PACS: 64.90.-i, 81.40.Vw, 82.80.Ch

Г.В. Букин, Л.В. Бережная, И.М. Макмак

СПИНОВЫЙ ПЕРЕХОД ИОНОВ Fe^{2+} В КООРДИНАЦИОННОМ СОЕДИНЕНИИ С ДВУМЕРНОЙ СТРУКТУРОЙ $Fe[bipy(ttr)_2]^0_{\infty}$

Донецкий физико-технический институт им. А.А. Галкина

Статья поступила в редакцию 4 марта 2017 года

Проведено экспериментальное исследование спинового перехода (СП) ионов Fe^{2+} в металлоорганическом координационном соединении с двумерной структурой $Fe[bipy(ttr)_2]_{\infty}^0$, индуцированного двумя способами: температурой при атмосферном давлении 10^{-4} GPa и внешним гидростатическим давлением при постоянной комнатной температуре 301 К. Показано, что в первом случае СП происходит при ~ 220 К с несимметричным гистерезисом шириной ~ 8 К, а во втором – при ~ 0.062 GPa с несимметричным гистерезисом шириной ~ 0.051 GPa. Проведен сравнительный анализ параметра эффективного взаимодействия высокоспиновых (BC) комплексов между собой Γ и суммы изменения энтальпии ΔH и упругой энергии Δ_{elast} при СП, индуцированном температурой и давлением. Установлено, что при СП, индуцированном температурой, Γ и $\Delta H + \Delta_{elast}$ соответственно в ~ 2.63 и ~ 1.28 раза меньше, чем при СП, индуцированном давлением.

Ключевые слова: координационные соединения, фазовый переход, спиновый кроссовер, высокие давления

Введение

Благодаря прогрессу в исследовании явления спинового кроссовера (СК) в координационных соединениях с ионами переходных металлов [1–6] синтезирована группа металлоорганических координационных полимеров, имеющих СК в области комнатных температур [7,8], в которой изучались СП, индуцируемые разными способами [9–15]. Намеченные на сегодня перспективы использования магнетиков в устройствах магнитной памяти и спинтроники связаны с переходом от монокристаллов металлоорганических координационных соединений к их тонким пленкам и наноразмерным молекулярным комплексам. Для этого направления является актуальным исследование СК-свойств нового нейтрального металлоорганического координационного соединения с двумерной структурой Fe[bipy(ttr)₂]⁰_∞ (где bipy – 2,2'-бипиридин, ttr – тетразол) [16], в котором СП при атмосферном давлении наблюдается при температуре ~ 220 К. Целью работы является экспериментальное исследование СП ионов Fe²⁺ в металлоорганическом координационном соединении с двумерной структурой Fe[bipy(ttr)₂]⁰_∞, индуцированного двумя способами: температурой при атмосферном давлении 10^{-4} GPa и внешним гидростатическим давлением при постоянной комнатной температуре 301 К.

Структура $Fe[bipy(ttr)_2]^0_{\infty}$

Поликристаллические образцы $Fe[bipy(ttr)_2]_{\infty}^0$ получены в соответствии с методикой, описанной в [7]. Фрагменты элементарной ячейки и объемной 2D-структуры $Fe[bipy(ttr)_2]_{\infty}^0$ показаны на рис. 1 [17].

Рис. 1. Фрагменты элементарной ячейки (*a*) и объемной 2D-структуры (*б*) Fe[bipy(ttr)₂]⁰_{∞}

Симметрия Fe[bipy(ttr)₂] $^{0}_{\infty}$ относится к орторомбической пространственной группе *Pbca*. Центральный ион Fe²⁺ находится в сильно искаженном октаэдрическом окружении атомов азота, принадлежащих лиганду [bipy(ttr)₂] $^{-}_{2}$. Четыре атома N 2,2'-бипиридина занимают экваториальные позиции, а два остальных расположены в осевом направлении и принадлежат тетразольным группам.

При понижении температуры $Fe[bipy(ttr)_2]_{\infty}^0$ до ~ 30 K 85% ионов Fe^{2+} переходят из ВС- в низкоспиновое (НС) состояние. Наибольшее изменение средней длины связи Fe–N при СП наблюдается в экваториальной позиции и составляет 0.2399 Å [17].

