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A new formalization of Glauber method is developed and applied to the pseudospin
model with barriers. Kinetic equations are derived for this model and numeric so-
lutions in simplest approximations are obtained. Relaxation and kinetic properties
of the model are shown to depend on the barrier value as well on the heating-
cooling rate. Heating-cooling cycles reveal hysteresis. The relaxation times are
determined by the temperature and the barrier value. The relaxation time for the

structural order parameter S, possesses two vertical asymptotes: the first one
caused by phase transition, and the second one determined by slowing kinetics at
low temperatures.
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Introduction

The pseudospin model can be used for a wide class of the objects which repre-
sent structural disorder and order-disorder transitions. These are Jahn—Teller
crystals, hydrogen bonded crystals, molecular crystals, binary alloys, lattice gas
and lattice model of fluid. A lot of papers have been published about this ap-
proach since pioneer works of J.S. Slater [1] and P.G. De Gennes [2]. Unfortu-
nately, this model regards only two states at the bottoms of the potential minima
and ignores all others. It’s really correct as an approximation at the temperatures
kT << Uy, where U is the value of the energy barrier between the minima, but it
excludes possibility of description of the kinetic properties and such phenomena
as pretransition slowing of kinetics and metastable glass-like frozen disorder, be-
cause the states of the over-barrier motion are essential in these cases. In order to
include over-barrier states to the pseudospin framework, we developed the Ising
model with barriers [3]. The main results of this work are: three-component pseu-
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1 0 0
dospin S.i=10 0 0 (instead of usual two-component one), where S;; = 0
0 0 -1

corresponds to the states of the over-barrier motion, and the effective Hamilto-
nian:
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where z, =z_ =z, = J-exp(—gjg(s)ds, Zg = Iexp(—gjg(s)ds are partial sta-

1
tistical integrals taken over the states within the potential wells and over the

states of the cross-well motion respectively, € =— is the reduced energy, Uy
0

is the energy barrier between the minima, E is the energy, g(¢) is the density

of states, t:k—T is the reduced temperature, J; are the pair interaction con-
0

stants, 7T is the absolute temperature, N is the number of lattice sites. Let’s
notice that we are currently considering the classical mechanics case, so all
matrix operators commute with each other and should be regarded just as
pseudospin variables which can take values from the set of their eigenvalues.
We have chosen such representation because of benefits of matrix represen-
tation and in order to have a good start for extending the results to the quan-
tum mechanics case. This model was shown by means of computer simula-
tions really to reveal pretransition kinetics slowing and glass-like metastable
state of the frozen disorder [3]. By the way, these results are in accordance
with frustration-volumetric theory of glass by A.S. Bakai [4], where glassy
state is also regarded as a metastable phase, but not as an unstable very
slowly evolving one.

Further investigations were performed on the four-sublattice model in order to
apply the results to interpretation of the Mdssbauer investigations of the Jahn—
Teller crystal of Cu(H,O)¢-SiFg [5,6]. The state of metastable disorder and the
equilibrium phase transition for a four-sublattice model have been studied in this
work. These results were used for the theoretical explanation of the statics—
dynamics transformation observed in the disordered phase of this crystal when the
structural phase transition point is approached [7]. The next step of these
investigations is studying of kinetic properties.

So, the aim of this paper is obtaining of corresponding kinetic equation from
the model (1). The basic approach was founded by Glauber [8]. But our case dif-
fers from the original by two means: a) multicomponent pseudospin; b) transfer
rules: direct jumps between wells are forbidden because of classical character of
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our model, only over-barrier — well transfers and vice versa are allowed. In order
to fit these conditions, we have to reformulate Glauber approach. It should be no-
ticed that the same approach was used by Vaks with coworkers in their investiga-
tions of kinetic properties of alloys [9-12].

There are five steps, which we firstly illustrate on traditional two-component
model and then apply to our model with barriers.

1. Ising model

1. We start from the master equation in a general form:

G LR )

where {S}is a certain configuration of pseudospin values at each site

(e Setyees S juend s Wi(S2 ),

w;(=S, ;) are the transition probabilities for the

S 1D pUS|=S. ;1)

- j»—S, j respectively at the site j

changes —S, ; >

. j» Sz j ==, ; respectively at the site j, p({S

are the probabilities of the pseudospin values S

in the given configuration {S} .

2. Demand of detailed balance principle leads to a definite form of the transi-
tion probabilities:

—w;(S; )po (RS

S, D +w; (=S, )po(iS|-S. ;1) =0,=
= w;(S. )~ po({S|-S. ;1) ~ exp(-Bh;S. ),

where p=1/kT", h; = ZJ/' ;S ; —molecular field at the site j .
j#i
3. Operators §Z,i form the basis of the matrix algebra, and all functions of
them are expressed through the linear combinations of this basis:

522 =1, exp(aS,)=cosha+ S’Z sinh @ = cosh a(1+ S‘Z tanha).

