PACS: 81.40.Pq, 64.60.My

Н.Б. Эфрос¹, Л.Г. Коршунов², Б.М. Эфрос¹, В.С. Тютенко¹

КОНТАКТНАЯ ПРОЧНОСТЬ НАНОКРИСТАЛЛИЧЕСКИХ СТРУКТУР ПОВЕРХНОСТЕЙ ТРЕНИЯ УГЛЕРОДИСТЫХ АУСТЕНИТНЫХ СПЛАВОВ

¹Донецкий физико-технический институт им. А.А. Галкина НАН Украины

²Институт физики металлов УрО РАН, г. Екатеринбург

Статья поступила в редакцию 4 октября 2015 года

Исследовано влияние частиц высокопрочной карбидной фазы TiC на трибологические свойства хромомарганцевых аустенитных сплавов при сухом трении скольжения и абразивном воздействии. Показано, что наличие в структуре частиц TiC приводит к росту коэффициента трения и интенсивности адгезионного изнашивания.

Ключевые слова: углеродистые аустенитные сплавы, поверхностный слой с нанокристаллической структурой, интенсивность адгезионного изнашивания, абразивная износостойкость

Досліджено вплив частинок високоміцної карбідної фази ТіС на трибологічні властивості хромомарганцевих аустенітних сплавів при сухому терті ковзання й абразивному впливі. Показано, що наявність у структурі частинок ТіС призводить до зростання коефіцієнта тертя й інтенсивності адгезійного зношування.

Ключові слова: вуглецеві аустенітні сплави, поверхневий шар з нанокристалічною структурою, інтенсивність адгезійного зношування, абразивна зносостійкість

Введение

Известно, что фрикционное воздействие может приводить к образованию нанокристаллических структур (НКС) в поверхностном слое различных металлических материалов [1]. Формирование таких структур обусловлено интенсивной пластической деформацией материала, которая осуществляется по ротационному механизму. Уровень прочности НКС, возникающих при трении в поверхностных слоях, определяется не только их высокой дефектностью, но и способностью данных структур к дальнейшему деформированию. Прочность существенно зависит от химического и фазового состава контактирующих материалов и, следовательно, может быть повышена с помощью оптимального легирования и предварительной термопластической обработки.

© Н.Б. Эфрос, Л.Г. Коршунов, Б.М. Эфрос, В.С. Тютенко, 2015

Ранее было показано, что как присутствие є-мартенсита в структуре железомарганцевых сплавов, так и их легирование азотом являются причинами значительного снижения коэффициента трения и интенсивности адгезионного изнашивания данных сплавов [1,2]. Поскольку є-мартенсит (как и атомы азота) присутствует и в хромомарганцевых метастабильных и стабильных аустенитных сплавах, представляет определенный научный и практический интерес вопрос влияния различных факторов на трибологические свойства технически важных материалов. При этом очень важно проанализировать также влияние частиц карбидно-нитридных фаз на поведение сплавов данного класса при трении скольжения и абразивном воздействии.

Материалы и методика исследования

Химический состав исследуемых сплавов приведен в табл. 1. Параллельно с хромомарганцевыми аустенитными сплавами испытывали железомарганцевый сплав Г20, содержащий в структуре кроме аустенита: ~ 45% ε -мартенсита; нержавеющий сплав 12Х18Н9, метастабильный к $\gamma \rightarrow \alpha$ -мартенситному превращению при пластической деформации; аустенитный стабильный сплав 40Х25Н20. Слитки всех сплавов гомогенизировали при 1100°C в течение 8 h и ковали в прутки сечением 10 × 10 mm с последующей закалкой от 1100°C в воде. Из прутков после термообработки изготавливали образцы для трибологических и структурных исследований.

