониженный, наблюдается сравнительно слабый рост (до $\varepsilon = 80 \cdot 10^{-5}$); $\varepsilon'_{cr} \leq 2 \cdot 10^{-5}$, $\varepsilon''_{cr} \approx 20 \cdot 10^{-5}$, $\varepsilon^*_{cr} \approx 52 \cdot 10^{-5}$. Образец № 2, отожженный (кривая 4): начальный уровень пониженный, наблюдается более слабый рост (до $\varepsilon = 80 \cdot 10^{-5}$); $\varepsilon'_{cr} \leq 2 \cdot 10^{-5}$, $\varepsilon''_{cr} \approx 40 \cdot 10^{-5}$, $\varepsilon^*_{cr} \approx 68 \cdot 10^{-5}$.

На рис. 2 приведены результаты измерений уровня ВТ в зависимости от температуры нагрева деформированных образцов № 1 и № 2. Наблюдаемые зависимости показывают, что у образца № 1 (кривая I) начальный уровень повышенный, при T > 80°C наблюдается резкий и значительный рост (вплоть до T = 300°C). У образца № 2 (кривая I2) начальный уровень понижен, при I3 120°C наблюдается слабый рост (до I4 300°C).

Анализ данных, приведенных на рис. 1 и 2, позволяет считать, что поведение уровня ВТ при увеличении амплитуды деформации и температуры нагрева в образце № 1 в сравнении с образцом № 2 имеет ряд особенностей.

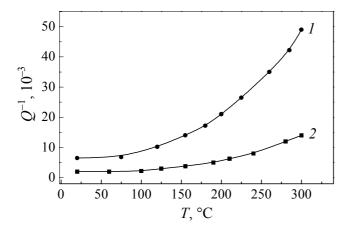


Рис. 2. Температурные зависимости уровня ВТ при нагреве деформированного материала образцов № 1 (I) и № 2 (2)

Главной особенностью является более ранний, резкий и значительный рост уровня ВТ при $\varepsilon > \varepsilon_{\rm cr}''$ (до $\varepsilon = 80 \cdot 10^{-5}$) или при T > 80°C (до T = 300°C). Эта особенность поведения уровня ВТ выражена сильнее в деформированном образце № 1 (рис. 1, кривая I и рис. 2, кривая I), слабее в отожженном образце № 1 (рис. 1, кривая 2) и отсутствует в деформированном и отожженном образце № 2 (рис. 1, кривые 3 и 4 и рис. 2, кривая 2). К числу других особенностей поведения уровня ВТ в зависимости от амплитуды деформации (в образце № 1) следует отнести: более высокое число изломов на амплитудной зависимости уровня BT при $\varepsilon > \varepsilon_{\rm cr}''$ и их различия в расположении, степени и характере проявления. Так, в деформированном материале образца № 1 таких изломов 4. Они расположены в 3 различных областях значений є: низких -4.10^{-5} и 8.10^{-5} , средних -35.10^{-5} , высоких -57.10^{-5} . Эти изломы характеризуются заметным изменением – уменьшением и увеличением угла наклона касательной и проявляются в трех случаях как особенность типа выпуклость и в одном случае как особенность типа вогнутость (при $\varepsilon = 8 \cdot 10^{-5}$) на кривой $Q^{-1}(\varepsilon)$. В деформированном материале образца № 2 такой излом один, он расположен в районе средних значений $\varepsilon = 47 \cdot 10^{-5}$, характеризуется слабым уменьшением угла наклона касательной и проявляется как особенность типа выпуклость на кривой $Q^{-1}(\varepsilon)$.

Полученные результаты позволяют считать, что наблюдаемые особенности поведения уровня ВТ в зависимости от амплитуды деформации и температуры нагрева в образце \mathbb{N} 1 вызваны наличием и особенностями волокнистого строения материала, субмикро- и нанокристаллической структурами, характером их взаимодействия между собой и другими дефектами [3,4]. Можно, по-видимому, говорить о следующих особенностях поведения дислокаций при МПД в структуре материала образца \mathbb{N} 1 в сравнении с материалом образца \mathbb{N} 2.