4. Using statements 2 and 3, one can express the transfer probabilities (1, is a

phenomenological constant):

w; (S, aS;j):ﬁ(l—S;j tanh B/, ) .

5. Using 4, one can calculate the mean values and finally obtain the well
known kinetic equation:

M = ZSZ,M = —i(<Szl>—<tanhbhj>).

d'C {S} dt to
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2. Ising model with barrier

We can generalize now this approach on Ising model with barriers [3].
1. Master equation:

APUSE) 5y 5,50 l15}) w55 5. )65

dr J Sy
where w; (Szj - S;j) is a probability of a transition from the spin value S; to the
spin value S7; at the site /.

2. Demand of the detailed balance principle:
Do [ w8 = P8 +w; (S > S)pe({SH) | =0

N
v
w;(S; = )~ po(IS'}) ~ exp(Bh;SL ; +Bh(S. ))*),

where £; = ZJ jiSz 18 the molecular field at the site j, A=T'In (i

J#L

j is the effec-

20
tive energy barrier.
3. Rules of the matrix algebra: Dbasis S s S ; ,i ,  operations:
2
a2 &2 & . &2_ 4
(SZ) =852, 5..82=5..
4. Form of the matrix of transfer probabilities:

[1 + 57 ; exp(Bh)sinh(Bh, )+ (S, ;)° (exp(Bh) cosh(Bh;) - 1)] ,

. 1
wg s (J) = >
ss

. 1 .
where phenomenological matrix —— defines accordingly transfer rules:

Tss'
0 1 0
T,
1 = i 0 1 , zero values of non-diagonal elements do satisfy our
Tg s’ L T_
0 € 0
T

o L o
T
1
wss (/)= £ 0 |, where e, =expP(h+h;),e_ =expB(h—h;).
T, T
o L o
T
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5. Calculating the mean values with wge () from statement 4 yields:

9er) g aotisy

d 5 dt
=Y 8,2 > [ws s (Dp(SH+ws s(HpHSH | =
{8} i s
= 2> w5 (=S + S p(S)) =

i5)s,

) 5 antisn_
5 dt

=ZSZ%ZZ[—WS s (NPUSH+ws s()p(S)) | =

18} j s
=2 D w5 (=2, + SEPUS}H =
{8} S,

A o)

As a result, in the molecular field approximation and assuming t_ =1, =1,

we obtain the kinetic equations:

@ _ _Ti(<sz,.>—2 exp (Bh) sinh (B ) (1-(52)))
8<S22i> 10 , (2)
—~ _E(<S§i> ~2exp(Bh)cosh (Bh;) (1 ‘<SZ>))

where T is a time in relative units, ¢t = k7" /U, is the reduced temperature.
Let’s consider the limit passage. At the big barrier limit we have Bh>>1,
exp(—pBh) o(S.:)
and
2cosh (Bh;) o
well known Glauber result for the two-component model. So, the correspondence
principle is valid in this case.

1 .
hence <Szzl>z — :—¥(<Szi>—tanh([3hi) ), that is the

3. Three-component model with barrier

Static behaviour of this model was investigated in our previous works [5,6].
The structure parameter is represented by the vector matrix
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0 0 0O
A 0 Q. 0 0
= = 3
Q=Q:0=\y 4" o | 3
0 0 0 Q,
and over-barrier motion is described by the matrix
0 0 0O
92 = 01 00 @)
o0 1 o0f
0 0 01
where
1 V3
=(——,— 5
Q=273 ) )
0. - L 3,
Y2 2
Q,=1,0)

are three equivalent minima in the 2d space of the normal modes (Q5, Q,), as it is

illustrated in Fig. 1.
Passing through 5 steps described above, one can obtain the following kinetic
equations for this model:

d(Q;
%:‘%@ﬁ%i(m—m+2¢fz>eu<1‘<Q5'>)
d(Q;
<dr]2>:_r10 <Q.fz>+£(ejx—ejy>eu<1‘<Q5>) v
d(Q3
<drj>:_%< §>+i(ejx+ejy+ejz)e“(l_<Q§>)

Fig. 1. Three-minima model potential U(p)

U(x)
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where
ejx =exp(Bh;Q,)
ejy =exp(Bh;Q,)
ej, =exp(Bh;Q.)
e, =exp(Bh)

h; =v;Q; is the molecular field at the site j, v;is the pair interaction constant,

h=TIn (—lj is the effective energy barrier with partial statistical integrals zg, z;
20

the same as for (1), but taken over three-minima potential (Fig. 1).