Таблица 1

Синор	Содержание элементов, mass%							
Сплав	С	Mn	Cr	Si	Ni	Ti		
02Г17Х11Н	0.02	17.2	11.5	0.3	0.7	0.06		
20Г18Х7Т	0.20	18.4	7.4	0.3	_	0.40		
30Г17Х10Т1	0.30	17.2	9.7	0.3	-	1.40		
40Γ19X11T2	0.40	18.6	10.9	0.2	-	1.90		
Г20	0.03	20.4	-	0.3	-	-		
12X18H9	0.12	_	17.6	0.3	9.1	-		
40X25H20	0.42	_	25.4	0.3	20.1	_		

Химический состав исследованных сплавов

Трибологические испытания сплав–сталь и сплав–абразив проводили на лабораторных установках в условиях трения скольжения. Адгезионное изнашивание осуществляли по схеме палец–пластина (сталь 45) без смазки при средней скорости скольжения 0.035 m/s и нагрузке 294 N. В данных условиях трения объемная средняя температура в поверхностном слое не превышала 40°C.

Проведен анализ прочностных (микротвердость, сопротивление сдвигу и др.) и трибологических (коэффициент трения, интенсивность изнашивания и др.) свойств НКС металлических материалов. Структуру сплавов исследовали металлографическим, рентгеноструктурным и электронно-микроскопическим методами [3,4].

Результаты исследования и обсуждение

После закалки структура сплава 02Г17Х11Н состояла из аустенита и заметного (до 15 vol.%) количества є-фазы. Остальные хромомарганцевые сплавы, кроме аустенита, в структуре содержали карбидные частицы ТіС. Так, например, в сплавах 20Г18Х7Т, 30Г17Х10Т1 и 40Г19Х11Т2 присутствовало соответственно около 1.0, 3.0 и 4.5 vol.% ТіС. Количество карбидной фазы в сплавах определяли методом стереометрического микроанализа (точечный метод) [5], а также по методике, описанной в работе [6]. Полученные результаты затем усредняли. Средний размер частиц ТіС составлял около 3 µm.

В табл. 2 приведены результаты испытаний аустенитных сплавов на абразивное и адгезионное изнашивание. Как следует из рассматриваемой таблицы, наличие в структуре сплавов 20Г18Х7Т, 30Г17Х10Т1 и 40Г19Х11Т2 соответственно 1, 3 и 4.5 vol.% высокопрочной карбидной фазы TiC существенно повышает исходную микротвердость данных сплавов, но почти не влияет на их абразивную износостойкость.

Таблица 2

Абразивная износостойкость ε, интенсивность адгезионного изнашивания *Ih*, коэффициент трения *K*, микротвердость *H* и количество мартенсита (ε, α) в аустенитных сплавах

			K	H, MPa		Количество мартенсита в спла- вах после трения, vol.%	
Сплав	3	$Ih \times 10^{7}$		закалка	трение	слой толщиной	продукты
						~ 5 µm	изнашивания
02Г17Х11Н	1.7	3.5	0.25	2600	6230	90% ε	$80\% \epsilon + 20\% \alpha$
20Г18Х7Т	1.8	4.0	0.30	2800	6770	75% ε	$70\% \epsilon + 20\% \alpha$
30Γ17X10T1	1.8	4.1	0.27	3260	6550	90% ε	$75\% \epsilon + 20\% \alpha$
40Γ19X11T2	1.8	3.2	0.35	3700	6770	60% ε	$40\% \epsilon + 40\% \alpha$
Г20	1.5	3.1	0.28	3300	5500	$90\% \epsilon + 10\% \alpha$	$>90\% \alpha$
12X18H9	1.9	10.0	0.40	1600	7100	90% α	$>90\% \alpha$
40X25H20	1.5	50.0	0.42	2100	6200	_	_

Из данных табл. 2 следует, что метастабильные к $\gamma \rightarrow \varepsilon$ -превращению сплавы 20Г18Х7Т, 30Г17Х10Т1 и 40Г19Х11Т2, содержащие в структуре карбидные частицы TiC, не имеют преимущества в сопротивлении адгезионному изнашиванию перед сплавом 02Г17Х11Н. Микротвердость на поверхности трения хромомарганцевых сплавов, легированных титаном, также не увеличивается по мере роста карбидной фазы в их структуре, сохраняясь на уровне 6600–6800 MPa, и близка к величине микротвердости на поверхности трения сплава 02Г17Х11Н (6200 MPa). Рост количества карбидной фазы в структуре хромомарганцевых аустенитных сплавов сопровождается увеличением их коэффициента трения. У сплава 40Г19Х11Т2, содержащего наибольшее количество карбидной фазы, коэффициент трения почти столь же высок, как и у хромоникелевого аустенитного сплава 12Х18Н9. При этом полнота реализации $\gamma \rightarrow \varepsilon$ -превращения на поверхности трения у сплава 40Г19Х11Т2 существенно ниже, чем у других исследуемых сплавов (табл. 2).

