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Introduction

As of now there are a lot of synthesized organic complexes and polymers, which

happen to be optically active either due to peculiarities of their structure or because of

optical activity of their constituent molecules [1-3]. A considerable attention has been

devoted to investigation of optical properties of ideal and nonideal crystals [4-9], 

including polymers and liquid crystals [10]. Special interest in these objects is due to

their high sensibility to external fields and strong anisotropy of dielectric permittivity. 

A method to account for concentration dependence of light refractive index in

imperfect lyotropic lamellar systems developed in Ref. [10] proves useful for

modeling the composite materials based on liquid crystals with prescribed parameters

without consideration of spatial dispersion. At the same time incorporating spatial

dispersion into the model permits to widen the range of the studied phenomena and

examine such effects as natural optical activity, electrogyration, circular dichroism, 

etc. Investigation of dispersion of gyrotropic characteristics allows to reveal structural

peculiarities of the corresponding media, and to determine important dynamic

parameters of their constituent molecules [11]. It also helps to account for the spatial

dispersion effects in polarization measurements of spectral characteristics of non-

linear optical processes. Gyrotropy is very often the sole tool for determination of

certain stereo- and crystal-chemical parameters, as well as fine structural details in

spatially dispersive structures.  

An important feature of many biological systems is molecular chirality, which is

of interest for bio-chemical and pharmaceutical research. Chiral systems are

exemplified by amino acids, sugars, proteins and enzymes. While biomolecules have

been primarily examined as constituents of liquid solutions, their properties in solid-

state phases are of great importance for pharmaceutical industry. Of special interest

are the cases when molecules lose their optical activity in solutions, but regain it in

the solids. Understanding of gyrotropy mechanisms in organic molecular crystals and

crystal complexes is essential for elucidation of the character of their interaction with
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electromagnetic irradiation. Along with this, investigation of gyrotropy in crystalline

objects proves instrumental for the study of organic objects (including biological)

possessing any degree of orderliness.  

Studies on various manifestations of optical activity in different types of media

pioneered by Arago in 1811 have developed since then into a broad and ramified

field of expertise. The authors do not claim to have covered the material in its full

generality. They rather concentrated on the issues immediately related to their area of

research. 

Below are considered some of gyrotropy effects occurring in molecular crystalline

systems in the exciton spectral range. The first section is devoted to the exciton

theory of natural optical activity in molecular crystals. It deals with the effect of the

structure of exciton states on the natural optical activity of crystals and on its

frequency dispersion. Mechanisms of gyrotropy are clarified for crystalline structures

with various types of intermolecular interaction.  

The second section is devoted to molecular crystalline structures, whose

symmetry classes allow for the onset of spatial dispersion effects (e.g. optical

activity) only under external influences such as mechanical action (the so-called

induced gyrotropy). Microscopic analysis of induced gyrotropy is possible due to the

use of the theory of excitons in the crystals subject to mechanical stress.  

Since real crystalline systems are always imperfect, the correct interpretation of

the corresponding experimental data and distinguishing between various gyrotropy

mechanisms require development of a microtheory which would take into account the

existing structural defects. In the third section a microtheory of gyrotropy is

constructed for molecular systems containing point defects (substitutional impurities, 

vacancies, systems with orientationally disordered molecules etc.).  

In the fourth section configurational averaging technique is adopted for

phenomenological description of natural optical activity of nonideal multilayer

materials. We construct a model of one-dimensional superlattice with randomly

included impurity layers, which differ by their width and physico-chemical

parameters from the layers of an ideal structure. A numerical modeling is performed
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for the specific rotation of polarized light propagating along the layerwise optical

axes of the described structure. To be specific we consider a two-sublattice SiO2-

liquid-crystal structure. Peculiarities of gyrotropy behavior are discussed in their

connection to the corresponding types of disordering in the studied systems. The

developed phenomenological theory permits to investigate the frequency dependence

of the specific rotation angle of polarization plane of plane-polarized light in

molecular crystal multilayers with point defects. The obtained results create

additional possibilities for modeling optically active multilayered composite

materials.  

The major part of this review is the result of the authors’ original research. It is

authors’ sincere hope that their work will stimulate a wider interest in the outlined

range of problems.  

The work was carried out in the frame of the joint Ukrainian-Russian project

0112U004002 of the National Academy of Science of Ukraine and Russian

Fundamental Research Fund. 

1. Natural optical activity

1.2 Excitonic theory of optical activity of molecular crystals  

Phenomenological theory of natural optical activity (NOA) has been sufficiently

developed in book [12]. Phenomenological approach has admittedly a limited

applicability and cannot provide answers to a number of questions concerning

frequency dispersion of angular rotation of polarization plane of linearly-polarized

monochromatic electromagnetic waves, connection between the rotation angle and

the structure of exciton states, numerical evaluation of certain quantities of interest

etc. Tackling these issues requires microscopic treatment. Construction of

microtheory of NOA for molecular crystals became feasible after Agranovich [13]

and Davydov [14] developed a theory of Frenkel excitons in molecular crystals. In

Ref. [13] exciton states are analyzed in the frame of Heitler-London approximation
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(H-L) without considering intermolecular interaction. In Ref. [15] H-L approximation

is adopted too, but with mixing interaction taken into account in the first-order

perturbation theory. The theory of NOA of crystals not based on H-L approximation

was developed in Ref. [16], However it addressed only uniaxial crystals and ignored

mixing of molecular states as well as the dependence of exciton wave functions on

wave vector k . Finally, in the above mentioned works [13,15,16] derivatives of

exciton characteristics (energies and wave functions) with respect to the wave vector

appeared as independent parameters and were not connected to specific crystalline

structure (medium microparameters). This resulted in cumbersome formulas for

gyrotropic tensor and rotatory power, proving not quite suitable for analysis of

various experimental situations. These flaws were eliminated in paper [17]. 

