PACS: 62.50.+p, 62.65.+k, 64.10.+h, 64.70.Kb

E.А. Пилипенко 1 , Е.П. Троицкая 1 , Е.Е. Горбенко 2

УПРУГИЕ МОДУЛИ ФУКСА ВТОРОГО ПОРЯДКА И ИХ ПРОИЗВОДНЫЕ ПО ДАВЛЕНИЮ ДЛЯ СЖАТЫХ КРИСТАЛЛОВ ИНЕРТНЫХ ГАЗОВ В МОДЕЛИ ДЕФОРМИРУЕМЫХ АТОМОВ

Статья поступила в редакцию 28 февраля 2017 года

Теоретическое ab initio исследование упругих свойств сжатых кристаллов инертных газов (КИГ) проведено в модели деформируемых и поляризуемых атомов с учетом многочастичного и квадрупольного взаимодействий. Представлены аналитические выражения для модулей упругости Фукса, полученные из уравнений колебаний решетки в длинноволновом приближении. Рассчитаны производные по давлению модулей упругости Фукса второго порядка и связанные с ними модули упругости Фукса третьего порядка в широком интервале давлений. Показано, что значения производной по давлению от модулей упругости Фукса второго порядка находятся в хорошем согласии с результатами имеющегося эксперимента при нулевом давлении и с данными эмпирических расчетов других авторов.

Ключевые слова: кристаллы инертных газов, многочастичное взаимодействие, квадрупольное взаимодействие, высокое давление, модули упругости Фукса третьего порядка, производная по давлению от модулей упругости Фукса второго порядка

1. Введение

Исследование модулей упругости второго порядка и других связанных с ними упругих свойств твердых тел под давлением [1–7] является важным инструментом для изучения их поведения в экстремальных условиях. Модули упругости высших порядков были темой для обширного исследования в течение последних нескольких десятилетий и оценивались в ранних работах [3,8–11] в основном для ионных кристаллов.

Начиная с 1979 г. сотрудниками ДонФТИ был опубликован цикл работ «Упругие константы в напряженном кристалле» [12–18]. На основе теории конечных деформаций авторами был предложен метод, который может служить основой для экспериментального статистического определения упругих постоянных третьего порядка кристаллов произвольной симметрии. Также в этих работах исследуются модули упругости второго и высших порядков в напряженных кристаллах кубической, тетрагональной, орторомби-

¹Донецкий физико-технический институт им. А.А. Галкина

²Луганский национальный университет имени Тараса Шевченко

ческой и гексагональной систем. Установлены соотношения между упругими постоянными третьего порядка, определенными при различных термодинамических условиях. Приведена полная система уравнений, позволяющая рассчитать упругие постоянные высших порядков и их комбинации по данным измерений амплитуды второй гармоники. Основная часть результатов этих исследований представлена в монографии [19].

Для КИГ многочисленные теоретические [20–28] исследования модулей упругости второго и третьего порядков при высоких давлениях были проведены с использованием первопринципных методов и модельных потенциалов. Первые попытки включить многочастичные эффекты в энергетические расчеты КИГ были предприняты Аксильродом и Теллером [29].

Лехри и Верма [23] для изучения динамики решетки в КИГ разработали модель трехчастичного взаимодействия, включающую варьируемые индуцированные диполи. На базе этой модели в работе [24] они рассчитали модули упругости Браггера второго и третьего порядков для КИГ при p=0 в двух вариантах: 1) используя экспериментальное значение первой производной по давлению от объемного модуля (dB/dp) и 2) аппроксимируя трехчастичный потенциал экспоненциальной функцией, предложенной Кокрэном [30]. Остальные 4 параметра модели оценивались по 3 модулям упругости второго порядка и условию равновесия. Используя указанный потенциал во втором варианте и учитывая вклад энергии нулевых колебаний (потенциал Лундквиста), авторы [31] рассчитали первую и вторую производные по давлению от объемного модуля и двух сдвиговых модулей для кристаллов ряда Ne–Xe при p=0.

Гупта и Гоял [28] использовали трехчастичный потенциал Лундквиста [32] для получения модулей упругости Браггера второго и третьего порядков, производных первого порядка от объемного и сдвигового модулей по давлению. В работе [28] приведены значения упругих констант третьего порядка для Ne до 100 GPa, для Ar — до 75 GPa, Kr — до 136 GPa и Xe — до 53.4 GPa. Авторы отмечают, что такие результаты интересны и могут быть полезны для объяснения фазового перехода и понимания упругих свойств сжатых кристаллов ряда Ne—Xe в широком интервале давлений.

В работе [7] величины изотермического модуля объемного сжатия B и его первая производная по давлению $B' = \mathrm{d}B/\mathrm{d}p$ для твердых кристаллов Ne, Ar, Cu, Al, LiH и MgO были получены как функции сжатия на основе широко известных эмпирических уравнений состояний, таких как: Бирча—Мурнагана [4], Винета [33], Шанкера [34], Поирьера—Тарантола [35] и Хама—Суито [36] с помощью метода, разработанного Стаси [5]. В качестве начальных данных B_0 , B'_0 и B''_0 были использованы параметры, предложенные Хама—Суито [36].