На рис. 1 приведены электронные микрофотографии структуры сплава 30Г17Х10Т1. Видно, что в закаленном сплаве, кроме аустенита, присутствуют

Рис. 1. Электронные микрофотографии структуры сплава $30\Gamma17X10T1$ после закалки от 1100° С в воду (*a*) и фрикционного нагружения при скорости скольжения 0.07 m/s и нагрузке 294 N (δ - ∂): *a* – светлопольное изображение (×60000); δ – на расстоянии несколько микрометров от поверхности трения, светлопольное изображение (×135000); *e* – темнопольное изображение в рефлексе (участке кольца Дебая) (111) карбида TiC (×135000); *e* – на расстоянии около 5 µm от поверхности трения, темнопольное изображение в рефлексе (участке кольца Дебая) (002) ε-фазы (×130000); ∂ – на расстоянии 5–10 µm от поверхности трения, светлопольное изображение (×130000)

частицы TiC (рис. 1,a). В аустените наблюдаются дефекты упаковки, возникающие преимущественно вблизи карбидных частиц – в микрообъемах матрицы, обедненных углеродом. Фрикционное нагружение формирует в поверхностном слое (толщиной несколько микрометров) НКС, основу которой составляют кристаллы ε -фазы и TiC (рис. 1, *б*, *в*). Кроме того, в НКС присутствует небольшое количество кристаллов α- и γ-фаз. Размеры фрагментов НКС составляют 0.005-0.05 µm (рис. 1,в). В НКС сплава 30Г17Х10Т1 наблюдаются отдельные относительно крупные (нераздробленные) карбидные частицы размером около 0.15 μ m (рис. 1, δ). С увеличением расстояния от поверхности трения до 5-10 µm размер элементов НКС существенно возрастает (рис. 1, ∂). При этом значительно снижается количество карбидной фазы в НКС. На микроэлектронограммах рефлексы карбидной фазы выявляются слабо (рис. 1,d) и не образуют сплошных колец Дебая, как на микроэлектронограммах, соответствующих более тонкому приповерхностному слою (рис. 1,6). Наблюдаемое вблизи поверхности трения сплава 30Г17Х10Т1 скопление карбидных частиц (рис. 1, б, в), очевидно, является результатом интенсивной пластической деформации поверхностного слоя сплава по ротационному механизму [7,8], а также следствием воздействия высоких контактных напряжений. Ротации элементов НКС, происходящие в поле высоких сжимающих контактных напряжений, могут, по-видимому, приводить к вытеснению карбидных частиц, имеющих пониженную плотность ($\rho \approx 4.5$ g/cm³), на поверхность трения сплава. Повышенное количество карбидной фазы вблизи контактной поверхности сплава 30Г17Х10Т1 может быть также следствием преимущественного локального удаления материала матрицы сплава при ее адгезионном взаимодействии с контртелом.

Аналогичный факт накопления карбидных частиц на поверхности изнашивания зафиксирован и при трении высокомарганцевого аустенитного сплава, содержащего частицы карбида VC [2]. Следует отметить, что возникновение на поверхности трения сплава 30Г17Х10Т1 тонкого слоя с повышенной концентрацией высокодисперсных карбидных частиц не обеспечивает данному сплаву преимущества в трибологических свойствах перед сплавом 02Г17Х11Н, не содержащим карбидной фазы (табл. 2).

В табл. 3 приведены результаты испытаний аустенитных сплавов при трении со смазкой И-20 (испытания осуществляли по схеме палец–пластина при средней скорости скольжения 0.07 m/s и нагрузке 1760 N в паре со сталью 45 (пластина)). Из таблицы видно, что в данных условиях нагружения, как и при сухом трении (см. табл. 2), самыми низкими трибологическими свойствами обладает стабильный аустенитный нержавеющий сплав 40X25H20. Наиболее высокими трибологическими свойствами характеризуется сплав 02Г17Х11Н. Коэффициент трения данного сплава почти в 2 раза, а интенсивность изнашивания – в 1.7 раза ниже, чем у сплава 12X18H9. Рентгеновское исследование показало, что в поверхностном слое (толщиной ~ 10 µm) сплава 02Г17Х11Н образуется (как и при сухом трении) структура ε-мартенсита.