According to Refs. [13,14] in the model of stationary molecules Hamiltonian

Ĥ of a molecular crystal has the form

( ),
,

1ˆ ˆ ˆ 1
2n n m nm

n n m

H H Vα α β αβ
α α β

δ δ= + − ,   (1.1)

where ˆ
nH α is Hamiltonian of an isolated molecule α in site n ;  ,n̂ mV α β is a Coulomb

interaction operator for molecules nα and mβ . Separation of exciton part of

Hamiltonian (1.1) is performed by consecutive application of approximate secondary

quantization method to the case of molecular excitons [14]. According to this method

transition to the second quantization representation is carried out with the use of a set

of wave functions ( )f
nαϕ characterizing the states of individual molecules in crystal. 

The method of approximate secondary quantization suggests a way to find such wave

functions. As applied to Hamiltonian (1.1) it yields the following self-consistent

system of equations for unknown ( )f
nαϕ :

( ) ( ) ( ) ( )

( ) ( )0 0
,

ˆ ˆ

ˆ ˆ

f f f
n n n n

n n n m m
m

H W

W V

α α α α α

α α α β β
β

ϕ ε ϕ

ϕ ϕ

+ =

=
,    (1.2)

where ( )f
αε is the nα -molecule  energy corresponding to the state ( )f

nαϕ . 
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Using these ( )f
nαϕ to transform exciton part of Hamiltonian to the second-

quantized representation we arrive at the following formulas:

( ) ( ) ( ) ( )1ˆ ˆ
2

fex ex fg
n f n f n m n f n f m g m g

n f n fk
m g

H H E B B V B B B Bα α α α β α α β β
α α

β

+ + += = + + +k ,  (1.3)

where

( ) ( ) ( ) ( )0 0
,

ˆf gfg
n m n m n m n mV Vα β α β α β α βϕ ϕ ϕ ϕ= ,    ( ) ( ) ( )0f fEα α αε ε= − , 

n fB α
+ , n fB α are creation and annihilation operators of molecular excitation, fg

n mV α β is

the matrix of resonance intermolecular interaction. Exciton states ( ) ( ), Eμ μΨ k k

necessary for subsequent calculation of normal electromagnetic waves in spatially

dispersive crystals can be found by diagonalization of Hamiltonian (1.3) by

Bogolyubov-Tyablikov transformation.  

As shown in Ref. [13], the main gyrotropic characteristics of molecular

structures are expressible through the gyrotropy tensor ( ),jlγ ω⊥ s [17] defined as:

( )
0

,1 jl
jl

k
i k

χ ω
γ

⊥
⊥

=

∂
=

∂
k

 ,      (1.4)

/ k=s k . Dielectric permittivity tensor ( ),jlχ ω⊥ k appearing in Eq. (1.4) has the form

( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

2

2

0 0

2 2 2 2

, 1

8
;

p
jl jl

j lE J J

V E

μ μ μ

μ μ

ω
χ ω δ

ω

π
ω ω

⊥ = − +

Ψ − Ψ ⋅ Ψ Ψ
+

−

k

k k k k k k k

k

   (1.5)

its evaluation requires knowledge of the states of Coulomb excitons ( ) ( ), Eμ μΨ k k . 

In Eq.(1.5) ( ) ( ) ( )exp n n
n

i α α
α

=J k kr J k is the Fourier transform of the crystal

current density operator, nαJ is the Fourier transform of the current density operator

of molecule nα , pω is the frequency of plasma oscillations; V is the crystal volume. 

Upon substituting Eq. (1.5) into Eq. (1.4), the gyrotropy tensor appears as a sum of

two terms
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( ) ( )
( ) ( ) ( )

( ) ( )
0; ;0 ;0 0; 0; ;0

2 2 2 2 2 2 2 2 2
0

8
, ,

j tl l tj j t lt

ij

P Q P Q E E P W PS
i E E E

μ μ μ μ μ ν μ μν ν

μ μνμ μ ν

πγ ω
ν ω ω ω

⊥ +
= +

− − −
s s s s s ss s s

s
s s s

(1.6)

where

( )
( )2

0

( )
;

ex
t i H

Wμν μ νψ ψ
=

∂=
∂s s

k

k
s

k

( ) ( ) ( ) ( ) ( )0
0;

0

;
l

ftl n
n n f ft

f k

i J
Q u v

k
α

μ α α αμ αμ
α

ϕ ϕ
=

∂
= −

∂s

k
s s

( ) ( ),f fu vαμ αμs s are the u v− coefficients of Bogolyubov-Tyablikov transformation. 

It is evident that the first term in Eq. (1.6) originates from expansion in k of

characteristics of individual molecules and if the intermolecular interaction is

neglected it goes into the gyrotropy tensor of oriented gas. The second term is due to

expansion of exciton quantities and under neglected intermolecular interaction it

becomes zero. Hence the two terms in Eq. (1.6) may be called the molecular and the

crystal components of gyrotropy, respectively. 

Using the explicit expression (1.3) for matrix fg
n mV α β of resonance

intermolecular interaction, it can be shown that in crystals with primitive lattices the

crystal component of gyrotropy equals zero. This statement is rather general and does

not depend on multipolarity of the considered interaction.  

Unlike the previously used [13,15,16] expressions, the obtained relation for

gyrotropy tensor (1.6) allows to establish the relationship between gyrotropy

characteristics with the medium microparameters and elementary excitations

characteristics.  
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1.2 Optical rotary dispersion  

The microscopic consideration of the previous section allows to determine an

important quantitative characteristic of gyrotropy, namely the crystal rotatory power

( , )ρ ωs . Using formula (1.6) and expression (6.13) in Ref. [13] we have:

( )
( ) ( ) ( )

( ) ( )
2

:0 0: 0: :0

2 2 2 2 2 2 2 2 2 2
0

2 2
( , )

ltl t

t
Q P E E P P W

s
v c i E E E

μ μ μ ν μ ν μν

μ μνμ μ ν

πωρ ω
ω ω ω

× × ⋅
= +

− − −
s s s ss s s s s

s
s s s

.

