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In this paper the theoretical analysis of the behaviour of the stream function, tempera-
ture, and local solid fraction for the model of ideal mushy layer is presented. In the case
of steady free mush convection, explicit lower and upper estimates for the main charac-
teristics of the process are found for the large values of the Rayleigh number. For the
unsteady regime the one of explicit forms of these characteristics is obtained.
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Hocnioaxceno noeedinky @yHkyitl nomoky, memnepamypu ma J0KaIbHoi meepooi gpaxyii
071 i0edanvbHoi Moodeni Miuanoeo wapy. Y eunaoky cmitikoi iibHOI KOHEeKYil 3HAllOeHO
MOYHT HUJICHI MA 8ePXHI OYIHKU 36ePXY Ma 3HU3Y OJisl OCHOSHUX QYHKYIN, SIKI Xapakmepu-
3YI0mb npoyec, wo Mae Micye npu Genukux 3Havenuax uucia Penes. [na mecmayionap-
HO20 pedcumy OMpPUMAHO MAKONC A6HUL 610 OCHOBHUX XAPAKMEPUCHIUK.

KarwouoBi cioBa: mimanwii map, cTilika Ta HecTiika KOHBEKIs, QYHKIIiS TIOTOKY, TEM-
nepatypa, JJIOKaJbHi TBepAa Ta pinka ppakuii

1. Introduction

A mushy layer, a two-phase medium of coexisting liquid and solid phases,
arises as a result of morphological instability of solidification front, see [5,6]. It
can be considered as a porous medium through which the residual liquid can flow
[7,13]. Therefore, the permeability structure of the mushy layer has to be calcu-
lated simultaneously with solving the coupled equations of heat, mass, and mo-
mentum transport [13].

Most theoretical studies of mushy layers consider the process of solidification
at horizontal boundaries, see [12] and references therein. However, in many cases
the process of solidification takes place at vertical boundaries. For example, in
magma chambers various aqueous solutions are cooled and solidified from a
sidewall in confined spaces [10,9,8,4].
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The problem of the lateral solidification of a semi-infinite mushy region
influenced by the vertical interstitial melt was investigated in [3]. The authors
considered a binary alloy releasing a buoyant residual fluid in the solidification
process. The fluid was assumed to be pulled horizontally at the constant speed V'
past the heat exchanger maintaining the eutectic temperature 7z at the fixed
vertical plane x = 0, see Figure. The material supplied at x = +oo had the solute
composition Cy, and the temperature equals to its liquid temperature 77(Cp). A
mushy region was considered in the semi-infinite region x > 0 and z > 0.

Thermal
boundary g
layer :

,'F Mush
r at fixed speed V to form a solid at the
T.(C) eutectic temperature 7z. The release of a
Hv-0 ol buoyant residual is confined to a thermal
boundary layer adjacent to the interface.

Illustrative streamlines are shown relative
to the (moving) solid phase, see [2]

Fig. A semi-infinite mushy region of far-
field temperature 77(Cyp) solidifies laterally

Solid

In [3] assuming that the mushy region is ideal, Worster’s model from [13] for
description of the evolution of the dimensionless temperature 0 and the local solid
fraction ¢ in the domain x > 0 z > 0 is applied:

(ﬁ_ﬂ)ew-ve:vzew(ﬁ——ajd), (1)
ot Ox ot Ox
o 0
(at axj[( 00+ 0]+ @
1 00
V2y - —Vy-VIT = —Rall<Z, 3
v IT v . Ox ©)

where ¢ is dimensionless time, u is the volume flux (or Darcy velocity), v is the
stream function defined by u = (—y., y,), and I1 is the permeability. In this model
the dimensionless constants are the Stefan number Y = L/(c,AT), the composi-

tional ratio @ = (Cy — Cp)/AC, and the mush Rayleigh number Ra = BACgITy/(v}),
where AC = Cy — Cg, Cy, is the initial composition, Cf is the eutectic composition,
Cy is the composition of the solid phase, L is the specific latent heat, ¢, is the spe-
cific heat capacity, = B* — l"oc*, o and B* being the thermal and solutal expan-
sion coefficients, g is the gravity acceleration, and v is the liquid kinematic vis-
cosity.
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Equations (1)—~(3) are supplemented with the following boundary and initial
conditions

db=0¢patr=0, ¢=doatx=0, ¢— dasx— oo, (4)
0=-latx=0, 6 >0asx—> o (5)

for z > 0, ¢ > 0, where the function ¢g = do(x, z) matches with ¢, at x =0 and x — oo.