Таблица 3

Сплав	$Ih \times 10^6$	K	t, °C
02Г17Х11Н	1.1	0.09	50
20Γ18X7T	1.7	0.18	60
30F17X10T1	2.8	0.18	60
40F19X11T2	24.0	0.20	75
Г20	2.5	0.10	50
12X18H9	1.9	0.17	60
40X25H20	42.0	0.28	80

Интенсивность изнашивания *Ih*, коэффициент трения *K* и средняя объемная температура в поверхностном слое *t* аустенитных сплавов при трении со смазкой по стали 45

Кроме ε-фазы, в данном слое присутствует небольшое количество α-мартенсита. Сплав Г20, претерпевающий в рассматриваемых условиях трения практически полное $\gamma \rightarrow \varepsilon$ -превращение (в слое толщиной $\leq 10 \ \mu$ m), характеризуется столь же низким коэффициентом трения, как и сплав $02\Gamma 17X11H$ (K = 0.1). Присутствие в структуре хромомарганцевых аустенитных сплавов карбидных частиц TiC в общем случае приводит к росту коэффициента трения и интенсивности изнашивания данных материалов. Особенно ярко это проявляется у сплава 40Г19Х11Т2, интенсивность изнашивания которого более чем в 20 раз, а коэффициент трения – в 2 раза выше, чем у сплава 02Г17Х11Н. В поверхностном слое сплава 40Г19Х11Т2 наблюдается повышенное, по сравнению со сплавом 03Г16Х11Н, тепловыделение, о котором свидетельствует увеличение средней объемной температуры в поверхностном слое сплава до 75°C (табл. 3). Усиление тепловыделения в данном случае характеризует ухудшение условий смазки и активизацию деформационных процессов в зоне трения сплава 40Г19Х11Т2. Рентгеновский фазовый анализ рассматриваемого сплава не обнаружил наличия є-фазы в ее поверхностном слое (толщиной 5 µm), что свидетельствует о полной термической стабилизации сплава к $\gamma \rightarrow \varepsilon$ -превращению. Значительная термическая стабилизация аустенита к $\gamma \rightarrow \varepsilon$ -превращению имела место и у сплавов 20Г18Х7Т и 30Г17Х10Т1. В их поверхностном слое после испытания фиксируется лишь небольшое (< 10 vol.%) количество є-фазы.

Таким образом, наличие в структуре исследуемых сплавов карбидных частиц TiC значительно снижает активность протекания $\gamma \rightarrow \varepsilon$ -превращения в их поверхностном слое при испытании со смазкой, когда имеет место заметный (~ 50–75°C) фрикционный нагрев. Это оказывает отрицательное влияние на трибологические свойства рассматриваемых материалов при трении со смазкой.

Табл. 4 иллюстрирует влияние скорости скольжения на параметры трения и изнашивания хромомарганцевых аустенитных сплавов. Испытания осуществляли по схеме палец–диск в паре со сталью X12M без смазки при нагрузке 98 N.

Таблица 4

Сплав	Палагали	Скорость скольжения, m/s				
	Параметр	0.14	0.75	1.50	3.00	
02Г17Х11Н	$Ih \times 10^7$	1.7	0.53	1.0	120.0	
	K	0.34	0.55	0.50	0.80	
	t, °C	30	80	130	325	
30Г17Х10Т1	$Ih \times 10^7$	1.7	0.8	5.6	110.0	
	K	0.37	0.66	0.50	0.73	
	t, °C	30	80	160	500	
40F19X11T2	$Ih \times 10^7$	1.3	0.9	18.0	120.0	
	K	0.43	0.56	0.52	0.75	
	t, °C	30	130	200	500	

Влияние скорости скольжения на интенсивность адгезионного изнашивания *Ih*, коэффициент трения *K* и температуру в поверхностном слое *t* аустенитных сплавов