(1.7)

Similarly to terminology adopted with regard to the structure of gyrotropy tensor, the

first term in Eq. (1.7) corresponds to molecular component (MC), and the second – to

the crystal component (CC) of rotatory power.  

From the experimental point of view the behavior of ( , )ρ ωs in the proximity of

excitonic resonances is of special interest. It should be noted that in the classic study

[13] molecular frequencies /f fEω = are regarded to be the resonant ones. 

However, it is natural to expected that resonances in crystals should be observed at

crystals’ eigenfrequencies (in this case on the frequencies of Coulomb excitons). 

Thus, during the further study of dispersion ( , )ρ ωs the frequencies of Coulomb

excitons ( ) /Eμ μΩ = s are considered the resonance ones. Let us examine the

dependence ( , )ρ ωs for those directions s which result in exciton states being

degenerated. As is known, if these directions coincide with the crystal optic axes then

( , )ρ ωs is the specific rotation angle of polarization plane of linearly polarized

monochromatic wave. 

For the specified s in the area of isolated resonance ( , )ρ ωs can be written in

the following way:  

( ) ( ) ( ) ( ) ( ) ( )
( )

2 2
1 2 3

22 2 2 2
( , )

KCK K K

μ μ

ω ω
ρ ω

ω ω

+
≈ +

Ω − Ω −

s s s
s    (1.8)
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The first and the second terms in (1.8) are called Drude and Lommel terms, 

respectively []. Their main difference resides in the fact that under transition of the

incident light frequency through resonance the former changes its sign whereas the

latter does not. Formula (1.8) shows that Lommel terms correspond to the crystal

component of gyrotropy, their contribution into the polarization plane rotatory angle

can be experimentally defined by the following procedure. The value 2( , )ρ ω ωs is

measured at two values of ω (quite close to frequency μΩ ): 2 2 2
1 μω = Ω + Δ ,  

2 2 2
2 μω = Ω − Δ . At 2 2

1 1 2 2( , ) ( , )ρ ω ω ρ ω ω=s s Lommel term is absent, at

2 2
1 1 2 2( , ) ( , )ρ ω ω ρ ω ω≠s s Lommel term contributes to the rotatory angle. 

From the above discussion it follows that for a primitive crystal lattice the

crystal component of gyrotropy is zero and thus the Lommel term in (1.8) is absent.  

Let as analyze the case of nondegenerate exciton states. That is when in the

neighborhood  of excitonic resonance holds the following approximate equality:

( ) ( ) ( ) ( )2
4 5

2 2
( , )

MC KCK K

μ

ω
ρ ω

ω
+

≈
Ω −

s s
s  .   (1.9)

In Ref. [13] for nondegenerate exciton states ( , )ρ ωs is defined by the sum of Drude

and Lommel terms, but in this case – by Drude term only (1.9). The reason for this

difference lies in the fact that here the crystal frequencies are considered to be

resonance ones, while in [] the resonance frequencies are molecule ones. 

It should be noted that under negligible role of mixing calculation of rotatory

power in the neighborhood of exciton resonances can be significantly simplified by

omitting the corresponding terms in the intermolecular interaction matrix fg
n mV α β . The

same simplification applies to the study of optical rotary dispersion in H-L

approximation. The corresponding parameters of smallness are given in Ref. [17].  
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2. Gyrotropy of molecular crystals subject to uniform deformations

2.1. Introductory notes

  

In the previous section the main attention was devoted to development of

microscopic description of gyrotropy, investigation of its various mechanisms, 

elucidation of its connection to microparameters of the medium and frequency

dispersion. Such studies enable to use gyrotropy as a delicate experimental method to

study structural features of crystalline media. They allow performing highly accurate

polarization measurements of spectral characteristics of nonlinear optical processes in

spatially-dispersed molecular crystals. At the same time it is well known that for

certain symmetry classes some of spatial dispersion effects (e.g. optical activity) are

possible only in the presence of external fields or mechanical stress (the so called

induced gyrotropy) [18]. For this reason among other studies [11,13,18] significant

interest lies in microscopic analysis of gyrotropic properties of molecular crystals

taking into account the mentioned factors. Relevance of such investigations is all the

more obvious as gyrotropy is very often the sole sufficiently sensitive indicator of

external influences to be used for determination of various stereo- and

crystallochemical parameters of crystals [13,14].  

Microscopic treatment of various optical effects in systems subject to external

actions apparently requires knowledge of the dependence of parameters of normal

electromagnetic waves in crystals on the magnitude of external input. Finding of this

dependence demands in turn to answer the questions relating to modification of

energy spectrum in the considered media and the subsequent calculation of optical

matter tensors, which are responsible for the medium response. In the present section

these problems are solved for molecular crystals homogeneously deformed by

external mechanical stress with the use of the exciton model. In the frame of this

model we obtain a microscopic expression for transverse tensor dielectric

permittivity, which is then used to find a fundamental gyrotropic quantitative
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characteristic, namely rotatory power ( )ˆ, ,ρ ε ωs of crystal with an arbitrary number

of sublattices ( ε̂ denotes the deformation tensor).  

Results of this section permit to analyze in detail the frequency dispersion of

rotatory power for all possible types of homogeneous deformations. Below such

analysis is carried out for uniaxially deformed crystal systems with primitive lattice

and systems subject to shear stress. 

2.2 Rotatory power of homogeneously deformed molecular crystals.

For a given character of deformations Hamiltonian of molecular crystals (as

follows from [29]) has the form:

( ) ( )
,

,

1ˆ ˆ ˆˆ ˆ
2n n m

n n m

H H Vα α β
α α β

ε ε= +  .        (2.1)

In (2.1) n , m are lattice vector, α , β are the numbers of sublattices, nH α is

Hamiltonian of an isolated nα -th molecule, ( )ˆ
n mV α β ε is the Coulomb interaction

operator of molecules nα and mβ dependent on deformation tensor ε̂ . A primed

summation sign (2.1) means that the terms with nα equal to mβ are dropped. 