Результаты эксперимента

Спиновый переход в Fe[bipy(ttr)₂]⁰_∞, индуцированный температурой при 10⁻⁴ GPa, исследовали методом измерения температурной зависимости молярной магнитной восприимчивости χ_M [17,18], которая пропорциональна относительному количеству BC-фазы $\gamma_{\rm HS}$ (относительному количеству ионов Fe²⁺, находящихся в BC-состоянии). На рис. 2 показана экспериментальная зависимость $\chi_M(T)$ при 10⁻⁴ GPa, полученная на поликристаллическом образце Fe[bipy(ttr)₂]⁰_∞ в магнитном поле напряженностью 1 T [19]. Как видно, СП происходит при ~ 220 K с несимметричным гистерезисом шириной ~ 8 K. В низкотемпературной области СП является более протяженным по сравнению с таковым в области высоких температур.

Рис. 2. Температурная зависимость молярной магнитной восприимчивости χ_M Fe[bipy(ttr)₂]⁰_∞ при 10⁻⁴ GPa (\circ – нагрев, • – охлаждение)

Исследование СП в Fe[bipy(ttr)₂]⁰_∞, индуцированного внешним гидростатическим давлением при 301 K, проводили в соответствии с методикой, описанной в [20]. Тонкий слой поликристаллического образца загружали в твердотельную оптическую камеру [21], давление в которой повышали дискретно от 10^{-4} до 1.451 GPa. Спектры пропускания образца при каждом фиксированном давлении регистрировали при помощи спектрографа PGS-2 и ФЭУ-118 в диапазоне длин волн λ от 400 до 750 nm, где экспериментальная установка имеет максимальную чувствительность. Спектральные зависимости натуральной оптической плотности $D(\lambda)$ рассчитывали по измеренным спектрам пропускания. При дискретном понижении давления измерения и расчеты проводили аналогичным образом.

Результат расчета зависимости $D(\lambda)$ Fe[bipy(ttr)₂]⁰_∞ при дискретном повышении и понижении давления представлен на рис. 3. Видно, что в диапазоне длин волн от 400 до 750 nm $D(\lambda)$ для BC-состояния Fe[bipy(ttr)₂]⁰_∞ при 10^{-4} GPa содержит составную полосу поглощения с наиболее выраженными максимумами вблизи 430 и 580 nm, которую мы связываем с поглощением лигандов. При повышении давления от 10^{-4} до 1.451 GPa происходит переход ионов Fe²⁺ из BC- в HC-состояние и наблюдается рост $D(\lambda)$ в результате

Puc. 3. Зависимость $D(\lambda)$ Fe[bipy(ttr)₂]⁰_∞ при дискретном повышении давления от 10^{-4} до 1.451 GPa (*a*) и его понижении от 1.451 до 10^{-4} GPa (*b*)

возникновения двух новых полос поглощения с максимумами вблизи 480 и 630 nm. При понижении давления наблюдается спад кривой $D(\lambda)$ и при 10^{-4} GPa ее ход практически совпадает с первоначальным.

Для идентификации наблюдаемых полос поглощения под давлением проводили регистрацию спектров пропускания образца в ВС- и НС-состояниях соответственно при 10⁻⁴ GPa и 301 K и при 10⁻⁴ GPa и 77 K (рис. 4). На рисунке видно, что спектры поглощения Fe[bipy(ttr)₂]⁰_∞ в НС-состоянии при 10⁻⁴ GPa и 77 K и при 1.451 GPa и 301 K имеют подобный характер, но не совпадают. Это несовпадение связано с различием параметров полос поглощения, определяющих спектральный состав $D(\lambda)$. Так, интенсивность полосы поглощения с максимумом вблизи 480 nm при индуцировании температурой (77 K) больше, чем при индуцировании давлением (1.451 GPa), а с максимумом вблизи 630 nm – наоборот, меньше. Но при этом полуширина полосы при 630 nm заметно меньше, чем при 480 nm, и площадь под кривой $D(\lambda)$ при 77 K в итоге на ~ 4% (~ 13.62 arb. units) больше, чем при 1.451 GPa.

Проведенный анализ показывает, что дополнительную экспериментальную информацию о свойствах СП можно получить при исследованиях спектрального состава и тонкой структуры полос электронного поглощения и их зависимости от внешнего воздействия.