4. Numeric results for Ising model with barrier

So, we have a toy — why not to play with it for a while? Results obtained from
(2) are represented below.

1. Relaxation below phase transition temperature is shown in Fig. 2,a and re-
laxation above the critical point is depictured in Fig. 2,b. In Fig. 2,a, we start from

the fully disordered static state<SZ j>:0, <S22 j>:1 and can observe how it

evolves to the ordered state which is stable at this temperature. Some unusual (but
expected) feature is unfreezing of over-barrier motions during this process (tem-

poral decrease of <SZ2 j> ). In Fig. 2,b we start from the fully ordered static state
<SZ j> = <SZ2 j> =1 and can observe relaxation to the stable disordered state and

regular unfreezing of dynamics expressed in regular decrease of <SZ2 j> .

1.0; 1.0
0.8 0.8
g, 06F 7 <, 0.6
“o4f / 20.4]
0.2} ! 0.2}
0 10 20 30 40 50 60 0 8
T T
a b

Fig. 2. Relaxation of <SZJ-> (dashed line) and <S sz> (solid line) at = 1 below the critical
J
poind (a) and at £ = 3 above the critical point (b) (reduced pair interaction j=——=135,

0
t.=2.2), T is time measured in relative units
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2. Kinetic behaviour is shown in Fig. 3. These results are obtained from the ki-
netic equations (2) under condition that temperature linearly depends on time. On
heating, we start from the fully disordered state, same as in Fig. 2,a. One can ob-
serve evolution of this state to the ordered one firstly (increasing <SZ j> ), and then —

to the fully disordered state (decreasing <SZ j> to 0). Then, cooling from the last
state leads again to the static state: <S22 j> =1 (frozen over-barrier states), but some
long range order remains frozen, what is indicated by non—zero<SZ j>. So that, we

can see a hysteresis without any additional assumptions but kinetic equations (2) as
is. These processes are also accompanied with unfreezing-freezing of the over-
barrier motions which can be traced by the temperature dependence of < S 22 j> .

1.0~ Fig. 3. Kinetic properties of <S zj> (dashed

0.8} lines) and <S 22j> (solid lines) (the reduced

A 0.6r

J
pair interaction j=——=35, . = 2.2) at
0.4t dr
heating (thin lines), — =0.1 and at cool-

0.2 drt

d¢
0 ing (bold lines) — =-0.1; t is the re-
drt

duced temperature

3. Relaxation time for <SZ j> is shown in Fig. 4,a and relaxation time for

<S Zz j> is shown in Fig. 4,b. The relaxation time for the structural order parameter
<SZ j> possesses two vertical asymptotes: the first one caused by phase transition,

as usual, but the second one reveals slowing kinetics at low temperatures caused by

150+
1.0+
100+
— (@]
[ e
sol L 0.5}
% 1 2 3 % 1 2 3
t t
a b

Fig. 4. Relaxation time for<S zj> (a) and <SZZJ> (b) in relative units versus temperature ¢

J
(the reduced pair interaction j = U_ =5, t,=2.2)
0
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the energy barrier. The relaxation time for the «dynamics» parameter <S 22 j> indi-

cates the phase transition too, but not so dramatically: it undergoes only the dis-
continuity of its first derivative at the critical point.

In contrast with computer modelling results [3], we did not consider here a
metastable glass-like state because we investigate here only the simplest spatially
homogeneous structure, but the glassy state needs to take into account spatial de-

pendence of parameters <SZ j>,<SZZ j> in order to describe short range order

which is essential for this state. We are planning to include inhomogeneous states
just as the next step of these investigations.

5. Conclusions

We explored our numeric solutions in a wide range of parameters, so it allows
us to make the following conclusions.

1. A new formalization of Glauber method is developed and is applied to the
pseudospin model with barriers.

2. Kinetic equations have been derived for this model and numeric solutions in
the simplest approximations have been obtained.

3. Relaxation and kinetic properties of the model has been shown to depend on
the barrier value as well on heating-cooling rate.

4. Heating-cooling cycles reveal hysteresis.

5. The relaxation times are determined by the temperature and the barrier
value.

6. The relaxation time for the structural order parameter <Szj> possesses two

vertical asymptotes: the first one caused by phase transition, and the second one
determined by slowing kinetics at low temperatures.
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B.JI. Kosapcoruii