It follows from Refs. [13] that operator of Coulomb interaction between the

molecules nα and mβ in a homogeneously deformed crystal has the form:

( ) ( )( ) ( )( )2

5

ˆ ˆ ˆ( ) 3
ˆ( )

ˆ( )

n m n m n n m m n m

n m

n m

V
α β α β α α β β α β

α β

α β

ε ε ε
ε

ε

−
=

P P r P r P r

r
 ,   (2.2)

Here (0) (0)ˆ ˆ( )n m n m n mα β α β α βε ε= +r r r . 

In (2.2) nαP is molecule nα dipole moment operator, (0)
n mα βr is the radius vector

connecting the nα -th and mβ -th sites in a free (unstrained) crystal lattice. In the

linear in ε̂ approximation
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(0) (0) (0) (0) (0) (0)
(0) (0) (1)

5 7(0) (0)

ˆ( ) (0)

ˆ3 15 ( ).

i l
n m n m n m

t l i i l t
il n m it n m lt n m n m n m n m p

n m tp n m n m

n m n m

V V P P

V V

α β α β α β

α β α β α β α β α β α β
α β α β α β

α β α β

ε

δ δ δ
ε ε

= + ⋅

+ +
⋅ − + ≡ +

r r r r r r
r

r r

(2.3)

Eq. (2.3) can be used to calculate molecular wave functions and corresponding

energies in the linear in ε approximation with the help of perturbation theory. To this

end wave functions ˆ( )f
nαϕ ε should be presented in the form of expansion in

molecular wave functions f
nαϕ , corresponding to the free crystal:  

( ) ( ) ( )ˆ ˆ gf
n fg n

g

Cα αϕ ε ε ϕ= .          (2.4) 

Upon substituting formulas (2.3) and (2.4) into Eq. (2.1) and separating out the terms

linear in ε̂ we obtain the following expression for coefficients (1) ˆ( )fgC ε representing

the first-order perturbation theory:

( )(1)
( ) ( ) (0) (0)

( ) ( )

( ) (0) (1) ( ) (0) (1) ( ) (0) (0) ( 0 ( )
0 ( )

( )

1
ˆ

,

f g
f g

g f g f h
n m n m n m h n m n m n m

m h

C
E E

V C V

α α
α α

α α α α β
α β α β α β β α β α β α β

β β

ε

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

= ⋅
−

⋅ +
   (2.5)

(1) 1
0 ( ) ( )

( ) ( )
( )

ˆ ˆ( )h g
h g

g

C A Bα αα αα
ε−= ,         (2.6)

where

( )(0) (0) ( ) (0) (0) (0) ( )
0 ( ) ( ) ( ) ( )

( ) ( )

ˆ 2 g h
h h g n m n m n m

h g
m

A E E Vα β
α α α α β α β α βα α β

δ ϕ ϕ ϕ ϕ= − − , 

( )( ) (0) (10 (0) (0)
( )

ˆ ˆ( ) g
g n m n m n m

m

B Vα
α α β α β α β

β
ε ϕ ϕ ε ϕ ϕ= . 

Eq. (2.5) permits to easily find molecular energy of the first-order in ε̂ :

{(1) ( ) (0) (1) ( ) (0)
( )

1 ( ) (0) (0) ( ) ( )
( )

( ) ( )
( ) ( )

ˆ ˆ2 ( ) .

f f
f n m n m n m

m

f f g
h n m n m n m

g h
h g

E V

A B V

α α
α α β α β α β

β

α α β
β α β α β α ββ ββ β

ϕ ϕ ϕ ϕ

ε ϕ ϕ ϕ ϕ−

= +

+
       (2.7)

Microscopic calculation of optical characteristics corresponding to exciton spectral

range assumes the explicit form of the corresponding Hamiltonian ( ) ( )ˆ ˆexH ε to be
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known. For molecular crystals separation of ( ) ( )ˆ ˆexH ε from (2.1) is easily done by a

step-by-step procedure of approximate secondary quantization [14]. The latter

requires the wave functions ( )ˆf
nαϕ ε of molecules in crystal field to satisfy the system

of self-consistent integro-differential equations, resulting form solution of the

corresponding variation problem. It can be easily shown (using the results of Ref. 

[288, 300]) that in the considered case the mentioned above equation system and

exciton Hamiltonian appear correspondingly as:

( ) ( ) ( ) ( ) ( )ˆ ˆˆ ˆ ˆ ˆ ˆf f
n n n f nH Wα α α α αε ε ϕ ε ε ε ϕ ε+ =  ,         (2.8)

where   

( ) ( )0 0ˆ ˆˆ ˆ
n m n m m

m

W Vα β α β β
β

ε ϕ ε ϕ= , 

and

( ) ( ) ( ) ( )1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
2

fex ex fg
n f n f n m n f n f m g m g

n f n fk
m g

H H k E B B V B B B Bα α α α β α α β β
α α

β

+ + += = + + +   (2.9)

In (2.9) ( ) ( ) ( ) ( )0 0
,

ˆ| |f gfg
n m n m n m n mV Vα β α β α β α βϕ ϕ ϕ ϕ= , ( ) ( ) ( )0f fEα α αε ε= − , ˆ

n fB α
+ , ˆ

n fB α are

molecular excitation creation and annihilation operators. 

