®du3nKa 1 TEXHUKA BbICOKHX AaBJjieHuii 2015, Tom 25, Ne 34

PACS: 62.20.—x

Cai Chen1’2, Yan Beygelzimer1’3, Laszlo S. Toth1’2, Yuri Estrin4’5,
Roman Kulagin6

YIELD STRENGTH OF A MATERIAL
PRE-PROCESSED BY SIMPLE SHEAR

1Laboratory of Excellence on Design of Alloy Metals for low-mass Structures (DAMAS),
Université de Lorraine, Metz, France

2| aboratoire d’Etude des Microstructures et de Mécanique des Matériaux (LEM3),
UMR 7239, CNRS / Université de Lorraine, F-57045 Metz, France

3Donetsk Institute for Physics and Engineering named after O.O. Galkin, National Academy
of Sciences of Ukraine

“Centre for Advanced Hybrid Materials, Department of Materials Engineering Monash
University, Clayton VIC 3800, Australia

5Laboratory of Hybrid Nanostructured Materials, NITU MISIS, Moscow, Russia

®Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT),
Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany

Received October 20, 2015

Modern techniques of severe plastic deformation used as a means for grain refinement in
metallic materials rely on simple shear as the main deformation mode. Prediction of the
mechanical properties of the processed materials under tensile loading is a formidable
task as commonly no universal, strain path independent constitutive laws hold. In this
paper we derive an analytical relation that makes it possible to predict the mechanical
response to uniaxial tensile loading for a material that has been pre-processed by simple
shear and presents a linear strain gradient in it. A facile recipe for mechanical tests on
solid bars required for this prediction to be made is proposed. As a trial, it has been ex-
ercised for the case of commercial purity copper rods. The results of the derivation of the
true stress-strain curve for large tensile deformation of copper are presented. The method
proposed is recommended for design with metallic materials that underwent pre-
processing by simple shear.
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Hns npoeno3sy énacmuseocmeii cyOMIKpOKPUCMALIYHUX MEMANi8, OMPUMAHUX MeMOo0amu
iHMeHCUBHUX NAACMUYHUX Oepopmayil, HeOOXIOHO 3HAMU HANPYI’CEHHS NpU 00-
HOBICHOMY NAACMUYHOMY DO3MALYS8AHHI NICNA 0OPOOKU BeNUKUM NPOCMUM 3CY80M (Oe-
Gopmayisn 3cysy Oinvue 10). Mexaniuni enacmugocmi mamepianie npu maxux Henpo-
HOPYILIHUX WAXAX 0epOpMYBAHHS 8UEHAIOMb 8 OCHOBHOMY 3 0ONOMO2010 MpPyOuaAcmux
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3paskie. Yepesz empamy cmitikocmi mpyOoK npu KpyueHHi MaKi eKCHepUMeHmu MONCIUG]
auwe O MAIUX HNPYICHbONIACMUYHUX Oeghopmayill, Wo He Nnepesuuyroms KilbKOX
giocomkis. Y cmammi 3anponoOHOBAHO U OOIPYHMOBAHO MEMOO BUHAYEHHS HANpyeU
meuii Mamepiany, nonepeoHbo 00pPOOIEHO20 BEIUKUM NPOCTUM 3CY80M. Memoo 3acHo-
BaHULl HA 080X CMAHOAPMHUX BUNPOOYBAHHAX. KPYUEHHI 3 GLILHUMU MOPYAMU U 00-
HogicHomy posmseyganti. OmpuUmMano CnieGiOHOWEeHH s, W0 00380J58€ NO HANPY3i meyii
HEOOHOPIOHO20 3pA3KA, NONEPEOHbO NIOOAHO20 KPYUEHHIO, 3HAUMU HANPY2y NAACMUYHO20
PO3MAZYBAHHSA 020 NOGEPXHEBO20 WIapPY 3 NeGHOI0 dehopmayicio npocmozo 3cyey. Llns-
XOM NpoCmux AHATIMUYHUX OYIHOK NOKA3AHO, WO NPYIUCHI 3ANUUWKOBI HANPYeU NePuio20
POOY, AKI BUHUKAIOMb NICA PO36AHMANCEHHS 3PA3KA, HONEPEOHbO Ni0OAHO20 KPYYEHHIO,
NPAKMUYHO He 6NJIUEAIOMb HA MEJICY MIKYUOCmI NPU PO3MALYEAHHI.