В работах Толпыго для описания свойств щелочно-галоидных кристаллов, полупроводников и диэлектриков [37–42] с помощью метода сильной связи было реализовано адиабатическое приближение, явно учитывающее

деформацию электронных оболочек. В классической версии теории Толпыго силовые параметры, выраженные через первую и вторую производные короткодействующего потенциала $V_{sr}(r^{ll'})$, параметры деформации электронных оболочек, а также параметр Ван-дер-Ваальса C определялись по экспериментальным фононным дисперсионным кривым из эксперимента при нулевом давлении. Неэмпирическая версия этой теории (см. [43] и ссылки там) позволяет провести рассмотрение различных свойств КИГ из первых принципов без подгоночных параметров, опираясь лишь на знание волновых функций основного и возбужденного состояний атома.

Данная работа является продолжением цикла работ [44–51], посвященных расчету упругих свойств сжатых кристаллов ряда Ne—Xe на основе неэмпирической версии квантовомеханической модели деформируемых и поляризуемых атомов. Количественный анализ показал важность учета многочастичного взаимодействия и деформации электронных оболочек атомов для адекватного описания барической зависимости отклонения от соотношения Коши и упругих модулей Бирча в КИГ в широком интервале давлений.

В предыдущей работе [51] рассчитаны модули упругости Фукса второго порядка и коэффициент упругой анизотропии Зенера с учетом трехчастичного взаимодействия и деформации электронных оболочек квадрупольного типа в широком интервале давлений. Показано, что в Хе при сжатии 0.6 наблюдается обращение в нуль сдвигового модуля Фукса B_{44} , что соответствует экспериментальному ГЦК–ГПУ-переходу при 75 GPa.

Целью настоящей работы является исследование производных по давлению от модулей Фукса второго порядка dB_{ik}/dp и расчет соответствующих модулей упругости Фукса третьего порядка B_{ikl} . Будет проведено сравнение с имеющимся экспериментом и результатами других авторов.

2. Упругие свойства сжатых кристаллов

При исследовании упругих свойств напряженного кристалла необходимо использовать теорию конечных деформаций [52,53]. При наличии напряжения различают такие виды модулей упругости:

— коэффициенты разложения свободной энергии $C_{ikl\dots}$ (модули типа Браггера):

$$C_{\alpha\beta...\gamma\delta}(T) = \frac{1}{N\Omega} \frac{\partial^n F(u,T)}{\partial u_{\alpha\beta}...\partial u_{\gamma\delta}} \bigg|_{\overline{u}=0};$$
 (1)

– коэффициенты пропорциональности в законе Гука в напряженном кристалле $\mathcal{E}_{ikl...}$ (модули Бирча):

$$\sigma_{ik}(x) = \mathcal{Z}_{iklm}(x)\varepsilon_{lm}. \tag{2}$$

Модули Браггера $C_{\alpha\beta\gamma}$ общеприняты, однако иногда удобнее использовать параметры деформации γ_i , которые имеют наглядный физический

смысл. Параметры γ_i вводятся так, чтобы они обращались в нуль при исчезновении деформации, а соответствующими им деформациями являются всестороннее сжатие γ_1 , одноосные сжатия γ_2 , γ_3 и сдвиги γ_4 , γ_5 , γ_6 . Если имеются несколько атомов в элементарной ячейке, то параметры $\gamma_7, \gamma_8, \ldots$ описывают относительные смещения этих атомов при деформации кристалла.

Производная свободной энергии $F(\gamma)$ по параметрам $\gamma_1 - \gamma_6$ определяет упругие модули типа Фукса

$$\mathbf{B}_{i...l} = \frac{1}{\Omega} \left(\frac{\partial^n F(\gamma)}{\partial \gamma_i ... \partial \gamma_l} \right)_{\gamma=0}, \tag{3}$$

где γ_i выражается через тензор дисторсии $u_{\alpha\beta}$ (см., напр., [19]).

В дальнейшем поведение сжатого кристалла будем описывать этими модулями второго порядка B_{ik} , их производными по давлению dB_{ik}/dp и соответствующими модулями третьего порядка B_{ikl} .

Представим связь между модулями второго порядка Фукса B_{ik} , Браггера C_{ik} и Бирча \mathcal{Z}_{ij} в напряженном кристалле ($p \neq 0$) в виде

$$B_{11} = \frac{1}{3} (C_{11} + 2C_{12}) + \frac{1}{3} p; \quad C_{11} = B_{11} + \frac{4}{3} B_{33} + p;$$
 (4)

$$B_{33} = \frac{1}{2} (C_{11} - C_{12}) - p; \qquad C_{12} = B_{11} - \frac{2}{3} B_{33} - p;$$
 (5)

$$B_{44} = C_{44} - p; C_{44} = B_{44} + p. (6)$$

Объемный B и сдвиговый C' модули выражаются через модули Браггера и Фукса:

$$B = (C_{11} + 2C_{12})/3 = B_{11} - \frac{1}{3}p;$$
 (7)

$$C' = (C_{11} - C_{12})/2 = B_{33} + p.$$
 (8)