Hamiltonian (2.9) determines the state of Coulomb excitons, necessary for

calculation of transverse tensor of dielectric permittivity ( )ˆ ˆ, ,χ ε ω⊥ k , which, in its

turn, helps to determine all basic optical characteristics, including the target rotatory

power of the deformed medium. As ( ) ( )ˆ ˆ 0exH ε ≠ and ( ) ( )ˆ ˆ 0exH ε = have the same

form (due to crystals translational invariance under homogeneous deformations), 

tensor ( )ˆ ˆ, ,χ ε ω⊥ k can be found employing formulas (3), (5)-(7) of Ref. [19] and

using substitutions ( ) ( ) ( )ˆf f
n nα αϕ ϕ ε→ , ( ) ( ) ( )ˆf f

n nα αε ε ε→ , ( )0 0
ˆ1 Spν ν ε→ + , where 0ν is the

volume of elementary cell in a free (unstressed) crystal. For the part of ( )ˆ ˆ, ,χ ε ω⊥ k

dependent on k and for ( ) ( )2

2

0

ˆ, ,
ˆ, ,

4
til

ilt

i
e S

c

χ ε ωωρ ε ω
⊥

=

∂
= −

∂
k

k
s

k
(where Einstein
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summation convention is implied and eilt is the Levy-Civita symbol) this procedure

correspondingly yields:

( )

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( )
0 0

2 2 2 2

ˆ, ,

ˆ ˆ ˆ ˆ ˆ,8
,

ˆ ˆ1 ,

il

i lE I I

Sp E

μ μ μ

μ μ

χ ε ω

ε ψ ε ψ ε ψ ε ψ επ
ν ε ω ε ω

⊥Δ =

−
=

+ −
k k

k

k k k

k

  (2.10)

( ) ( )
( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )( ) ( )
2

2
0 0

2 2 2 2
0

0 0

2 2 2 2 2 2

0

ˆ ˆ ˆ ˆ, , , ,2
ˆ, , 2

ˆ ˆ1 ,

ˆ ˆ ˆ ˆ ˆ ˆ, , , , , ,

ˆ ˆ, ,

ˆ ˆ ˆ, , ,

i j jlt
s silt

i l

ex

P S Qi e S

c Sp E

E E P P

E E

i H

μ μ

μ μ

μ ν μ ν

μν μ ν

μ ν

ψ ε ψ ε ψ ε ψ επ ωρ ε ω
ν ε ε ω

ε ε ψ ε ψ ε ψ ε ψ ε

ε ω ε ω

ψ ε ε ψ ε
=

−= +
+ −

+ ×
− −

× ∂ ∂

s s

s s
k

s s s s
s

s

s s s s s s

s s

s k k s (2.11)

Here ( )ˆμψ εk and ( )ˆ,Eμ ε k are exciton wave functions and energy, ( )I k and P are

correspondingly operators of current density and crystal dipole moment, ν is the

volume of a strain free crystal, the content of other signs in (2.10), (2.11) being the

same as in [17-19]. It follows from Eqs. (2.8)-(2.11) that the dependence of rotatory

power on ε̂ cannot be expressed analytically in its general form and finding this

dependence for arbitrary deformations should be done individually in each particular

case with the account for specifics of the considered systems and with the use of the

most suitable approximation with adjustable parameters ( )ˆfg
n mV α β ε . At the same time

it is obvious that at moderate crystal deformations (not resulting in irreversible

structural changes) the rotatory power to sufficient accuracy can be written in linear

in ε̂ approximation with the use of standard formulas of perturbation theory (see Eqs. 

(2.5)-(2.7)). In this case the corresponding (approximate) microscopic expression for

( ) ( ) ( ) ( ) ( )0 1ˆ ˆ, , , , ,ρ ε ω ρ ω ρ ε ω≅ +s s s has a universal from for each class of crystal

systems with the same number of sublattices. As can be seen from (2.11)

( ) ( )1 ˆ, ,ρ ε ωs is expressed as a sum of terms reflecting the corresponding mechanisms

of induced gyrotropy.  
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It follows from the said above that the most important in an experimental study

analysis of frequency dispersion of rotatory power comes to the analysis of each of

the terms and most easily fulfilled for systems with primitive lattices (for which the

second term in (2.11) is zero). In the latter case function ( ) ( )1 ˆ, ,ρ ε ωs looks as

follows:

2
(1) (0) (1) (1)ˆ ˆ ˆ ˆ( , , ) ( , ) ( , , ) ( , , ) ( , )

2M C i l ilpt ptSp s s g
c

ωρ ε ω ερ ω ρ ε ω ρ ε ω ω ε⊥= − + + ≡s s s s s

(2.12)

The first term in (2.12) is due to variation of lattice constants under crystal

deformation and in optically non-active free media it is zero for s collinear to the

optical axis. Function ( ) ( )1 ˆ, ,ρ ε ωs is connected with expansion in ε̂ molecular

characteristics. It is determined mainly by molecules gyrotropy. The third term in

(2.12) is conditioned by the dependence of exciton characteristics on ε̂ - in the model

of oriented gas it also equals zero. The form of pseudotensor of the fourth rank

( , )ilptg ω⊥ s is determined by the group ˆ( 0)G ε =s . A more detailed analysis (1) ˆ( , , )ρ ε ωs

needs specification of the character of external actions. In such a case the

deformation tensor has the form il ilpt p ts q qε σ=  , where σ  is strain, ilpts is the tensor

of elastic compliance coefficients. The systems subject to shear stress were studied in

Ref. [18]. In the last case the deformation tensor has the form ( )il ilrt r t r ts p q q pε σ= + , 

where ,p q are unit vectors corresponding to shear and direct stress.  

2.3. Dispersion of induced gyrotropy in uniaxially deformed molecular

crystals

Of the highest interest in the experimental research of induced gyrotropy is its

behaviour in the proximity of exciton resonances. From formulae (2.11) and (2.12) it

is evident that in this frequency range for arbitrary s and q function (1) ˆ( , , )ρ ε ωs can

be approximated by a linear combination of Drude ( )1 ˆ( , , )Dρ ε ωs and Lommel
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( )1 ˆ( , , )Lρ ε ωs terms, proportional correspondingly to ( )( ) 12 2 2Eμ ω
−

−s and

( )( ) 22 2 2Eμ ω
−

−s . It is easy to show that the first type of terms (with specified s and

q ) is conditioned by three functions only, included in (2.12), while the second type

appears from ( )1 ˆ( , , )Cρ ε ωs only. For ( ) ˆ( , )exH ε s possessing certain symmetry, the form

of function (1) ˆ( , , )ρ ε ωs is significantly dependent upon q and, as will be evident

from the examples, can vanish for certain q ’s. In this case revealing of microscopic

structure of (1) ˆ( , , )ρ ε ωs requires a group-theoretical analysis of the matrix elements

in (2.11). It is obvious that this analysis is most topical for those crystalline classes

whose symmetry allows existence of induced (by mechanical stress) optical activity. 