Полосы поглощения с максимумом вблизи 480 и 630 nm мы связываем с *d*-*d*-переходами соответственно ${}^{1}A_{1} \rightarrow {}^{1}T_{2}$ и ${}^{1}A_{1} \rightarrow {}^{1}T_{1}$ ионов Fe²⁺ из BC- в HC-состояние [22]. Относительное количество HC-фазы γ_{LS} при СП в Fe[bipy(ttr)₂]⁰_∞ определяли по разности интегральных значений $D(\lambda)$ при текущем и атмосферном давлении с учетом того, что $\gamma_{LS} + \gamma_{HS} = 1$, где γ_{HS} – относительное количество BC-фазы.

Экспериментальная кривая относительного содержания HC-фазы в $Fe[bipy(ttr)_2]^0_{\infty}$ при дискретном повышении и понижении давления при 301 К

представлена на рис. 5. Из рисунка видно, что при повышении давления от 10^{-4} до 1.451 GPa ~ 85% ионов Fe²⁺ переходят из BC- в HC-состояние, а при сбросе давления – из HC- в BC-состояние. Таким образом, СП, индуцированный давлением при 301 K, происходит при ~ 0.062 GPa с несимметричным гистерезисом шириной ~ 0.051 GPa. Сравнение кривых $\chi_M(T)$ на рис. 2 и $\gamma_{\rm LS}(P)$ на рис. 5 показывает, что несимметричность гистерезиса более ярко выражена при СП, индуцированном давлением.

Рис. 4. Зависимость $D(\lambda)$ Fe[bipy(ttr)₂]⁰_∞ в HC-состоянии при 10⁻⁴ GPa и 77 K (\circ), при 1.451 GPa и 301 K (\Box) и в BC-состоянии при 10⁻⁴ GPa и 301 K (\diamond)

Рис. 5. Относительное количество HC-фазы в $Fe[bipy(ttr)_2]_{\infty}^0$ при дискретном повышении давления от 10^{-4} до 1.451 GPa (**•**) и его понижении от 1.451 до 10^{-4} GPa (•) при 301 K

Экспериментальные кривые $\chi_M(T)$ и $\gamma_{LS}(P)$ позволяют определить параметр эффективного взаимодействия ВС-комплексов между собой Г, изменение энтальпии ΔH и упругую энергию Δ_{elast} для СП в Fe[bipy(ttr)₂]_{\infty}^0. В рамках модели упругих взаимодействий [13] уравнение равновесия спиновых состояний имеет вид [14]:

$$\left(\Delta H + \Delta_{\text{elast}}\right) - T\Delta S_{\text{HL}} + P\Delta V_{\text{HL}} - 2\gamma_{\text{HS}}\Gamma - k_{\text{B}}T\ln\left(\frac{1-\gamma_{\text{HS}}}{\gamma_{\text{HS}}}\right) = 0, \qquad (1)$$

где $\Delta V_{\rm HL}$ и $\Delta S_{\rm HL}$ – изменения соответственно объема и энтропии при СП.

Связь между T и $\gamma_{\rm HS}$, полученная из уравнения равновесия (1), будет следующей:

$$T(\gamma_{\rm HS}) = \frac{\left(\Delta H + \Delta_{\rm elast}\right) + P\Delta V_{\rm HL} - 2\gamma_{\rm HS}\Gamma}{k_{\rm B}\ln\left(\frac{1 - \gamma_{\rm HS}}{\gamma_{\rm HS}}\right) + \Delta S_{\rm HL}}.$$
(2)

Для СП в Fe[bipy(ttr)₂]⁰_∞ при атмосферном давлении $\Delta H \approx 1167$ K, $\Delta S_{\text{HL}} \approx \approx 44.1$ J/(K·mol) и $\Delta V_{\text{HL}} \approx 230$ Å³. Интересующие нас параметры $\Gamma \approx 601$ K и $\Delta_{\text{elast}} \approx 688$ K определяли подгонкой уравнения (2) к кривой $\gamma_{\text{HS}}(T)$, рассчитанной по экспериментальным данным $\chi_M(T)$ на рис. 2. В результате сумма изменения энтальпии и упругой энергии $\Delta H + \Delta_{\text{elast}} = 1855$ K. Из уравнения равновесия (1) аналогично получается связь и между *P* и γ_{HS} :

$$P(\gamma_{\rm HS}) = \frac{T \left[k_{\rm B} \ln \left(\frac{1 - \gamma_{\rm HS}}{\gamma_{\rm HS}} \right) + \Delta S_{\rm HL} \right] - \left(\Delta H + \Delta_{\rm elast} \right) + 2\gamma_{\rm HS} \Gamma}{\Delta V_{\rm HI}} \,. \tag{3}$$