Модули Бирча \mathcal{E}_{ij} представляются как

$$\mathcal{Z}_{\alpha\beta\gamma\vartheta} = C_{\alpha\beta\gamma\vartheta} - p \left(\delta_{\alpha\gamma} \delta_{\beta\vartheta} + \delta_{\alpha\vartheta} \delta_{\beta\gamma} - \delta_{\alpha\beta} \delta_{\gamma\vartheta} \right), \tag{9}$$

$$\mathcal{Z}_{11} = \mathbf{B}_{11} + \frac{4}{3} \mathbf{B}_{33} = C_{11} - p , \qquad (10)$$

$$\mathcal{Z}_{12} = \mathbf{B}_{11} - \frac{2}{3} \mathbf{B}_{33} = C_{12} + p \,, \tag{11}$$

$$\mathcal{Z}_{44} = \mathbf{B}_{44} = C_{44} - p. \tag{12}$$

Модули типа Браггера C_{ij} зависят от давления p, а B_{ik} можно скомпоновать только из модулей Бирча \mathcal{E}_{ij} , которые в случае кубического кристалла С1 непосредственно измеряются в ультразвуковых экспериментах. Игнорирование этого обстоятельства приводит к путанице численных значений модулей упругости напряженных кристаллов.

3. Результаты расчета модулей упругости Фукса второго порядка

В работах [47–49] для всего ряда сжатых КИГ были рассчитаны барические зависимости упругих модулей Бирча \mathcal{E}_{ij} и отклонений от соотношения Коши $\delta(p)$ с учетом многочастичного взаимодействия и деформации электронных оболочек в квадрупольном приближении. Хорошее согласие полученных теоретических величин $\delta(p)$ с экспериментальными показало адекватность построения теории и модели расчета параметров [44–46].

Из уравнений колебаний (см. [43] и ссылки там) в длинноволновом приближении [1] можно выразить модули Фукса второго порядка B_{ij} через полученные параметры в виде [18,51]:

$$B_{11} = \frac{e^2}{6a^4} [2G - H - 2F + 2E - V_t - 2.710107D];$$

$$B_{33} = \frac{e^2}{8a^4} [G + 4H + 8F + 2E - 2V_q + V_t - 0.231934D];$$

$$B_{44} = \frac{e^2}{4a^4} [G + 2H + 4F - 8V_q + V_t - 0.52494D].$$
(13)

Здесь $H=H_0+\delta H$, $G=G_0+\delta G$, где $H_0(r_0)$ и $G_0(r_0)$ являются соответственно первой и второй производными парного короткодействующего потенциала отталкивания $V_{sr}(r^{ll'})$ для равновесных расстояний первых соседей $(r_0=a\sqrt{2})$; δH , δG — трехчастичные поправки, приводящие к нецентральности парного взаимодействия; F,E — короткодействующие парные силы между вторыми соседями, $F=H_0(2a)$, $E=G_0(2a)$; V_t , V_q — параметры трехчастичного и квадрупольного взаимодействий соответственно; D определяет взаимодействие Ван-дер-Ваальса. (Таблицу рассчитанных параметров для различных сжатий см., напр., в [50].)

В табл. 1 приведены результаты расчетов модулей упругости Фукса B_{ij} с учетом трехчастичного и квадрупольного взаимодействий в зависимости от сжатия $u = \Delta V/V_0$ ($\Delta V = V_0 - V(p)$, где V_0 – объем при p=0) для Ne, Ar, Kr и Xe. Как мы указывали ранее, в Xe сдвиговый модуль Фукса B_{44} при сжатии 0.6–0.7 становится отрицательным, что указывает на наличие фазового перехода, который подтверждается экспериментом при 75 GPa [54].

Таблица 1 Модули упругости Фукса второго порядка ${\bf B}_{ij}$ с учетом трехчастичного взаимодействия и деформации электронных оболочек квадрупольного типа в зависимости от сжатия для всех кристаллов ряда Ne–Xe

и	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	
Ne										
p	0.126	0.396	0.998	2.402	5.911	15.644	47.049	174.86	952.78	
B ₁₁	1.651	3.305	6.694	14.065	31.385	76.550	212.763	724.074	3522.5	
B ₃₃	0.675	1.152	2.062	3.917	8.016	18.094	46.860	150.225	712.97	
B ₄₄	0.727	1.336	2.535	5.035	10.645	24.465	63.012	191.227	754.8	
Ar										
p	0.016	0.507	1.650	4.358	11.127	29.705	88.875	328.948	1842.9	
B ₁₁	3.369	7.023	14.422	30.183	66.263	157.75	427.33	1435.2	7246.7	
B ₃₃	0.913	1.573	2.811	5.296	10.762	22.455	65.926	234.41	1371.6	
B ₄₄	2.223	4.028	7.454	14.312	29.082	64.295	161.65	500.86	2279.7	
					Kr					
p	0.003	0.543	1.749	4.468	10.870	27.190	74.576	245.234	1156.7	
B ₁₁	3.996	7.962	15.572	30.789	62.678	137.93	335.05	974.985	4023.4	
B ₃₃	0.842	1.338	2.167	3.627	6.283	12.566	29.498	93.921	511.17	
B ₄₄	1.832	3.131	5.338	9.186	15.854	29.513	58.310	137.215	502.69	
Xe										
p	-0.03	0.527	1.740	4.349	10.096	23.454	57.653	162.717	_	
B ₁₁	4.591	8.812	16.502	30.822	58.421	114.38	237.702	566.586	_	
B ₃₃	0.753	1.087	1.561	2.178	2.939	4.049	8.278	42.429	_	
B ₄₄	2.035	3.298	5.246	8.049	11.536	13.768	5.663	-49.429	_	

Примечание. Давление p и модули упругости Фукса второго порядка B_{ij} представлены в GPa, сжатие u – безразмерная величина.