KIHETWUYHI PIBHAHHSA AN NCEBLOCMNIHOBOI MOAENI
3 BAP’EPAMU

Pospobmeno HOBe (opmymoBanHsS Merody ImaybOepa, sike 3aCTOCOBAaHO JO IICEBIO-
CriHOBOI Mozeni 3 6ap’epamu. OTpUMaHO KiIHETHYHI PIBHSHHS IS i€l MOJIEN, 8 TaKOX
YHCeNbHI pillleHHs y HaWmpocTimmx HaOmkeHHsAX. [lokasaHo, mo penakcauwis i
KIHeTUYHI BJIACTUBOCTI MOJIENI 3ajieXKaTh BiJl €HEPreTHYHoro Oap’epy i HIBHUAKOCTI
HarpiBaHHSI—OXOJOKeHHA. L[MKiM HarpiBaHHI—OXOJIOKCHHS BHSIBIISIIOTH TicTepesic.
UYacu penakcariii BA3HAYAIOTHCS TEMIEPATYPOIO Ta BEITMYHUHOIO EHEPreTHIHOrO Oap’epy.
Yac penmaxcamii st CTpyKTYpHOTO IapameTpa Mopsiaky S, Mae IBi BEPTUKAJIbHI acHM-
OTOTH: Tepiia oOyMoBieHa (a30BUM NEpEXOJIOM, APYyra — YIMOBUILHEHHSM KiHETHKHU 32
HHU3BKHX TEMIEparyp.

KarouoBi cioBa: cTpykTypHUd Oe3naz, KiHETHYHI PiBHSHHS, MOJIENh I3WHTa, TICEBIO-
CIIHOBa MOJIeJIb, a30Bi IEPETBOPEHHS

B.JI. Kosapckuii

KWHETUYECKUE YPABHEHMA ONA NCEBAOCMMHOBOW MOLENN
C BAPBEPAMU

Pazpaborana HoBas (opmynupoBka MeToma ['maybepa, naHO ee NPUIIOKEHHE K IICEBIO-
CIIMHOBOI Mozenu ¢ Oapbepamu. [lomyueHsl KHHETHYECKHE YPaBHEHUS JJIS 3TOM MOJeNH,
a TaKKe YUCIICHHbIC PElIeHUsl B MpocTeHux mpubmmwkeHusx. [lokazaHo, 4To penakca-
sl 1 KWHETUYECKUE CBOIMCTBA MOAEIH 3aBUCSAT OT SHEPreTHUECKOro Oapbepa U CKOpO-
CTH HarpeBa—oxjaxaeHus. LIukibel HarpeBa—oXjiakAeHUs OOHApYy>KHBAIOT I'MCTEPE3HC.
Bpemena penakcaiuu ONpeAessioTCs TeMIepaTypod M BEIHYWHOW 3HEPreTHUYeCKOTo
Oapbepa. Bpems penakauuu Ui CTPYKTYpHOTO IapameTrpa nopsiaka S, odnamaer aByMs
BEPTUKAILHBIMH ACHMIITOTAMHU: TIepBas OOycCIIOBIIcHa (a30BBIM IIEPEX0J0M, BTOpas —
3aMeAJICHHEM KHHETHKH MIPYU HU3KUX TeMIepaTypax.

KiioueBble cioBa: CTPyKTYpHBIH Oecnopsiok, KWHETHYeCKHe YpaBHEHUS, MOJETh
W3unra, nceBIOCIMHOBAsA MOJIENb, (Pa30BbIe IEPEXOIbI

Puc. 1. TpexMUHUMYMHBIH MOIENbHBIN ToTeHIAN U(Q)

Puc. 2. Penakcauus <Szj> (TpuxoBas JUHUA) U <Szzj> (crutomtHast) mpu ¢ = 1 Himke
KPUTHYICCKON TOYKU (@) M TIPU ¢ = 3 BEIINIC KPUTHUECKON Toukw (b) (MpuBeIeHHAS KOH-

. J
CTaHTa MapHOTO B3aUMOJCWUCTBUS j=——=13, f. = 2.2), t — BpeMs B OTHOCHTEIbHBIX
0

€IMHALIAX
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Puc. 3. Kuneruyeckue cBOMHCTBa <Szj> (IUTpUXOBBIE JTUHUH) U <Szzj> (cromTHbIE)

. J
(mpuBe/ieHHAs KOHCTAHTa MAPHOTO B3auMOJCHCTBUA j = —— =35, f. = 2.2) npu Harpea-
0

t
anu (toukue nuunn), — = 0.1 u oxmaxnenun (kupusie muann), — =—0.1; ¢ — mpu-
dr dr
BEJICHHAsI TeMIIeparypa
2
Puc. 4. Bpems penakcanun mist <Szj> (a) m <Sz]> (b) B OTHOCHUTENBHBIX CAMHHUIIAX B
3aBHCUMOCTH OT NMPUBEIECHHON Temreparypsl ¢ (IpUBEIEHHAs KOHCTAHTa MapHOro B3au-

J
MozeicTBust j = — =35, 1.=2.2)
0

24