Подгонкой уравнения (3) к кривой $\gamma_{\rm HS}(P)$, рассчитанной по экспериментальным данным $\gamma_{\rm LS}(P)$ на рис. 5, определяли $\Gamma \approx 1582$ К и $\Delta H + \Delta_{\rm elast} =$ = 2384 К. Сравнение величины параметра эффективного взаимодействия ВС-комплексов между собой Г и суммы изменения энтальпии ΔH и упругой энергии $\Delta_{\rm elast}$, полученных из экспериментальных зависимостей $\chi_M(T)$ и $\gamma_{\rm LS}(P)$, показывает, что при СП, индуцированном температурой, величины Г и $\Delta H + \Delta_{\rm elast}$ соответственно в ~ 2.63 и ~ 1.28 раза меньше, чем при СП, индуцированном давлением.

Заключение

В работе проведено экспериментальное исследование спинового перехода ионов Fe²⁺ в металлоорганическом координационном соединении с двумерной структурой Fe[bipy(ttr)₂]⁰_∞, индуцированного двумя способами: температурой при атмосферном давлении 10^{-4} GPa и внешним гидростатическим давлением при постоянной комнатной температуре 301 К. Показано, что СП, индуцированный температурой при 10^{-4} GPa, происходит при ~ 220 K с несимметричным гистерезисом шириной ~ 8 К. В низкотемпературной области СП является более протяженным, чем в области высоких температур.

Показано, что СП, индуцированный давлением при 301 К, происходит при ~ 0.062 GPa с несимметричным гистерезисом шириной ~ 0.051 GPa. Несимметричность гистерезиса более ярко выражена при СП, индуцированном давлением. По экспериментальным кривым СП в рамках модели упругих взаимодействий определены величины параметра эффективного взаимодействия ВС-комплексов между собой Г и суммы изменения энтальпии ΔH и упругой энергии Δ_{elast} , а также проведен их сравнительный анализ. В результате установлено, что при СП, индуцированном температурой, величины Г и $\Delta H + \Delta_{elast}$ соответственно в ~ 2.63 и ~ 1.28 раза меньше, чем при СП, индуцированном давлением.

Физика и техника высоких давлений 2017, том 27, № 2

- 1. G.G. Levchenko, A.V. Khristov, V.N. Varyukhin, Low Temp. Phys. 40, 571 (2014).
- 2. S. Venkataramani, U. Jana, M. Dommaschk, F.D. Sönnichsen, F. Tuczek, R. Herges, Science **331**, 445 (2011).
- 3. S. Thies, H. Sell, C. Schütt, C. Bornholdt, C. Näther, F. Tuczek, R. Herges, J. Am. Chem. Soc. 133, 16243 (2011).
- V. Meded, A. Bagrets, K. Fink, R. Chandrasekar, M. Ruben, F. Evers, A. Bernand-Mantel, J.S. Seldenthuis, A. Beukman, H.S.J. van der Zant, J. Phys. Chem. B83, 245415 (2011).
- 5. T. Forestier, A. Kaiba, S. Pechev, D. Denux, P. Guionneau, C. Etrillard, N. Daro, E. Freysz, J.F. Létard, Chem. Eur. J. 15, 6122 (2009).
- 6. V. Ksenofontov, A.B. Gaspar, G. Levchenko, B. Fitzsimmons, P. Gütlich, J. Phys. Chem. B108, 7723 (2004).
- 7. V. Niel, J.M. Martinez-Agudo, M.C. Muñoz, A.B. Gaspar, J.A. Real, Inorg. Chem. 40, 3838, (2001).
- 8. G. Molnár, V. Niel, A.B. Gaspar, J.A. Real, V. Zwick, A. Bousseksou, J.J. McGarvey, J. Phys. Chem. **B106**, 9701 (2002).
- 9. G. Molnár, V. Niel, J.A. Real, L. Dubrovinsky, A. Bousseksou, J.J. McGarvey, J. Phys. Chem. B107, 3149 (2003).
- 10. V. Niel, A. Galet, A.B. Gaspar, M.C. Muñoz, J.A. Real, Chem. Commun. 1248, (2003).
- 11. V. Martinez, A.B. Gaspar, M.C. Muñoz, G.V. Bukin, G. Levchenko, J.A. Real, Chem. Eur. J. 15, 10960 (2009).
- 12. Г.В. Букин, С.А. Терехов, А.В. Gaspar, J.A. Real, Г.Г. Левченко, ФТВД **20**, № 2, 31 (2010).
- 13. C.P. Köhler, R. Jakobi, E. Meissner, L. Wiehl, H. Spiering, P. Gütlich, J. Phys. Chem. Solids 51, 239 (1990).
- 14. G. Levchenko, G.V. Bukin, S.A. Terekhov, A.B. Gaspar, V. Martinez, M.C. Muñoz, J.A. Real, J. Phys. Chem. B115, 8176 (2011).
- 15. С.А. Терехов, Г.В. Букин, Г.Г. Левченко, А.В. Gaspar, J.A. Real, ФТВД **22**, № 3, 69 (2012).
- 16. A.B. Gaspar, G.G. Levchenko, S. Terekhov, G.V. Bukin, J. Valverde-Muñoz, F.J. Muñoz-Lara, M. Seredyuk, J.A. Real, Eur. J. Inorg. Chem. 2014, 429 (2014).
- 17. V. Ksenofontov, H. Spiering, A. Schreiner, G. Levchenko, H.A. Goodwin, P. Gutlich, J. Phys. Chem. Solids 60, 393 (1999).
- 18. Y. Garcia, V. Ksenofontov, G. Levchenko, P. Gutlich, J. Mater. Chem. 10, 2274 (2000).
- 19. M. Seredyuk, L. Piñeiro-López, M.C. Muñoz, F.J. Martínez-Casado, G. Molnár, J.A. Rodriguez-Velamazán, A. Bousseksou, J.A. Real, Inorg. Chem. 54, 7424 (2015).
- 20. Г.В. Букин, Г.Г. Левченко, А. Galet, J.A. Real, ФТВД 16, № 1, 51 (2006).
- 21. В.А. Волошин, А.И. Касьянов, ПТЭ 5, 170 (1982).
- 22. J. Jeftic, R. Hinek, S.C. Capelli, A. Hauser, Inorg. Chem. 36, 3080 (1997).