4. Модули упругости Фукса третьего порядка

Модули упругости высших порядков содержат более высокие (чем вторая) пространственные производные энергии связи. Из-за резкого изменения межатомного потенциала с изменением расстояния модули упругости Фукса третьего порядка B_{ikl} значительно больше модулей упругости второго порядка B_{ik} и могут быть хорошим тестом применимости той или иной теории.

В случае кубического кристалла С1 существуют один модуль первого порядка ($B_1 = -p$), три модуля второго порядка B_{ik} и шесть модулей третьего порядка B_{ikl} (см., напр., [19, с. 51]). Три модуля B_{111} , B_{133} , B_{144} можно найти из измерений (расчетов) величин dB_{ik}/dp при p=0, с которыми они связаны соотношениями

$$B_{111} = -B\left(\frac{dB_{11}}{dp} + 1\right), \quad B_{133} = C' - B\frac{dB_{33}}{dp}, \quad B_{144} = \frac{1}{3}C_{44} - B\frac{dB_{44}}{dp}, \quad (14)$$

где B и C' определены формулами (7), (8);

$$\frac{dB_{11}}{dp} = \frac{dB}{dp} + \frac{1}{3}; \quad \frac{dB_{33}}{dp} = \frac{dC'}{dp} - 1; \quad \frac{dB_{44}}{dp} = \frac{dC_{44}}{dp} - 1.$$
 (15)

В табл. 2. приведены рассчитанные нами в модели деформированных атомов с учетом трехчастичного взаимодействия первые производные по давлению от объемного и сдвиговых модулей dB_{ik}/dp и модули упругости Фукса третьего порядка B_{ikl} (14) при p=0, а также результаты расчетов других авторов [24,28] и эксперимента [55].

Чтобы сравнить наши результаты расчетов B_{ikl} с результатами расчетов C_{ikl} из работы [24], мы воспользовались следующими соотношениями, справедливыми при p=0 (см., напр., [19, с. 51]):

$$B_{111} = -B + \frac{1}{9} (C_{111} + 6C_{112} + 2C_{123}),$$

$$B_{133} = B + \frac{4}{3} C' + \frac{1}{6} (C_{111} + C_{123}),$$

$$B_{144} = B + \frac{2}{3} C_{44} + \frac{1}{3} (C_{144} + 2C_{166}).$$
(16)

Как видно из табл. 2, результаты нашего расчета dB/dp очень хорошо согласуются с результатами эксперимента [55] для Ar–Xe (погрешность $\sim 3\%$) и несколько хуже – для Ne. Результаты расчетов dB/dp [28] и [24] на основе эмпирического потенциала Лундквиста согласуются с результатами эксперимента [55] значительно хуже, чем наши. Для производных по давлению от двух сдвиговых модулей экспериментальных значений, к сожалению, нет, а результаты наших расчетов значительно отличаются от резуль-

татов других авторов, особенно для ${\rm d}C_{44}/{\rm d}p$. Модули упругости третьего порядка ${\rm B}_{ikl}$, определяемые производными по давлению от модулей упругости второго порядка ${\rm d}B_{ik}/{\rm d}p$, демонстрируют то же поведение. Лучше всего (с точностью до 5%) наши расчеты ${\rm B}_{111}$ согласуются с расчетами Лехри и Верма [24], выполненными во втором варианте, описанном во введении. Исключение составляет только Kr, для которого относительная погрешность $\gamma^{\rm Kr}=14\%$. Наш расчет ${\it B}_{133}$ в легких кристаллах ложится в интервал между расчетами [24], полученными в двух различных моделях, а в Kr и Xe он несколько ниже, как и в случае ${\it B}_{144}$ для всех КИГ.

На рисунке и в табл. 3 представлены dB_{ik}/dp как функции давления для Ne, Ar, Kr, Xe. Для сравнения приведены соответствующие расчеты dB_{ik}/dp через dC_{ik}/dp (15), полученные в работе [28] на основе трехчастичного потенциала Лундквиста [32]. В обоих случаях все три величины dB_{ik}/dp уменьшаются с ростом давления до 15–25 GPa, которое соответствует сжатию u=0.4-0.5 для всего ряда кристаллов Ne–Xe. В интервале сжатий от 0.5 до 0.7 последнее значение соответствует давлению $p\approx180$ GPa в Ne, $p\approx330$ GPa в Ar, $p\approx250$ GPa в Kr и до u=0.6 ($p\approx60$ GPa) в Xe наблюдается слабая барическая зависимость dB_{ik}/dp .

Из рисунка видно, что лучше всего согласуются наши расчеты и расчеты [28] барических зависимостей dB_{11}/dp и dB_{44}/dp , хуже всего — зависимостей dB_{33}/dp . Причем в легких кристаллах расхождение значительнее, чем в тяжелых.