Without loss of generality, we will assume that ¢, = 0.
In the case of steady free mush convection, the boundary condition for y can
be written as

y=0atx=0, a—W—>0 asx — oo, (6)
ox
in the case of unsteady free mush convection, it can be given by
y=0atz=0, 2—"’»0 as z —> o (7)
X

forx>0,¢>0.

In this paper, we study the processes in a mushy region cooled from one side. In
this model the flow occurs in a narrow thermal layer within the mushy region. The
main aim of this paper is to study the qualitative asymptotic behaviour of self-
similar solutions of the laminar boundary-layer flows in the steady case, describing
essential physical properties of the process. We consider the behaviour of the
stream function, temperature, and local solid fraction for unsteady situation too.

The present paper is organized as follows. In Section 2 we study the situation
of steady free mush convection and obtain the explicit lower and upper estimates
for a solution of this problem at ¢ = O(Ra_l) In the unsteady case, we find one of
the set of explicit solutions of the problem for all # > 0. This result is contained in
Section 3. Appendix contains some auxiliary routine calculations connected with
Section 2.

2. Steady free mush convection

In this section, we consider a particular asymptotic regime where the thermal
and flow are steady. This model was considered in [3], where the numerical
approach was applied. We use the analytical methods for studying the asymptotic
behaviour of the appropriate functions. Using scaling analysis of (1)—(3) (similar
to [3]), we consider Y, ®,X, T, V¥ defined by

Y=Rd"?T, ®=Rd"®, x=Ra"’X, t=Ra "’T, y=Ra"™¥. (8

Here Y, @, X, T and ¥ are assumed to be O(1) as Ra — oo. Substituting (8)
into (1)—(3), taking the limit Ra — o and rearranging, we find that
2
o 22 D). T o
0z 0X 0X 0z) ox?
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oT oX QD px2 (10)
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ox?*  oX

where Q=1+ Y/® . In [3] the boundary-value problem represented by(9), (11),
(5) and (6) was considered by using two different approaches: numerical and
approximate one.

We look for a similarity solution in the form of

Y=y, 8=0m), ¢=4¢m), (12)

where n = 0"2xE",

Then from (11) and (5), 6 is given by

6(m)=-/"(n), (13)

and from (9) and (6), f'satisfies
£ S =0, (14)
f(0)=0, fO0)=1, f'(n)—>0 asn—> oo (15)

The problem similar to (14), (15) appeared in papers by [2], where it was solved
numerically only. Further, we study the behaviour of a solution of the problem
(14), (15) and obtain the following proposition (see Appendix for proof):

Proposition 1. A solution of the problem (14), (15) satisfies the following
estimates:

1.568 < fo: = floo) < 2, (16)
16(a*)? tanh (lj < f(n) < min {n, 2tanh (ﬂﬂ (17)
8a 2

for all n = 0, where a ~0461.

From Proposition 1 it follows the qualified estimations of the main parameters
of the initial problem (the stream function y(x, z, 7), the temperature 0(x, z, f), and
local solid fraction ¢(x, z, ¢)) at the small time ¢ = O(Ra_l) only (see Appendix for
details).

Proposition 2. A solution of the system (9)—(11) with the boundary conditions
(4), (5) and (6) satisfies the following estimates:

1/2 1/2
Wi :=16(a*)3(ZRaj tanh{ x*(Ran ]s
Q 8a z

172 172
< Winax == 2(ﬂj tanh f( Ra€ j , (18)
Q 2\ =z
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12
O min = 1+2atanh{§( Ral) ] }S 0<0,x =

z

z

1/2 1/2
| Ra a . 2| x( RaQ
Ormin (—QZ] q){l tanh L( . j }}HI)OOS(I) <
Ra 12 a x( RaQ )" ’
— - 2 J— _
< (Qj q){tanh M ) } 1} fh. Q0)

att= O(Rafl) forallx>0,z>0. Here 0 <a < a*, a is from Proposition 1.