Karouori ciioBa: nedopmarriiine 3MilHEHHSI, KPYUYCHHS, PO3TATYBaHHS, TPpaieHT aedop-
Marii, 3MiHa NUIIXy aeopMyBaHHS, MiJb

1. Introduction

Processing of metals by simple shear is a good way to improve their mechani-
cal characteristics. This comes to bearing especially in the production of ultrafine
grained materials by severe plastic deformation (SPD). SPD techniques, such as
high-pressure torsion, high-pressure tube twisting, equal-channel angular pressing,
twist extrusion, and shear extrusion have one thing in common — they all are
based on simple shear [1,2] and almost all of them present a strain gradient in
them. Products fabricated by these techniques are often designed for structures
that operate under extremely large tensile loads. Design with such materials there-
fore requires a reliable tool for predicting the flow stress for metals, which under-
went processing by gradient simple shear of a given magnitude.

The large strain behavior of metals is usually studied in torsion of cylindrical
bars because very large strains can be readily achieved in torsion. Indeed, during
tensile testing — which is the most commonly employed characterization technique —
the uniform deformation is limited because of early necking. However, the
mechanism of strain hardening is quite special for torsion because of the small
number of the operating slip systems that lead to smaller equivalent stresses for
torsion compared to tension or compression [3,4]. This presents difficulties in the
characterization of the material behavior at large strains.

The problem of construction of stress-strain curves for torsion of solid bars has
been resolved by Fields and Backofen [5] who established a formula for obtaining the
flow stress at the outer radius of the twisted bar. However, no such formula is available
for tension of a sample with a strain gradient, particularly when a bar is tested in ten-
sion after being pre-twisted in torsion. This problem is resolved in the present paper.
The importance of such testing is that stress-strain curves can be obtained for tension
for very large strains, up to the same strains as in torsion, by tension of pre-twisted
bars. For this purpose only thin-walled tubes were pre-twisted so far where the strain
gradient can be neglected [6—12]. However, the maximum plastic strain is very limited
in torsion of such tubes, which is not the case for the torsion of solid bars.

In the following we first present the theoretical basis and then show that the
role of the residual stresses, which are inherent in gradient structures, can be ne-
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glected at large strains. Finally, the new technique is applied for the large strain
torsion of copper bars.

2. Theoretical basis

We consider a solid cylindrical bar twisted in large strain torsion. It can be
shown with using the equilibrium equation that for large uniform torsion, the local
plastic shear strain v, is proportional to the local radius » [13]:

r
Yr = EYR : (1)
Here yp is the shear strain at the outer radius R of the sample. When the twisted
bar is subjected to tensile testing, the local tensile flow stress depends on the ten-
sile true strain € and on the local shear pre-strain y,; o(r) = o(g,y,). The force re-
quired for plastic stretching of a rod previously subjected by torsion is given by
R

F(a,yR):ZnIc(s,yr)rdr. (2)
0

This integral can be developed as follows:

_ R l’"YR _ZSYR
F(S,YR)—zTC.[G & p rdr—gjc(a,yr)y,dyr, (3)
0 0

where S is the cross-sectional area of the bar. We introduce the quantity c_s(s,y R ),

which is the apparent tensile flow stress of the bar:

SYR

_ 2 '8
S(evp)=——""="5 f (&, )v.dy,. 4)

YR o

After differentiation with respect to yg, the following expression is obtained:

M [0 8 YR (SaVR )] (5)
OVR

Hence, it follows: B
Yr 5 (&,vz)
2 Oyg

This formula allows one to find the stress-strain curve ¢ = G(s,y R) using the ex-

o(evr)=56(evg)+ (6)

perimentally measured curve for the apparent stress 6(8, Y R) and its derivative

with respect to y.

3. The role of residual stresses

Residual stresses arise after unloading a plastically twisted solid bar sample
[13]. Assuming that the entire cross section of the sample was in plastic state un-
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der torsion, the local residual shear stress rres(r,y R) after a shear strain yg

reached at the outer radius of the bar is given by the following equation [14]:

T (1 10) = (7 8) = 31 )- ™

Here t(r,y R) is the local shear flow stress before unloading and 7 is the mean

shear stress across the bar,

3 R
?(YR)——3J. t(ryg)ridr. (8)
0

The effect of the residual stresses during the subsequent tensile testing is a reduc-
tion of the yield stress of the rod in tension, as they are present in the yield condi-
tion. It can be shown, however, that the residual stresses can be ignored when the
technique presented above is applied. This is due to a rapid relaxation of the re-
sidual stresses at the beginning of plastic deformation. As will be shown below,
the strain required for this relaxation is very small. The residual elastic strain Yyes
associated to the residual elastic stress Tyeg 1S

TI'CS
> 9
G ©)

Yres =

where G is the elastic shear modulus. According to the associated flow rule, the
following relation between the components of the strain increments and the acting

stresses is valid:

3Tres deVM . ( 1 O)
(e}

dy =

where ey, is the von Mises equivalent strain. It follows then from Egs. (9) and

(10) that
3G
dYres = Yres ?deVM . (1 1)

Here the negative sign takes into account that y,.s decreases in absolute value, so
that the sign of dy,es is opposite to the sign of y,.s. By integrating Eq. (11) at a
constant stress G, we obtain

3G
Yres ~ CXP(—?eVMj- (12)

Therefore, the characteristic equivalent plastic strain ey, required for the relaxa-
tion of residual stresses for torsion-tension can be estimated as
c
ey =—— - (13)
=3
Using characteristic stress values that correspond to the tensile test of copper after
torsion, the following estimate is obtained: ey ~ 10>, This estimate shows that
already after a very small tensile strain, the effect of the residual stresses can be
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neglected. The physical meaning of the above analysis is that the stress state
moves along the yield surface very rapidly from a combined tension-torsion into a
pure tension state during the initial stage of the tensile test.

4. Experimental results

Experiments were carried out on commercially pure copper samples at room
temperature. The initial microstructure of the material can be characterized by an
average grain size of about 30 um with a weak crystallographic texture. The di-
mensions of the deforming part of the samples were as follows: 7 mm in diameter
and 40 mm in gauge length. The torsion testing was done in a free-end torsion
machine to different rotation angles at a constant angular speed of 0.2 rad/s. The
selected values of the rotation angle (in radian) were: 11.43, 22.85, 34.29, 45.71,
57.14, and 68.57. They correspond to a shear strain of 1, 2, 3, 4, 5, and 6, at the
outer radius of the sample, respectively. These values were converted into the
von Mises equivalent strain using the formula ey, = y/ V3. The small lengthen-
ing of the bar during the free end torsion testing (less than 2%) was neglected in
the analysis of the experimental data. The shear flow stress acting at the outer ra-
dius of the bar was calculated by the Fields and Backofen formula [5] and con-
verted into equivalent von Mises stress using the formula ¢ = J31. The obtained
stress-strain curve for torsion curve is displayed in Fig. 1 (curve 2).

500
4
400 A e
R ,/"3 - Fig. 1. Stress-strain curves obtained for
= 300 7 fr »- = | pure copper solid bars in tension (curve /),
% ,’,’/ in torsion (curve 2) and in tension after tor-
o 200 H sion with different magnitude of the twist
(curve 3). Curve 4 was constructed using
100 f Eq. (6)
0
0 1 2 3 4

Cyns

The tensile tests were done in a 10 ton Zwick machine at a strain rate of 0.05 mm/s.
The results are shown in Fig. 2 for the twisted samples and in Fig. 1 for the non-
twisted ones for larger strain (curve 7). After torsion rupture took place under tension
already after about 2-4% plastic strain. With the available specimens, six points on
the average stress-strain curve were obtained (labeled 3 in Fig. 1). They were taken
from the tensile curves at 1% strain. A continuous curve was fitted to these points to
calculate the derivative in Eq. (6), and the resulting large strain tensile test curve base
on Eq. (6) was plotted as curve 4. It can be seen that the initial part of this curve
matches the continuous tensile curve well. At large deformations, from about a strain
of 1.5, the curve levels off at a constant stress level of about 415 MPa.
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The stress-strain curve 4 in Fig. 1 obtained for tensile testing after torsion was
constructed for the material behavior at the outer radius of the twisted bar, but it is
also valid for the inner points in the bulk of the bar.

5. Discussion

As can be seen from Fig. 1, the monotonic torsion and tensile stress-strain
curves do not coincide, despite the use of the equivalent stress and strain quanti-
ties as a common platform: the torsion curve lies below the tensile one. This effect
known for a long time and was examined in the past [3,4]. The main reason for it
was mentioned in Section 1, viz. the scarcity of slip systems in torsion compared
to tension.

One particularity of the present results is that for low tensile strains the tensile
flow stress after torsion agrees well with the flow stress in monotonic tension. In-
deed, lower stresses are expected for a strain path change because the micro-
structure that develops in the first path is not stable for the new path, thus many
dislocations that were immobile in the first path can glide in the second one.
However, it has been shown in Ref. [4] that the dislocation density is higher in
torsion compared to tension, which can compensate for this effect.

Another particularity of the results in Fig. 1 is that the tensile flow stress is
constant after torsion at large strains, starting from about 1.5 strain. This effect
was observed for the first time because the present technique is the first one to
provide access to tensile flow stress after large strain torsion. Its origin might be
rooted in the fragmentation of the grains which is occurs under severe plastic de-
formation [3,15]. Further studies are needed to identify the exact reasons for this

material behavior.