Как уже говорилось во введении, в работе [7] был представлен метод расчета изотермических модулей объемного сжатия B и их производных по давлению $\mathrm{d}B/\mathrm{d}p$ для нескольких кристаллов, в том числе для Ne и Ar при различных сжатиях на основе нескольких эмпирических уравнений состояния [4,33–36]. Для того чтобы провести сравнение наших результатов и результатов расчетов производной по давлению $\mathrm{d}B/\mathrm{d}p$, связанной с уравнением состояния Винета [33], воспользуемся представленными в работе [7] выражениями:

- для уравнения состояния Винета

$$p = 3B_0x^{-2}(x-1)\exp[\eta(1-x)],$$

для изотермического объемного модуля

$$B = B_0 x^{-2} \left[1 + (\eta + 1)(1 - x) \right] \exp \left[\eta (1 - x) \right]$$

и его производной

$$\frac{\mathrm{d}B}{\mathrm{d}p} = \frac{1}{3} \left[\frac{x(1-\eta) + 2\eta x^2}{1 + (\eta x + 1)(1-x)} + \eta x + 2 \right], \qquad \text{где } \eta = \frac{3}{2} \left(B_0' - 1 \right), \ x = \left(\frac{V}{V_0} \right)^{1/3}.$$

Таблица 2 Производные по давлению от объемного ${\rm d}B/{\rm d}p$ и сдвиговых ${\rm d}C'/{\rm d}p$, ${\rm d}C_{44}/{\rm d}p$ модулей упругости и модули упругости Фукса третьего порядка B_{111} , B_{133} , B_{144} для кристаллов ряда Ne–Xe при нулевом давлении

КИГ	Теория	a, Å	dB / dp					R	B ₁₃₃	R
			экспе- римент	теория	γ,%	dC'/dp	dC ₄₄ /dp	B ₁₁₁	D ₁₃₃	B ₁₄₄
				теория				GPa		
Ne	Настоящий расчет	2.231	7 [55]	5.862	~ 16	2.804	3.295	-11.88	-2.304	-3.548
	S. Lehri [24]	2.227		10.2	~ 46	2.63 (2.23)	8.45 (7.65)	-12.475 (-8.85)	-2.422 (-1.06)	-7.131 (-6.23)
	S. Gupta [28]	2.227		6.66	~ 5	1.91	6.10	-	-	-
Ar	Настоящий расчет	2.656	7 [55]	7.247	~ 3	2.383	4.774	-28.91	-3.747	-11.97
	S. Lehri [24]	2.656		8.9	~ 27	2.03 (1.79)	7.02 (6.53)	-29.822 (-24.01)	-5.167 (-3.057)	-15.617 (-14.16)
	S. Gupta [28]	2.656		7.74	~ 11	1.8	5.81	_	_	_
Kr	Настоящий расчет	2.824	7 [55]	7.164	~ 2	1.953	3.49	-33.956	-2.966	-9.342
	S. Lehri [24]	3.323		9.9	~ 41	2.43 (2.06)	7.61 (6.89)	-39.309 (-28.81)	-7.699 (-3.597)	-21.337 (-18.71)
	S. Gupta [28]	2.823		9.27	~ 32	2.24	6.63	_	_	_
Xe	Настоящий расчет	3.063		7.162	~ 2	1.625	3.347	-39.002	-2.116	-10.095
	S. Lehri [24]	3.065	7 [55]	9.7	~ 39	2.29 (1.93)	7.72 (7.01)	-39.307 (-29.04)	-7.380 (-3.53)	-21.273 (-18.72)
	S. Gupta [28]	3.065		8.48	~ 21	2.14	6.54	_	_	_

Примечание. В скобках приведены результаты Lehri [24], использующие в расчетах экспериментальное значение величины dB/dp [55]. Относительная погрешность $\gamma = \left| \frac{(dB/dp)^{\rm exp} - (dB/dp)^{\rm theor}}{(dB/dp)^{\rm exp}} \right| 100\%$.

Таблица 3 Производные по давлению от объемного ${\rm d}B/{\rm d}p$ и сдвиговых ${\rm d}C'/{\rm d}p$, ${\rm d}C_{44}/{\rm d}p$ модулей упругости и модули упругости Фукса третьего порядка ${\rm B}_{111}$, ${\rm B}_{133}$, ${\rm B}_{144}$ для кристаллов ряда Ne–Xe в широком интервале давлений