G.V. Bukin, L.V. Berezhnaya, I.M. Makmak

SPIN TRANSITION OF THE Fe^{2+} IONS IN 2D COORDINATION COMPOUND $Fe[bipy(ttr)_2]^0_{\infty}$

Experimental study of the spin transition (ST) of the Fe²⁺ ions in metalorganic coordination compound Fe[bipy(ttr)₂]⁰_∞ characterized by two-dimensional structure that was induced by two methods: the thermal influence at atmospheric pressure of 10⁻⁴ GPa and the influence of the hydrostatical pressure at room temperature of 301 K was carried out. It is shown that in the first case, the ST takes place at a temperature ~ 220 K and asymmetrical hysteresis with the width equal to ~ 8 K. Under the action of external hydrostatical pressure at room temperature, the ST takes place at ~ 0.062 GPa and asymmetrical hysteresis ~ 0.051 GPa. The comparative analysis of the effective interaction parameters of the high-spin complexes Γ and the sums of change of the enthalpy ΔH and elastic energy Δ_{elast} in the course of temperature-induced ST and the pressure induced ST are in ~ 2.63 and ~ 1.28 times higher of the same parameters calculated for the temperature-induced ST.

Keywords: coordination compounds, phase transition, spin crossover, high pressure

Fig. 1. Crystal cell structure (*a*) and a fragment of the 2D coordination structure (δ) in Fe[bipy(ttr)₂]⁰_{∞}

Fig. 2. Temperature dependence of the molar magnetic susceptibility χ_M of Fe[bipy(ttr)₂]⁰₂ at 10⁻⁴ GPa (\circ – heating, \bullet – cooling)

Fig. 3. $D(\lambda)$ dependence for Fe[bipy(ttr)₂]⁰_{∞} at discrete increase of pressure from 10⁻⁴ to 1.451 GPa (*a*) and decrease from 1.451 to 10⁻⁴ GPa (δ)

Fig. 4. $D(\lambda)$ dependence for Fe[bipy(ttr)₂]⁰_{∞} in the LS state at atmospheric pressure and the temperature of 77 K (\circ), at the pressure of 1.451 GPa and the temperature of 301 K (\Box), and in the HS state at atmospheric pressure and the temperature of 301 K (\diamond)

Fig. 5. LS phase fraction in $\text{Fe}[\text{bipy}(\text{ttr})_2]^0_{\infty}$ at the pressure increase from 10^{-4} to 1.451 GPa (**■**) and decrease from 1.451 to 10^{-4} GPa (\circ) at room temperature of 301 K