An interesting observation can be drawn from the stress-strain curves in Fig. 1,
namely, it is apparent that the equivalent flow stress is higher in tension than in
torsion. This effect is due to the anisotropy that develops within the bar; a non-
isotropic orientation distribution of grain orientations, i.e. a shear texture, appears
[3,16]. Therefore, the tensile yield strength can be significantly enhanced through
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pre-processing the material by simple shear. It then follows that less energy is re-
quired for strengthening the material by simple shear compared to tensile straining.

6. Conclusions

In this work we presented a new theoretical derivation for obtaining tensile
stress-strain curves for the bars pre-strained by torsion. Experiments on Cu pro-
viding exemplary data for the proposed derivation were conducted. The following
main conclusions can be drawn:

1. In spite of the strain gradient inherent in a torsion-deformed bar, it is possi-
ble to obtain tensile stress-strain curves for it. The procedure includes a series of
torsion tests of bars to different amounts of strains, followed by deforming them
in uniaxial extension.

2. Application of the proposed algorithm to large strain torsion of Cu yielded a
tensile stress-strain curve which saturates quite early, from an equivalent von
Mises strain of about 1.
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Kaii Yen, A beiicenvsumep, Jlacno C. Tom, FO. Scmpun, Poman Kynacun

MNPEAEN NPOYHOCTU MATEPUANOB,
OBPABOTAHHbIX MNP NMOMOLLKX NMPOCTOIO COABUTA

st iporHo3a CBOMCTB CyOMHMKPOKPUCTAUIMIECKAX METAJUIOB, TIOJYYCHHBIX METOJaMU
WHTCHCUBHBIX IJIACTHYECKUX JaedopMaIuii, HEOOXOAUMO 3HATh HANPSDKEHUE UX TCUCHUS
TIPH OJTHOOCHOM PaCTSDKEHHH IOCNe 00paOOTKH MPOCTHIM CABUTOM OOIBIION BEIHMYMHBI
(medopmarus cnpura 6omnee 10). MexaHWYecKHue CBOKWCTBA MaTEPHAJIOB MPU TaKUX He-
MPOMOPIIMOHANBHBIX MYTIX ASQOPMHUPOBAHUS U3YYaIOT B OCHOBHOM C TIOMOIIBIO TPyOUYa-
THIX 00pa3noB. M3-3a moTepr ycTOMUNBOCTH TPYOOK MPH KPYyUESHUH TaKHE DKCIIEPUMEHTHI
BO3MOJKHBI JIMIG TSI MANbIX YNPYTOIJIacTUYeCKuX aedopMariiii, He MPEeBBIIIAOIINX
HECKOJIBKUX TMPOIICHTOB. B cTaThe mpenokeH 1 000CHOBAH METOJ ONPEICICHIS HAIps-
JKEHHsI TEUCHUSI MaTepualia, MpeABapUTEILHO 00pab0TaHHOTO OOJBIIMM MPOCTHIM CIIBU-
roM. MeTox OCHOBaH Ha NIByX CTaHAAPTHBIX WCHBITAHHUSX: KPYYEHHH CO CBOOOTHBIMU
TOpLAMH U OJHOOCHOM pacTspkeHHH. llodmydeHo cooTHolleHue, Mo3BOJAIoNIee MO Ha-
MIPSDKEHUIO TEYCHUST HEOAHOPOJHOTO 00pasiia, MPEIBAPUTEIBHO MOJABEPTHYTOIO Kpy4de-
HUIO, HAWTH HAPsDKEHHE MJIACTHYECKOTO PACTSDKEHHS er0 TIOBEPXHOCTHOTO CIIOSI C OTpe-
neneHHon nedopmarueit mpoctoro capura. [IyTeM mpocThIX aHATUTHYECKUX OIIEHOK I10-
Ka3aHo, 4TO YIIPYT'He OCTaTOYHbIE HANpsKEHUs NMEPBOTO PO/a, BO3ZHUKAIOIINE TIOCIIE pa3-
Tpy3KH 00pasia, MpeJBapUTEIbHO MOJBEPTHYTOTO KPYUCHHIO, MPAKTUIECKA HE BIHUSIOT
Ha TIpejieTl TeKy4eCTH IPU PaCTSHKEHUH.

KirodeBble cioBa: nedopMmalioHHOE yNpPOYHEHHE, KpyUeHHE, PacTsKEeHHe, TPajiueHT
nedopManuy, u3MeHEeHHe My TH Ae(pOpMUpPOBaHUS, MEAb
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