и	p, GPa	dB/dp					B ₁₁₁	B ₁₃₃	B ₁₄₄	
		[33]	[7]	наши	dC'/dp	$\mathrm{d}C_{44}/\mathrm{d}p$	D 111		144	
		[33]		расчеты			GPa			
Ne										
0.0	0.126	8.4	7.61	5.862	2.804	3.295	-11.580	-2.102	-3.410	
0.1	0.396	6.836	6.26	5.647	2.692	3.179	-22.145	-3.821	-6.337	
0.2	0.998	5.898	5.43	5.080	2.402	2.873	-40.802	-5.857	-10.739	
0.3	2.402	5.235	4.82	4.787	2.257	2.707	-81.178	-10.357	-20.160	
0.4	5.911	4.712	4.34	4.472	2.107	2.522	-170.77	-18.631	-39.237	
0.5	15.644	4.261	3.92	4.187	1.985	2.345	-393.81	-36.549	-82.600	
0.6	47.049	3.843	3.54	3.878	1.871	2.145	-1027.0	-77.674	-188.98	
0.7	174.86	3.424	3.15	3.529	1.772	1.909	-3237.4	-188.76	-483.42	
0.8	952.78	2.967	2.73	3.131	1.699	1.632	-14309	-575.15	-1456.3	
Ar										
0.0	0.016	7.8	7.07	7.247	2.383	4.774	-28.864	-3.723	-11.948	
0.1	0.507	6.407	5.87	6.830	2.269	4.481	-55.948	-6.618	-22.348	
0.2	1.650	5.544	5.1	5.734	1.975	3.711	-98.036	-9.066	-34.569	
0.3	4.358	4.926	4.54	5.286	1.871	3.388	-190.180	-15.376	-62.397	
0.4	11.127	4.433	4.09	4.803	1.768	3.044	-383.832	-26.148	-114.45	
0.5	29.705	4.008	3.69	4.440	1.718	2.791	-853.552	-51.935	-233.41	
0.6	88.875	3.614	3.33	4.078	1.693	2.550	-2152.13	-120.99	-532.78	
0.7	328.95	3.22	2.97	3.731	1.711	2.327	-6713.58	-378.81	-1481.9	
0.8	1842.9	2.792	2.57	3.392	1.771	2.099	-31342.5	-1901.4	-5916	
					Kr					
0.0	0.003	7.8	_	7.164	1.953	3.490	-33.950	-2.962	-9.338	
0.1	0.543	6.407	_	6.705	1.850	3.236	-62.551	-4.730	-16.176	
0.2	1.749	5.544	_	5.543	1.592	2.585	-103.069	-4.961	-21.399	
0.3	4.468	4.926	_	5.013	1.486	2.263	-185.957	-6.148	-32.453	
0.4	10.870	4.433	_	4.433	1.382	1.915	-340.541	-5.388	-45.137	
0.5	27.190	4.008	_	4.129	1.380	1.760	-703.884	-9.206	-79.086	
0.6	74.576	3.614	_	3.635	1.351	1.520	-1541.12	-4.651	-116.99	
0.7	245.23	3.22	_	3.271	1.399	1.430	-4112.58	-17.435	-256.21	
0.8	1156.7	2.792	_	2.881	1.487	1.387	-15332.5	-104.01	-853.58	
Xe										
0.0	-0.034	7.9	_	7.162	1.625	3.347	-39.098	-2.157	-10.133	
0.1	0.527	6.479		6.732	1.534	3.061	-69.657	-3.001	-16.525	
0.2	1.740	5.604	_	5.545	1.301	2.313	-109.519	-1.493	-18.579	
0.3	4.349	4.977		5.033	1.187	1.877	-186.993	1.032	-21.641	
0.4	10.096	4.48	_	4.455	1.099	1.407	-318.694	7.606	-15.180	
0.5	23.454	4.051	_	4.195	1.082	0.989	-589.121	18.764	13.616	
0.6	57.653	3.652	_	3.735	1.173	0.612	-1107.37	28.186	105.890	
0.7	162.71	3.254	_	3.392	1.456	0.438	-2421.18	-28.438	325.707	
0.8	655.52	2.821	_	2.999	1.969	0.724	-7751.68	-642.79	634.504	

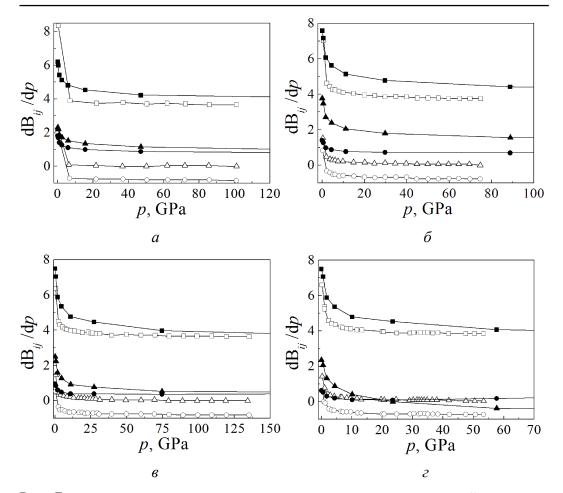


Рис. Барические зависимости производных по давлению от модулей упругости Фукса второго порядка dB_{11}/dp (\blacksquare), dB_{33}/dp (\bullet), dB_{44}/dp (\triangle) для Ne (a), Ar (δ), Kr (a) и Xe (a): \blacksquare , \bullet , \bullet — расчет dB_{ij}/dp настоящей работы; \Box , \Box , \Box , \Box — расчет dB_{ij}/dp по формуле (15) с использованием dB/dp, dC'/dp, dC_{44}/dp , полученных в работе [24]

В отличие от авторов [7], мы взяли подгоночные параметры (модуль объемного сжатия $B_0(p=0)$ и его производную по давлению B_0' при p=0, которые определяются с помощью акустических экспериментов при низком давлении), представленные Винетом [33], а именно: для Ne $B_0=1.08$, $B_0'=8.4$, для Ar $B_0=2.834$, $B_0'=7.8$, для Kr $B_0=3.308$, $B_0'=7.8$, для Xe $B_0=3.612$, $B_0'=7.9$. Как видно из табл. 3, величины dB/dp, полученные из уравнения состояния Винета и рассчитанные нами и авторами [7] (для Ne и Ar), отличаются друг от друга, разница составляет порядка 9%. Производная по давлению от объемного модуля dB/dp, рассчитанная нами с учетом трехчастичного и квадрупольного взаимодействий, тем лучше согласуется с эмпирическими расчетами [7,33], чем выше давление для всего ряда КИГ. Если сравнивать рассчитанные величины dB/dp с результатами эксперимента при p=0, представленными в табл. 2, можно сказать, что результаты

расчета в [7] близки к данным эксперимента для легких кристаллов Ne и Ar, а результаты настоящего расчета – для кристаллов ряда Ar, Kr и Xe.