Основная особенность — это более раннее, резкое и значительное увеличение плотности подвижных дислокаций в объеме материала при $\varepsilon > \varepsilon_{\rm cr}''$ или при $T > 80^{\circ}{\rm C}$. Возможно, что такое положение вызвано следующей ситуацией. Благодаря высокой степени деформации в материале образца $N_{\rm e}$ 1 формируется особая структура дислокаций, которая в значительной степени сохраняется и после деформации. Дислокации образуют скопления, ансамбли, сетки в виде жгутов, которые расположены вдоль волокон и формируют в волокнах границы субмикро- и нанокристаллической структур. Взаимодействие жгутов из дислокаций с границами волокон происходит по их периметру. Это обстоятельство, по-видимому, и обусловливает возможность эффективного движения и размножения дислокаций в жгуте при деформации проволоки кручением во время возбуждения в ней свободно затухающих крутильных колебаний. В этих условиях рост плотности подвижных дислокаций в материале может быть вызван как постепенным отрывом дислокаций от границ волокон и происходящим при этом увеличением подвижного

объема жгута дислокаций, так и постепенным повышением плотности новых незакрепленных дислокаций в объеме материала за счет работы источников дислокаций, которыми могут быть границы субмикро- и нанокристаллической структур.

Другие особенности — это различия в характере изменения плотности подвижных дислокаций при МПД, обусловливаемом встречей подвижных дислокаций с препятствиями на пути их движения в объеме материала. Эти различия проявляются в числе, положении, степени и характере взаимодействия подвижных дислокаций с препятствиями. Возможно, что такими препятствиями в материале образца № 1 являются следующие.

- 1. При низких значениях ε старые, имеющиеся в материале дислокации, заблокированные комплексами точечных дефектов. Препятствия вначале частично преодолеваются дислокациями, а при $\varepsilon > 8 \cdot 10^{-5}$ уже не могут оказать влияния на движение дислокаций и полностью преодолеваются последними.
- 2. При средних значениях ε границы волокон, имеющие разрывы и содержащие комплексы точечных дефектов. Они лишь частично преодолеваются подвижными дислокациями (вероятно, часть дислокаций образует перед ними скопления, в которых эти дислокации взаимно блокируют друг друга).
- 3. При высоких значениях є границы субмикро- и нанокристаллической структур, обогащенные комплексами точечных дефектов. Они также частично преодолеваются дислокациями.

После отжига деформированного материала указанные препятствия сохраняются (за исключением одного при высоких значениях є). При этом встреча дислокаций с препятствиями и их преодоление (частичное и полное) происходят при более высоких амплитудах деформации.

В образце № 2 препятствиями движению подвижных дислокаций, которые они частично преодолевают, являются, по-видимому, полосы скольжения в деформированном материале и границы зерен в отожженном материале.

Обратим внимание на следующее обстоятельство. Согласно полученным результатам отжиг деформированного материала как у образца № 1, так и у образца № 2 приводит к уменьшению общего уровня амплитудной зависимости ВТ, смещению зависимости в сторону больших амплитуд деформации, увеличению значений $\varepsilon_{\rm cr}^{\prime\prime}$, ε_{1}^{*} , ε_{2}^{*} , ε^{**} (см. рис. 1). Это означает, что в условиях МПД в отожженном материале в сравнении с деформированным имеют место более низкий уровень плотности подвижных дислокаций, более сильные затруднения при размножении и движении дислокаций в объеме материала, более длинные расстояния между источниками дислокаций и препятствиями.

Известны данные, которые связывают высокую степень пластичности материала с меньшей плотностью дислокаций, а также то, что отжиг деформированного материала восстанавливает его пластичность. В этом случае речь идет о пластичности, которая характеризуется уровнем механических свойств материала при необратимой пластической деформации вплоть до

разрушения и которая определяется плотностью неподвижных дислокаций, существующих в материале.

В данной работе речь идет о микропластичности, характеризующейся уровнем физического свойства материала (амплитудно-зависимого ВТ) при обратимой микропластической деформации и определяющейся плотностью подвижных дислокаций, возникающих в материале в этих условиях.