In comparison with the paper [3], our results describe completely the
asymptotic behaviour of solution of system (9)—(11), which has the explicit (not
numerical) representation. This is very important for concrete physical interests. It
is significant that y.,(z) is included in estimates (18), (19) and (20). That is, y(z)
has an influence on the estimation from below of the temperature 0(x, z, r) and the
estimations from above of the local solid fraction ¢(x, z, #) and the stream function
y(x, z, £). Thus, this influence is essential and cannot be ignored.

1/2
= —1+64(a*)3atanhk( Raf> J } (19)

3. Unsteady free mush convection

In this section, we look for solutions of unsteady equations (1)—(3) for any Ra
and ¢. As far as we concerned, this interesting situation was not considered before.
We are succeeded in finding the explicit solution of system (1)—(3) (perhaps not
unique). However, this solution characterizes the real physical behaviour of the
mushy layer. In fact, there is obtained a family of solutions of the problem.

Since the convection into the mushy region is directed along the axis x then it
seems very natural to seek for solution of system (1)—(3) in the form of a travelling
wave. Let § =x + ¢. We will seek this solution of the problem in the view 6 = 0(¢, z),
v =Wy(&, z) and ¢ = ¢(&, z). Then we arrive at the following system:

A¢.6=0, (20)
_8_\|1@+8_\|/@:0’ 1)
0z 0§ O Oz
00

A =—-Ra—, 22
&,Z\V aa& ( )

with boundary conditions on the flow and thermal fields:
9(&,2):—1 atg=1, 9(&,2)—)0 as § —> 0,z20, (23)
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W(E,z)=0 atz=0,&>0, %z’z)ao as & — o0,z > 0. (24)

Proposition 3. System (1)—(3) with the boundary conditions (4), (5) and (7) has
the explicit solution:

0=-1 +£arctan (i) , (25)
i z
y=Ra,, Gz R, (26)
T zi+x" 2m
(I)(x,z,t)zcl)o(x+t,z) (27)

for all x, z, ¢ such that 2 axt= sz , where ¢(x,z,0)=¢y(x,z) due to condition
(4), and C; € R'. Here, (27) means that the solid fraction is transmitted to the

solid state.

The Proposition 3 has clear physical meaning, namely, the local solid fraction
into a mushy region decreases in time under the temperature and the stream func-
tion which do not change in time. Below we show that Proposition 3 holds. In-
deed, it is easy to check that the function

O(E_,,z)=—1+£arctan(a_t] (28)

T z

1s an explicit solution of the boundary problem (20), (23).
First we derive an equation for the function (¢, z). Let

E=rcos@+t, z=rsinQ,
then from equation (22) with (&,z) +— (r,¢) we get

2 .
li(ra_\l%:? Y pg22sing
ror\' or) »* O I

We are looking for solutions of this equation in the following form
v (r,9)=x(r)sin¢.
After simple computation we obtain the equation for function f{r):

P () + ' (r) —k(r) = —2&1* :
T

Solving this equation we find
K(r)= élr+&—&rlnr VC, e R
roon
Then B
€z __Ra, 1n(z2 + (a—z)z) vC eR!,  (29)

v(E,2)= C12+m o
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and the conditions (24) were satisfied. Substituting (28) and (29) i. e.

Ra Z2

n 2+ E-n

v, =G +6 (Z(f;(t;‘t:) ’;{ In(2? +(&-0)?)-

¢, 2260 Ra_ (-0

Y =- :
F’ (zz+(g—¢)2)2 2+
:_2 é_t 0 _E z
ni-n? T R
into (21), we obtain
5 C, _Ra. (> _ 2. Ra
o EP ln(z +(E—1) ) —. (30)

Choosing él = &, we find from (30) that
T

—ézRia:(zz+(g—t)2)1n(z2+(g—t)2). 31)

As the function ®(v) = vinv is monotone then there exists an inverse function (D*l(.).
Using this fact, we obtain from (31) that

2 +(g-1) =®—1(—%j=cz, (32)

where C is an arbitrary constant. Thus, the equality (16) is valid if the variables &
and z are satisfied to the relation (32). Using changing of variables
(&,2)— (x,z,t) in (28), (29) and (32) we obtain the following explicit solution of
system (1)—(3) with conditions (4), (5) and (6). Thus, Proposition 3 is proved
completely.