Видно, что при повышении скорости скольжения от 0.14 до 3.0 m/s температура в поверхностном слое сплавов увеличивается от 30 до 325–500°С, что обусловливает рост интенсивности изнашивания исследуемых сплавов в результате активизации процессов термического разупрочнения в их поверхностных слоях. При скоростях скольжения 0.75 и 1.5 m/s сплавы $30\Gamma17X10T1$ и $40\Gamma19X11T2$ характеризуются значительно бо́льшими интенсивностью изнашивания и температурой в зоне трения, чем сплав $02\Gamma17X11H$. При скорости скольжения 3.0 m/s интенсивность изнашивания рассматриваемых сплавов возрастает на 1–2 порядка, достигая уровня Ih = $= 1 \times 10^{-5}$ (табл. 4). Изнашивание всех сплавов в данном случае носит характер катастрофического теплового схватывания [8]. Рентгеновский фазовый анализ показал, что при скорости скольжения 0.14 m/s, когда температура в зоне трения не превышает 30°С, в поверхностном слое исследуемых хромомарганцевых аустенитных сплавов активно происходит $\gamma \rightarrow \varepsilon$ -превращение (табл. 5).

Таблица 5

· · · · · · · · · · · · · · · · · · ·						
Сплав	Тип	Количество мартенсита (vol.%),				
		возникающего при скоростях скольжения, m/s				
	мартенсита	0.14	0.75	1.50	3.00	
02Г17Х11Н	α	15	20	30	_	
	3	70	40	25	—	
30Г17Х10Т1	α	5	_	—	_	
	3	75	30	_	_	
40Г19X11T2	α	_	—	—	-	
	3	25	10	_	—	

Влияние скорости скольжения на количество мартенсита, возникающего в поверхностном слое (толщиной ~ 5 μm) хромомарганцевых аустенитных сплавов

Это обеспечивает рассматриваемым материалам минимальные значения коэффициента трения и невысокую интенсивность адгезионного изнашивания. В сплаве 02Г17Х11Н, кроме є-фазы, образуется заметное (~ 15 vol.%) количество α -мартенсита, что свидетельствует об активизации мартенситного $\varepsilon \rightarrow \alpha$ -превращения на поверхности трения данного материала. С увеличением скорости скольжения до 0.75 m/s, вызывающим рост температуры в поверхностном слое образцов до 80°C, имеет место резкое уменьшение количества є-фазы, возникающей вблизи поверхности трения хромомарганцевых аустенитных сплавов. Это обусловлено термической стабилизацией сплавов по отношению к $\gamma \rightarrow \epsilon$ -превращению, а также протеканием в них $\varepsilon \rightarrow \gamma$ -мартенситного превращения [2]. После испытаний со скоростью 1.5 m/s є-фаза в структуре сплавов 30Г17Х10Т1 и 40Г19Х11Т2 не была обнаружена, а в поверхностном слое сплава 02Г17Х11Н присутствовали 25 vol.% ε-фазы и 30 vol.% α-мартенсита. Полная термическая стабилизация сплава 02Г17Х11Н к образованию мартенсита (ε, α) наблюдается лишь при скорости 3.0 m/s (табл. 5). Сравнивая результаты, приведенные в табл. 4 и 5, можно предположить, что полная термическая стабилизация исследуемых метастабильных аустенитных сплавов к образованию мартенсита деформации (α , ϵ), имеющая место при скоростях скольжения 1.5 и 3.0 m/s, резко снижает сопротивление сплавов тепловому адгезионному изнашиванию.

У сплавов 30Г17Х10Т1 и 40Г19Х11Т2, содержащих в структуре карбидную фазу TiC, полная термическая стабилизация к образованию мартенсита деформации (α , ε) имеет место при меньшей скорости скольжения (V == 1.5 m/s), чем у сплава 02Г17Х11Н (V = 3.0 m/s). Это активизирует рост интенсивности теплового адгезионного изнашивания у рассматриваемых материалов при относительно невысоких средних температурах в зоне трения (t = 160–200°C) (табл. 4, 5).