5. Заключение

При анализе упругих свойств сжатых кристаллов ряда Ne–Xe мы уделили довольно большое внимание сравнению результатов наших расчетов производной по давлению модуля объемного сжатия с результатами эксперимента при p=0 [55] и эмпирического расчета [7,24,28] в широком интервале давлений. Следует отметить, что полученные результаты расчета изотермического модуля объемного сжатия B и его производной по давлению dB/dp, приведенные в работе [7], по нашему мнению, не корректны, поскольку авторы использовали параметры уравнения состояния Хама–Суито [36]. Достоверность результатов ограничена применимостью используемых 5 эмпирических уравнений состояний.

В работе [24] настораживает большое различие в результатах расчетов $\mathrm{d}C_{ik}/\mathrm{d}p$ и C_{ikl} , выполненных в двух вариантах. Нам ближе второй вариант, в котором параметр трехчастичного взаимодействия определяется по экспоненциальной формуле Кокрэна [30]. Во всяком случае модули B_{111} близки к нашим, хотя их первая производная по давлению от объемного модуля $\mathrm{d}B/\mathrm{d}p$ плохо согласуется с экспериментом.

Хорошее согласие полученных нами величин dB/dp с имеющимися экспериментальными данными [55] при p=0, адекватное описание $A_z(p)$ [51] и, в особенности, $\delta(p)$ [43,48,49] позволяют сделать вывод в пользу предсказательной ценности расчетов упругих, динамических и термодинамических свойств сжатых КИГ на основе полученного нами неэмпирического короткодействующего потенциала с учетом трехчастичного взаимодействия и деформации электронных оболочек.

- 1. *M. Born, K. Huang*, Dynamical Theory of Crystal Lattices, Oxford University Press, Oxford (1954), p. 110.
- 2. *M.P. Tosi*, Solid State Physics **16**, 1 (1964).
- 3. G.R. Barsch, Z.P. Chang, J. Appl. Phys. **39**, 3276 (1968).
- 4. F. Birch, J. Geophys. Res. 57, 227 (1952).
- 5. F.D. Stacey, J. Phys.: Condens. Matter 11, 575 (1999).
- 6. M. Kumar, High Temp.—High. Press. **31**, 221 (1999).
- 7. S. Gaurava, B.S. Sharma, S.B. Sharma, S.C. Upadhyaya, Physica B322, 328 (2002).
- 8. G.R. Barsch, J. Appl. Phys. **39**, 3780 (1968).
- 9. R.C. Hollinger, G.R. Barsch, J. Phys. Chem. Solids 37, 845 (1976).
- 10. V.K. Garg, D.S. Puri, M.P. Verma, Phys. Status Solidi A87, 401 (1978).
- 11. K.P. Thakur, J. Phys. Chem. Solids **41**, 465 (1979).
- 12. E.V. Zarochentsev, S.M. Orel, V.N. Varyukhin, Phys. Status Solidi A52, 455 (1979).
- 13. E.V. Zarochentsev, S.M. Orel, V.N. Varyukhin, Phys. Status Solidi A53, 75 (1979).
- 14. E.V. Zarochentsev, S.M. Orel, Phys. Status Solidi A57, 137 (1980).