4. Convergence to the travelling wave

Assume that IT= 1 in (3), and ¢ = ¢y is a positive constant. Changing variables
(x,z,t)— (&, z,1) in (1)~(3), where £ = x + ¢, we obtain the following system

Bt+u-Vé,26=Aé,ze, (33)
(1-0)8, +u-V, .6=0, (34)
—Ag’z\v = Raeg , (35)

where u=(—y_,y;). We can reduce the system (33)—~(35) to the one

0o6, = A .6 (36)
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—Ag .y = Rab; (37)

in the half-space R, = {& >0,z> 0} . Note that if the solid fraction is absent, i.e.

do = 0, then we obtain that the solution (25), (26) is unique.
Let us denote by v:=06-0. Then from (36) and (20) we obtain for v the

following equation
GV, = Ag v, V(§,2,0)=vp(&,2) = 6(,2,0) =64 (&, 2) . (38)
Problem (38) has the solution
(@9 rE-2)

v(&,z,t)=f—£t_|. [e 4 v (E,2)dEZ —> 0 as 1 — +oo. (39)
00

From (39) it follows that 8 — 0 as ¢t — +oo. Hence, it follows from this and (37)
that v — g as t — +oo.

Conclusion

In this paper we consider situations of steady and unsteady free mush
convection. For the steady regime the qualified estimates for the stream function,
temperature, and local solid fraction are found for large values of the Rayleigh
number and small time. For the unsteady case the precise behavior of these main
characteristics is established. At that the behaviour of the temperature and stream
function depend on the measured vertical upwards. The local solid fraction
decreases under stationary behaviour of the temperature and the stream function.

We use the non-similar solution technique giving us possibility to establish the
qualified estimates of the main characteristics of the process. A detailed analysis
of solidification in mushy region is provided under the assumption that the
permeability of the mush is uniform.

Appendix
Proof of Proposition 1

We consider the following auxiliary Cauchy problem for the problem (14), (15):
" 1 14
S +5f (m/f'(m)=0, (40)
f0)=0, f'©O)=1, f"(0)=-a, (41)

where a > 0. Now we show that there exists a parameter a such that the solution of
problem (40), (41) satisfy the conditions

f'(M)—> 0 asm —> oo; f(n)=0 is uniformly bounded. (42)
By (40) and (41) we deduce that
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n
()= eXp{%If(Z)dZ}, (43)

0

n 1 y
F=1-afexps——[f(2)dz rdy, (44)

0 0

ny 1 v
fn=n-affexpi-—[f(z)dz dvdy. (45)

00 0

From (43) it follows that f decreases and f is concave. Hence, in view of

£ = —%f(n)f"(n) >0, we arrive at

f'(n) isconvex and 0< f'(n) <1 Vn=>0. (46)
It follows from (45) that f(n) <m, whence
fM)<n- a;fl. exp (—é] dvdy, (47)
and
, n 1% n 32
£l = 1—a£exp[—5£f(z)dszy < 1—a£exp£—7]dy . (48)

In view of (48), we find that

o 2
0=f'(oo)£l—a_[exp A dy,
0 4
whence it follows that

1
0<a<ag = =

o 2
I exp (— J;J dy
0
The last inequality guarantees that conditions (42) is valid for any a satisfying
(49). Moreover, using (47), from (45) we deduce

ny V2 aVZ W2
S <n-affexpi—==+=[[exp| -2 |dwdz {dvdy. (50)
00 4 200 4

~0.5641895 . (49)

1
N

Analogously to (49), we find from

o]

’ 2 gl W2
O=f(oo)£1—ajexp —T+E££exp T dwdz ;dy,

0
that
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0<a<a, =0.45342952. (51)

Continuing the same iteration procedure, we can find the sharp upper bound a,,
for the desired a, i.e. a <a,,.