As shown in Ref. [18], such are symmetry classes C3v, C4v, C6v, C3h, D3h, Td.  

For each of the mentioned groups the symmetry conditions for function

(1) ˆ( , , )ρ ε ωs becoming zero are presented below together with a detailed analysis of

(0) ( , )ρ ωs , ( )1 ˆ( , , )Mρ ε ωs and ( )1 ˆ( , , )Cρ ε ωs contribution to Drude and Lommel terms.   

1. Group 3v

1.1. Vector s is directed along triad axis.

In this case (1) ˆ( , , )ρ ε ωs becomes zero at: 1) q s  , 2) q perpendicular to one of the

symmetry planes, 3) q perpendicular to s and lying in one of three symmetry planes. 

In case with arbitrary q for degenerate excitonic energies

(1) (1) (1)ˆ ˆ ˆ( , , ) ( , , ) ( , , )D Lρ ε ω ρ ε ω ρ ε ω≈ +s s s  , and for energies of all other symmetry types

(1) (1)ˆ ˆ( , , ) ( , , )Dρ ε ω ρ ε ω≈s s .  At that the contribution to (1) ˆ( , , )Dρ ε ωs is made by both

(1) ˆ( , , )Lρ ε ωs and (1) ˆ( , , )Cρ ε ωs ( (0) ( , ) 0ρ ω =s ). 

1.2. Vector s lies in one of three symmetry planes ( (0) ( , ) 0ρ ω =s ). 

For such s (1) ˆ( , , )ρ ε ωs is zero under the same q , as in the previous case. For

arbitrary q this function is described by terms of Drude type only. 
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1.3. Vector s is perpendicular to one of three symmetry planes.

This case is similar to #1.2. 

2. Group 4v

2.1. Vector s is directed along tetrad axis ( (0) ( , ) 0ρ ω =s ). 

For such s (1) ˆ( , , )ρ ε ωs =0 at any q . In the second order in ε̂ ˆ( , , ) 0ρ ε ω ≠s in case of

deformation along arbitrary directions. 

2.2. Vector s is perpendicular to one of the symmetry planes ( (0) ( , ) 0ρ ω =s ). 

Function (1) ˆ( , , ) 0ρ ε ω =s at ⊥q s . For an arbitrary q (1) (1)ˆ ˆ( , , ) ( , , )Dρ ε ω ρ ε ω≈s s , at

that contribution (1) ˆ( , , )Dρ ε ωs is conditioned by both (1) ˆ( , , )Mρ ε ωs and (1) ˆ( , , )Cρ ε ωs . 

3. Group 6v

3.1.Vector s is directed along hexad exis ( (0) ( , ) 0ρ ω =s )

Function (1) ˆ( , , )ρ ε ωs equals zero at 1) q s , 2) q perpendicular to one of the

symmetry planes, 3) q lying in one of six symmetry planes. For arbitrary q in cases

of degenerate excitonic states (1) (1) (1)ˆ ˆ ˆ( , , ) ( , , ) ( , , )D Lρ ε ω ρ ε ω ρ ε ω≈ +s s s , and

(1) (1)ˆ ˆ( , , ) ( , , )Dρ ε ω ρ ε ω≈s s in all other cases. 

3.2. Vector s is perpendicular to one of the symmetry planes

( (0) ( , ) 0ρ ω =s ).Function (1) ˆ( , , )ρ ε ωs equals zero at the same q , as in 3.1. For an

arbitrary direction of contraction axis always holds (1) (1)ˆ ˆ( , , ) ( , , )Dρ ε ω ρ ε ω≈s s . 

4. Group 3h

4.1.Vector s is directed along triad axis ( (0) ( , ) 0ρ ω =s ). 

In this case (1) ˆ( , , ) 0ρ ε ω =s at ⊥q s . For arbitrary q in case of dipole active

(complex conjugate) exciton states with corresponding energies
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(1) (1) (1)ˆ ˆ ˆ( , , ) ( , , ) ( , , )D Lρ ε ω ρ ε ω ρ ε ω≈ +s s s , and in all other cases

(1) (1)ˆ ˆ( , , ) ( , , )Dρ ε ω ρ ε ω≈s s . 

4.2. Vector s lies in symmetry plane ( (0) ( , ) 0ρ ω =s ).  

Function (1) ˆ( , , )ρ ε ωs equals zero at the same q , as in 4.1. For an arbitrary q holds

(1) (1)ˆ ˆ( , , ) ( , , )Dρ ε ω ρ ε ω≈s s .  

5. Group D3h

5.1. Vector s is directed along triad axis ( (0) ( , ) 0ρ ω =s ). 

In this case (1) ˆ( , , ) 0ρ ε ω =s at 1) ⊥q s and 2) q , lying in any of three vertical planes

of the symmetry. For arbitrary q in the case of degenerate excitonic states

(1) (1) (1)ˆ ˆ ˆ( , , ) ( , , ) ( , , )D Lρ ε ω ρ ε ω ρ ε ω≈ +s s s , and (1) (1)ˆ ˆ( , , ) ( , , )Dρ ε ω ρ ε ω≈s s in any other

case. 

5.2. Vector s is directed along one of three twofold symmetry axes.

Function (1) ˆ( , , )ρ ε ωs in this case equals zero at the same q as in 5.1, but in the

exciton resonances proximity it is always approximated by terms of Drude type. 