- 15. E.V. Zarochentsev, S.M. Orel, A.Yu. Yakovets, Phys. Status Solidi A94, 515 (1986).
- 16. E.V. Zarochentsev, S.M. Orel, I.V. Kochergin, Phys. Status Solidi A94, 105 (1986).
- 17. E.V. Zarochentsev, S.M. Orel, Yu.V. Stepanchuk, Phys. Status Solidi A116, 295 (1989).
- 18. E.V. Zarochentsev, V.N. Varyukhin, E.P. Troitskaya, Val.V. Chabanenko, E.E. Horbenko, Phys. Status Solidi **B243**, 2672 (2006).
- 19. В.Г. Барьяхтар, Е.В. Зароченцев, Е.П. Троицкая, Методы вычислительной физики в теории твердого тела. Атомные свойства металлов, Наукова думка, Киев (1990).
- 20. T. Tsuchiya, K. Kawamura, J. Chem Phys. 114, 10086 (2001).
- 21. T. Tsuchiya, K. Kawamura, J. Chem Phys. 116, 2121 (2002).
- 22. T. Tsuchiya, K. Kawamura, J. Chem Phys 117, 5859 (2002).
- 23. S. Lehri, M.P. Verma, Phys. Status Solidi B92, 363 (1979).
- 24. S. Lehri, M.P. Verma, Phys. Status Solidi B98, 789 (1980).
- 25. A.L. Karasevskii, W.B. Holzapfel, Phys. Rev. B67, 224301 (2003).
- 26. M. Aoki, T. Kurokawa, J. Phys.: Condens. Matter 19, 236228 (2007).
- 27. E. Pechenic. I. Kelson, G. Makov, Phys. Rev. B78, 134109 (2008).
- 28. S. Gupta, S.C. Goyal, Sci China Ser D-Earth Sci 52, 1599 (2009).
- 29. B.M. Axilrod, E. Teller, J. Chem. Phys. 11, 299 (1943).
- 30. *W. Cochran*, CPC Crit. Rev. Solid State Mat. Sci. **2**, № 1, 1 (1971).
- 31. S. Gupta, S.C. Goyal, J. Phys. Chem. Solids 64, 1125 (2003).
- 32. M.P. Verma, R.K. Singh, Phys. Status Solidi B33, 769 (1969).
- 33. P. Vinet, J.H. Rose, J. Ferrante, J.R. Smith, J. Phys.: Condens. Matter 1, 1941 (1989).
- 34. J. Shanker, S.S. Kushwah, P. Kumar, Physica **B239**, 337 (1997).
- 35. J.P. Poirier, A. Tarantola, Phys. Earth Planet. Inter. 109, 1 (1998).
- 36. J. Hama, K. Suito, J. Phys.: Condens. Matter 8, 67 (1996).
- 37. И.Г. Заславская, К.Б. Толпыго, УФЖ 1, 226 (1956).
- 38. З.А. Демиденко, Т.И. Кучер, К.Б. Толпыго, ФТТ 3, 2482 (1961).
- 39. З.А. Демиденко, К.Б. Толпыго, ФТТ 3, 3435 (1961).
- 40. К.Б. Толпыго, Е.П. Троицкая, ФТТ 13, 1135 (1971).
- 41. K.B. Tolpygo, Phys. Status Solidi **B56**, 591 (1973).
- 42. О.Н. Болонин, К.Б. Толпыго, ФТТ 15, 1674 (1973).
- 43. Е.П. Троицкая, Е.Е. Горбенко, Е.А. Пилипенко, ФНТ 42, 526 (2016).
- 44. Е.П. Троицкая, Вал.В. Чабаненко, И.В. Жихарев, Е.Е. Горбенко, ФТТ **53**, 1555 (2011).
- 45. Е.П. Троицкая, В.В. Чабаненко, И.В. Жихарев, Е.Е. Горбенко, Е.А. Пилипенко, ФТВД **21**, № 4, 7 (2011).
- 46. Е.П. Троицкая, В.В. Чабаненко, И.В. Жихарев, Е.Е. Горбенко, Е.А. Пилипенко, ФТВД **22**, № 2, 37 (2012).
- 47. *Е.П. Троицкая, В.В. Чабаненко, Е.А. Пилипенко, Е.Е. Горбенко,* ФТВД **23**, № 4, 20 (2013).
- 48. V.N. Varyukhin, E.P. Troitskaya, Val.V. Chabanenko, Ie.Ie. Gorbenko, E.A. Pilipenko, Phys. Status Solidi **B251**, 774 (2014).
- 49. V.N. Varyukhin, E.P. Troitskaya, Ie.Ie. Gorbenko, E.A. Pilipenko, V.V. Chabanenko, Phys. Status Solidi **B252**, 709 (2015).
- 50. Е.П. Троицкая, Е.А. Пилипенко, ФТВД **24**, № 2, 7 (2014).

- 51. Е.П. Троицкая, И.В. Жихарев, Е.А. Пилипенко, ФТВД **24**, № 3–4, 26 (2014).
- 52. F.D. Murnaghan, Finite deformation of elastic solid, John Wiley & Sons, Inc., New York (1951), p. 68.
- 53. D. Wallace, Solid State Physics 25, 301 (1970).
- 54. A.P. Jephcoat, H.K. Mao, L.W. Finger, D.F. Lox, R.J. Hemley, C.S. Zha, Phys. Rev. Lett. **59**, 2670 (1987).
- 55. C.A. Swenson, in: Rare Gas Solids, M.L. Klein, J.A. Venables (eds.), Academic Press, New York (1977), p. 863.

E.A. Pilipenko, E.P. Troitskaya, Ie.Ie. Gorbenko

THE SECOND-ORDER FUCHS ELASTIC MODULI, THEIR PRESSURE DERIVATIVES FOR RARE-GAS CRYSTALS IN A MODEL OF DEFORMABLE ATOMS

The theoretical *ab initio* investigation of the elastic properties of the compressed raregases crystals (RGC) is carried out in a model of deformable and polarizable atoms with the many-body and quadrupole interactions taken into account. The analytical expressions for the Fuchs elastic moduli are presented, being derived from the equations of lattice vibrations in the long-wave approximation. The derivatives of the second-order Fuchs elastic moduli with respect to the pressure and the related third-order Fuchs elastic moduli are calculated in a wide range of pressure. It has been shown that the values of the derivatives of the second-order Fuchs elastic moduli with respect to pressure are in good agreement with the experiment at zero pressure and the results of the empirical calculations of other authors.

Keywords: rare-gas crystals, many-body interactions, quadrupole interaction, high pressure, the third-order Fuchs elastic moduli, derivatives of the second-order Fuchs elastic moduli with respect to pressure

Fig. Pressure dependencies of the second-order Fuchs elasticity moduli derivatives dB_{11}/dp (\blacksquare), dB_{33}/dp (\bullet), dB_{44}/dp (\blacktriangle) with respect to the pressure for Ne (a), Ar (δ), Kr (δ), and Xe (ϵ): \blacksquare , \bullet , \blacktriangle – calculation of dB_{ij}/dp in the present work; \Box , \bigcirc , \triangle – calculation of dB_{ij}/dp by Eq. (15) with using dB/dp, dC'/dp, dC_{44}/dp obtained in [24]