Согласно экспериментальным данным [5,6] при отжиге деформированных образцов уровень амплитудно-зависимого BT (при увеличении ϵ от $2\cdot 10^{-5}$ до $120\cdot 10^{-5}$) может уменьшаться, увеличиваться, а также изменяться немонотонно. Как видно, при отжиге деформированного материала характер изменений степени микропластичности материала может отличаться от характера изменений, присущего пластичности материала. По-видимому, в общем случае этот характер определяется соотношением между плотностями подвижных и неподвижных дислокаций. В настоящее время нет разработанной теоретической модели микропластической деформации, обусловливающейся плотностью подвижных дислокаций. В связи с этим выходят на первый план и являются актуальными экспериментальные исследования данного явления.

Заключение

Результаты исследований позволяют утверждать, что структура, возникающая в медной проволоке при больших степенях пластической деформации методом многопереходной пакетной гидроэкструзии с волочением и содержащая границы волокон и элементы субмикро- и нанокристаллической структур, обусловливает несколько особенностей в поведении дислокаций при МПД кручением деформированного и отожженного материала в сравнении с поведением дислокаций в медной проволоке, которая деформирована методом обычного волочения и структура которой не имеет границ волокон и элементов нанокристаллической структуры.

Наиболее существенной особенностью поведения дислокаций является эффект более раннего, резкого и значительного увеличения плотности подвижных дислокаций в объеме материала при его деформации кручением с $\varepsilon > \varepsilon_{\rm cr}^{\prime\prime}$ в интервале от $2\cdot 10^{-5}$ до $80\cdot 10^{-5}$ или с $\varepsilon = 10\cdot 10^{-5}$ при нагреве в интервале температур от 80 до 300° С. Эта особенность поведения дислокаций создает повышенную степень микропластичности в деформированном и отожженном материале.

- 1. В.С. Постников, Внутреннее трение в металлах, Металлургия, Москва (1969).
- 2. В.З. Спусканюк, Л.Ф. Сенникова, Е.А. Павловская, Н.И. Матросов, А.Б. Дугадко, Н.Н. Белоусов, Т.П. Заика, Прогрессивные технологии и системы машиностроения. Международный сборник научных трудов (2002), вып. 21, с. 255.
- 3. С.Б. Наймарк, ФММ 84, вып. 4, 5 (1997).

Физика и техника высоких давлений 2004, том 14, № 2

- 4. *Л.Н. Лариков*, Металлофизика и новейшие технологии **19**, № 1, 19 (1997).
- 5. *С.Л. Рево, В.С. Копань, В.П. Майборода*, в сб.: Внутреннее трение в металлах и неорганических материалах, Наука, Москва (1982), с. 147–151.
- 6. *Р.У. Урумян, Е.И. Можзухин*, в сб.: Внутреннее трение в металлических материалах, Наука, Москва (1970), с. 110–113.

O.I. Datsko, V.S. Abramov, A.B. Dugadko, N.I. Matrosov, V.V. Chishko, B.A. Shevchenko

PECULIARITIES OF INTERNAL FRICTION BEHAVIOR IN COPPER OF FIBROUS STRUCTURE WITH NANOSIZE FIBRES

It is shown that in deformed copper wire produced by multiple-stage packet hydroextrusion followed by drawing and containing fibres and elements of submicro- and nanocrystalline structures, the amplitude and temperature dependences of the low-frequency internal friction (IF) show an abrupt and considerable growth for $\varepsilon > 2 \cdot 10^{-5}$ and $T > 80^{\circ}$ C. This means that under the microplastic deformation such structure is able to intensively increase the density of mobile dislocations, thus conditioning the high microplasticity of the material.

- **Fig. 1.** The amplitude dependences of IF level in the deformed (1, 3) and annealed by heating to 400°C (2, 4) material of specimens $N_2 1 (1, 2)$, $N_2 2 (3, 4)$
- **Fig. 2.** The temperature dependences of IF level upon heating the deformed material of specimens $N_2 \ 1 \ (I)$ and $N_2 \ 2 \ (2)$