Now we show the estimate from below of the solution to problem (40), (41). It
follows from (45) that

ny
a
f)zn—afdvdy =n-=n’.
00 2

We denote by f] the function on the right-hand side of the last inequality:

a 2
A =n-=n, 0<x<=.
2 a

, we see that

Q |~

Taking into account that (f;);, =1—an=0 for Ny, =

Hence,

a 1
SM=n-=1°, 0<x<—.
2 a

From the decreasing of f” it follows that f(n)> 2L =A for x> l Using (45)
a a

we obtain that

N ny A - 15 y -
f(n)= n—a{vgexp(—zv}dvdy = n—ajz{l—exp(—gyj}dy =

0

o 2ol ]

where 1—27612 0. Then 4 > 2a, a* S%, whence 0<a S%. Let us denote by f; the

()= 164> [l —exp(—r—aﬂ )

f=16a° {l—exp(—%ﬂ, pel

a

following function

Then

For the continuity we suppose that f; (l) =/ (lj :
a a
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L 164> l—exp(—Lj ,
2a 4a*

exp(—%jZI— 14 >O:>a4>i:>a>2_5/4.
4a 32a 32

Then for 2_5/4 ~ 0.42045< a < 1/2 we have

4q’ ln(l—

- 4j+1= 0=a =0.46106906.
a

Finally, we derive

n——az n?, 0<n<—
a
Sz

16<a*>{1—exp(— ”ﬂ L,
4a a

where a* =0.46106906. This means that

F)=>16(a") {1 —exp(— 4”* ﬂ > £ (1):=16(a")’ tanh (Sij VN0, (52)

a a

where fin(o0) = 1.568259. Due to the estimate (52), we need that 0 < a < a.Asd >
> a. then (52) is the lower estimate.
Coming back to equation (40) and using (48), we have

el 20 ) 2L e ]
+— =_ <—.
(f W+ f (n)) S () <2
Integrating this inequality with (41), we deduce that

2

f’(n)+%f2(n)ﬁn7—an+l-

2
As nT—cm+1£1 for 0 < n < 4a then, solving f'(n)—i—ifz(n)ﬁl with f0) =0,

f'(0)=1, we find that

FODE ()= 2tanh@j (53)

for all n:0 < n < 4a. As the graph of the right-hand side of (50) lies under the one

of 2tanh (gj and f, .. (0)=0, then choosing a < a,, we obtain that the estimate

(53) is valid for all m > 0.
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Thus, there is the the parameter point a € (0, a*) such that the problem (14),
(15) has an unique solution, and the following estimates hold:

fmin stfmax :

Moreover 1.568 < f{oo) < 2. These estimates provide reliable analytical informa-
tion about the behaviour of solution.

Proof of Proposition 2

The estimates (18) is a simple corollary from (17) that is,

Raz 12 Raz 12
16(a*)3(?j tnh(gn J<w<2( 5 ) tanh(%). (54)
a

From the equalities (44) and (13), in view of estimate (17), we deduce

—1+2atanh(2j<6(n)< 1+64(a”") atanh(Zj (55)
Let us obtain estimations of function ¢(n). From (10) we have
__oMm
o(n) = o212 + 0y , (56)

where ¢, is defined by (4). Then, taking into account (43), we obtain from (56)

that
a( Ra 12
E(Zj exp( Itanh(2]dyJ+¢w d(n) <

a( Ra 12 1
< —(—J exp| —8(a )3Itanh y*
O\ zQ 0 8a

Inequalities (19) and (20) follow from estimates (55), (57).

jdy}(boo- (57)
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TEOPETUYECKWME NCCNEOOBAHVA WOEANBHOW MOOENU
«MUSHY REGION»

B nmanHoli paboTe ucciemyeTcs NMoBeAcHUE (YHKIMH MOTOKA, TEMIEpaTyphl U JIO-
KaJbHOW TBEpJAOH (paKkUuy AJ MIeaTbHONH MOJENHN CMEIIaHHoro ciost. B cimydae ycroii-
YUBOW CBOOOJHON KOHBEKIIMHM HAWJEHBI TOUHBIC HM)KHHAE W BEPXHHUE OLEHKA OCHOBHBIX
(hyHKIHHA, XapaKTepU3YIOMINX MMPOIIecC, TIPH OOJIBIMUX 3HAUYCHUAX unciia Pames. s He-
CTallMOHAPHOTO PEKMMa TaK)Ke Hal/IeH SIBHBIA BUJ 3TUX OCHOBHBIX XapaKTEPUCTHUK.

KiroueBble c10Ba: CMEIIaHHBINA CIOH, YCTOWYHMBAsE U HEYCTOWYMBAsT KOHBEKIHS, (PyHK-
s [IOTOKA, TEMIIEPATypPa, JIOKaJIbHbIE TBEPbIC U XKUIKHE (HPAKINU
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