5.3. Vector s lies in any of three vertical symmetry planes.

In this case function (1) ˆ( , , )ρ ε ωs equals zero at ⊥q s . For arbitrary q

(1) (1)ˆ ˆ( , , ) ( , , )Dρ ε ω ρ ε ω≈s s . 

5.4. Vector s lies in a horizontal symmetry plane.

Function (1) ˆ( , , )ρ ε ωs in this case equals zero at the same q as in 5.1. For any other q

(1) (1)ˆ ˆ( , , ) ( , , )Dρ ε ω ρ ε ω≈s s . 

6. Group Td

For any s and q function (1) ˆ( , , )ρ ε ωs =0. In the second order in ε̂ rotatory power

differs from zero for arbitrary q .  
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2.4 Gyrotropy of molecular crystals induced by external shear stress

It has been mentioned above that induced gyrotropy in the proximity of exciton

resonances arouses the biggest interest for experimental studies. In this connection

we study function (1) ˆ( , , )ρ ε ωs in this area. Form formulae (2.11) and (2.12) it follows

that in this frequency range for arbitrary (non-symmetrical) s (1) ˆ( , , )ρ ε ωs is always

different from zero and, as in the previous section, can always be approximated by

the linear combination of Drude (1) ˆ( , , )Dρ ε ωs and Lommel (1) ˆ( , , )Lρ ε ωs terms. The first

type of terms (at the specified s ) is conditioned by all three functions present in

(2.12), while the second one appears from (1) ˆ( , , )Cρ ε ωs only. Revealing microscopic

structure of (1) ˆ( , , )ρ ε ωs requires the group-theoretical analysis of matrix elements in

(2.11). At the same time for definite symmetrical p , q the specified function can

become zero. It is natural that such analysis is the most topical for those crystals

whose symmetry allow for the existence of optical activity induced by external shear

stress. As it is shown above (in section 6.2.3) such classes are crystal symmetry

classes C3v , C4v , C6v , C3h , D3h , Td . For each of the mentioned groups the symmetry

conditions of function (1) ˆ( , , )ρ ε ωs becoming zero are defined below. Its behaviour in

the proximity of exciton resonances is studied in detail. It should be noted that

function (1) ( , )ρ ωs for the specified groups is zero not only at s , directed along the

optical axes, but also as it is revealed by group-theoretical analysis, for all other

symmetrical directions. It is taken into account below that the contribution of

(0) ( , )ρ ωs to Drude terms for such s is zero.  

1 Group C3v.

1.1.Vector s is directed along triad axis C3 . 

In this case ( )(1) ˆ, ,ρ ε ωs becomes zero at: 1) p s and q , lying in one of the

symmetry planes; 2) q s and p are in one of the symmetry planes. For all other p
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and q (1) (1) (1)ˆ ˆ ˆ( , , ) ( , , ) ( , , )D Lρ ε ω ρ ε ω ρ ε ω≈ +s s s for degenerate exciton levels

and (1) (1)ˆ ˆ( , , ) ( , , )Dρ ε ω ρ ε ω≈s s   for energies of other symmetry types. In such case

contribution to (1) ˆ( , , )Dρ ε ωs is made by both (1) ˆ( , , )Mρ ε ωs and (1) ˆ( , , )Cρ ε ωs . 

1.2.Vector s lies in one of the symmetry planes.

For such s ( )(1) ˆ, ,ρ ε ωs is zero at: 1) 3Cq and p , lying in the same plane as s ; 2)

3Cp , and q is in the same plane as s . For all other p , q ( )(1) ˆ, ,ρ ε ωs is defined by

Drude terms only. 

1.3.Vector s is perpendicular to one of three symmetry planes.

At such s the function under consideration is zero at: 1) 3Cq and ⊥p s ; 2) 3Cp

and ⊥q s . For other p , q (1) (1)ˆ ˆ( , , ) ( , , )Dρ ε ω ρ ε ω≈s s is always true. 

2. Group 4v.

2.1.Vector s is directed along tetrad axis C4 .

At such s ( )(1) ˆ, ,ρ ε ωs for any p , q . In the second order in ε̂ ( )(1) ˆ, , 0ρ ε ω ≠s in case

of deformations with arbitrary p , q . 

2.2.Vector s is perpendicular to tetrad axis and lies in one of the symmetry planes.

In this case the analysed function is zero at: 1) 4Cq and arbitrary p ; 2) 4Cp , q is

an arbitrary vector. For other p and q (1) (1)ˆ ˆ( , , ) ( , , )Dρ ε ω ρ ε ω≈s s is always true. 

2.3.Vector s lies in one of the symmetry planes and not perpendicular to C4 .

For such s function ( )(1) ˆ, , 0ρ ε ω =s at: 1) 4Cq and p lies in the same plane as s ;

2) 4Cp , and q lies in the studied symmetry plane. In case with arbitrary p , q

(1) (1)ˆ ˆ( , , ) ( , , )Dρ ε ω ρ ε ω≈s s . 
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3. Group 6v .

3.1.Vector s is directed along hexad axis C6 .

At such s ( )(1) ˆ, , 0ρ ε ω =s at: 1)  q s and arbitrary p ; 2) p s and arbitrary q . For

other p , q in case of degenerate exciton states

(1) (1) (1)ˆ ˆ ˆ( , , ) ( , , ) ( , , )D Lρ ε ω ρ ε ω ρ ε ω≈ +s s s ; in all other cases (1) (1)ˆ ˆ( , , ) ( , , )Dρ ε ω ρ ε ω≈s s . 

3.2.Vector s lies in one of the symmetry planes and is perpendicular to C6 .

Function ( )(1) ˆ, , 0ρ ε ω =s at: 1) 6Cq , p is an arbitrary vector; 2) 4Cp and

arbitrary q . For all other q (1) (1)ˆ ˆ( , , ) ( , , )Dρ ε ω ρ ε ω≈s s is always true. 

3.3.Vector s lies in one of the symmetry planes and is not perpendicular to C6  .