Таким образом, полученные результаты показывают (см. табл. 2–4), что присутствие карбидных частиц TiC в структуре исследуемых метастабильных хромомарганцевых аустенитных сплавов, как правило, снижает сопротивление адгезионному изнашиванию и увеличивает коэффициент трения рассматриваемых материалов. Частицы высокопрочной карбидной фазы, по-видимому, существенно увеличивают сопротивление сдвигу тонкого поверхностного слоя сплавов и тем самым нейтрализуют положительное влияние легкого базисного скольжения ε-мартенсита на трибологические свойства хромомарганцевых аустенитных сплавов. В данном случае повышение сопротивления сдвигу поверхностного слоя рассматриваемых материалов, очевидно, препятствует локализации пластической деформации материала непосредственно вблизи поверхности трения сплавов и тем самым создает условия для активизации процессов схватывания.

Выводы

Термическая стабилизация аустенита к $\gamma \rightarrow \varepsilon$ -превращению, а также протекание $\varepsilon \rightarrow \gamma$ -превращения в условиях значительного фрикционного нагрева поверхностного слоя сплавов приводят к резкому падению их трибологических свойств.

Присутствие в структуре хромомарганцевых аустенитных сплавов, метастабильных к $\gamma \rightarrow \varepsilon$ -превращению, частиц карбидной фазы TiC в количестве 1–4.5 vol.% оказывает отрицательное влияние на трибологические свойства (коэффициент трения и интенсивность адгезионного изнашивания) сплавов.

Обнаружено увеличение количества дисперсных частиц TiC в приповерхностном (1–5 µm) слое хромомарганцевых аустенитных сплавов, легированных титаном, в процессе фрикционного нагружения. Это, повидимому, является следствием интенсивной пластической деформации поверхностного слоя сплавов, а также результатом преимущественного адгезионного удаления материала матрицы сплава с контактной поверхности.

- 1. Л.Г. Коршунов, Б.М. Эфрос, Н.Л. Черненко, Ю.Н. Гойхенберг, ФТВД **11**, № 1, 75 (2001).
- 2. *N. Efros, L. Korshunov, B. Efros, N. Chernenko*, Nanostructured materials by high pressure severe plastic deformation, Y. Zhu, V. Varyukhin (eds.) **212**, 271 (2006).
- 3. *Я.С. Уманский, Ю.А. Скаков, А.И. Иванов, Л.Н. Расторгуев*, Кристаллография, рентгенография и электронная микроскопия, Металлургия, Москва (1982).
- 4. *Н.Б. Эфрос, Л.В. Лоладзе, Т.П. Заика, Н.В. Шишкова, В.С. Тютенко, Б.М. Эфрос, В.Н. Варюхин*, ФТВД **17**, № 1, 141 (2007).
- 5. С.А. Салтыков, Стереометрическая металлография, Металлургия, Москва (1976).
- 6. В.Ф. Моисеев, Состав стали и количество карбидной фазы, МиТОМ № 8, 67 (1970).
- 7. P. Heilmann, W.A. Clark, D.A. Rigney, Acta Met. 31, 1293 (1983).
- 8. Л.Г. Коршунов, ФММ № 8, 3 (1992).

N.B. Efros, L.G. Korshunov, B.M. Efros, V.S. Tyutenko

CONTACT STRENGTH OF NANOCRYSTAL STRUCTURES OF THE FRICTION SURFACES OF CARBON AUSTENITE ALLOYS

The effect of the particles of high-strength carbide phase TiC on tribological properties of chromium-manganese austenite alloys under dry slipping friction and abrasive wear has been studied. It has been shown that the presence of the TiC particles within the structure results in an increase in the friction coefficient and the intensity of the adhesion wear.

Key words: carbon austenite alloys, surface layer with the nanocrystal structure, adhesion wear intensity, abrasive wear resistance

Fig. 1. Electron photomicrograms of the 30G17X10T1 alloy structure after the water quenching from $1100^{\circ}C$ (a) and friction loading at the slipping rate of 0.07 m/s and the

loading of 294 N (δ - ∂): *a* – bright-field image (×60000); δ – at the distance of a few of micrometers from the friction surface, bright-field image (×135000); *e* – dark-field image in the reflex (a segment of the Debye ring) (111) of the TiC carbide (×135000); *e* – at the distance of 5 µm from the friction surface, dark-field image in the reflex (a segment of the Debye ring) (002) of the ε-phase (×130000); ∂ – at the distance of 5–10 µm from the friction surface, bright-field image (×130000);