Function ( )(1) ˆ, , 0ρ ε ω =s for such s at: 1)  6Cq and p lying in the symmetry plane

under consideration; 2) 6Cp and q are in the same plane as s . In case when q is

not parallel C6
(1) (1)ˆ ˆ( , , ) ( , , )Dρ ε ω ρ ε ω≈s s is always true. 

4. Group C3h

4.1. Vector s is directed along triad axis C3 . 

In this case function ( )(1) ˆ, , 0ρ ε ω =s at p and q lying in the symmetry plane. For

arbitrary p , q : ( ) ( ) ( )(1) (1) (2)ˆ ˆ ˆ, , , , , ,D Lρ ε ω ρ ε ω ρ ε ω≈ +s s s - only for dipole active

(complex conjugate) exciton states, in all other cases

(1) (1) (1)ˆ ˆ ˆ( , , ) ( , , ) ( , , )D Lρ ε ω ρ ε ω ρ ε ω≈ +s s s . 

4.2. Vector s lies in the symmetry plane.

For such s the function under consideration is zero at 3C⊥p and 3C⊥q . In case

with arbitrary p , q behaviour of ( )(1) ˆ, ,ρ ε ωs is similar to that analyzed in 4.1. 
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5. Group D3h.

5.1. Vector s is directed along triad axis C3

In this case ( )(1) ˆ, , 0ρ ε ω =s at: 1) q parallel to one of the twofold axis (C2) and

arbitrary p ; 2) p along one of axes C2 and arbitrary q . For arbitrary p , q in the case

of degenerate exciton states (1) (1) (1)ˆ ˆ ˆ( , , ) ( , , ) ( , , )D Lρ ε ω ρ ε ω ρ ε ω≈ +s s s and

(1) (1)ˆ ˆ( , , ) ( , , )Dρ ε ω ρ ε ω≈s s in all other cases. 

5.2. Vector s is directed along one of the twofold axes C2 .

For data s the function under consideration is zero at: 1) q s and arbitrary p ; 2)  

p s and arbitrary q . At arbitrary p , q (1) (1)ˆ ˆ( , , ) ( , , )Dρ ε ω ρ ε ω≈s s is always true. 

5.3. Vector s lies in one of the vertical symmetry planes and not perpendicular to C3.

For such s ( )(1) ˆ, , 0ρ ε ω =s at: 1) 3Cq and p , parallel to the corresponding twofold

axis; 2)  3Cp and q , lying in the same symmetry plane as s . In all other cases

(1) (1)ˆ ˆ( , , ) ( , , )Dρ ε ω ρ ε ω≈s s is always true. 

5.4. Vector s lies in the horizontal symmetry plane and does not coincide with C2.

For these s function ( )(1) ˆ, , 0ρ ε ω =s at: 1)  q is parallel to one of the twofold axes, 

and 3C⊥p ; 2) p coinciding with one of the twofold axes and 3C⊥q . In all cases

(1) (1)ˆ ˆ( , , ) ( , , )Dρ ε ω ρ ε ω≈s s is always true. 

6. Group Td.

For any s and p , q ( )(1) ˆ, , 0ρ ε ω =s . In the second order in ε̂ the rotatory power is

different from zero for arbitrary p , q . 

In conclusion, this subsection presents a microscopic analysis of shear-stress-

induced gyrotropy in molecular crystals. It is evident that the above-used Frenkel

exciton model for microscopic description of induced gyrotropy is applicable not

only to molecular crystals proper (in particular to simple cryocrystals such as solid

hydrogen, hexagonal close-packed Ar, Kr, Ne etc.), but also to valence bond crystals
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(diamond-like structures with dT symmetry), whose electron excitations can be

described by quasi-molecular model [18]. Crystals with the analyzed symmetry are

optically inactive at the absence of external action. For other types of homogeneous

deformation tensor ε̂ has a different from the discussed form. Thus, the character of

frequency dispersion of rotatory power is different from the analysed case. 

Nevertheless, the developed technique allows to carry out the microscopic analysis of

molecular crystals gyrotropy in the exciton spectral region for other types of

homogenous deformation as well. The technique of experimental check of Drude and

Lommel terms is described in Ref. [19]. Paper [20] is useful in finding the ways of

experimental study of crystals optical activity induced by homogeneous deformation.  

It’s worthwhile noting that along with the microscopic approach, developed

herein, for molecular crystals there exists another one [20] based on the effective

Hamiltonian method. Monograph [20] covers issues in the theory of electronic

phenomena in crystals distorted by weekly non-uniform deformations. It presents the

results of investigation of the general properties of the corresponding effective

Hamiltonian and particular problems on the energy spectrum and electron dynamics

in deformed crystals. There is also an examination of screening of deformation

potential by conduction electrons in metals and semiconductors as well as kinetic

phenomena in deformed conductors and superconductors.    

3. Gyrotropy in topologically ordered imperfect molecular crystals

3.1. Introductory notes.  

Construction of exciton theory of gyrotropy, considered above is feasible due to

well-known exciton states in perfect molecular crystals. Yet real crystalline systems

are always imperfect. Therefore an adequate interpretation of experimental data, 

identification of various gyrotropy mechanisms, understanding of their peculiarities

in each particular case are possible only in the context of a microtheory, where

existing structural imperfections are taken into account. Such theory is the most easy
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to develop for topologically ordered defect structures exemplified by molecular

crystals containing substitutional impurities and vacancies with no considerable

distortion of their surroundings. Vacancies can formally be considered as

substitutional impurities with zero values of molecular currents, dipole moments, 

energies and corresponding elements of intermolecular interaction matrix. The

systems mentioned above allow application of the averaged Green functions

technique [21]. The latter define renormalization of exciton states and allow

evaluation of optical tensors, which in turn are sufficient to find all the corresponding

characteristics of normal electromagnetic waves including gyrotropic parameters. In

the considered case gyrotropic parameters are functions not only of frequency but of

defect concentration as well. In the present section a single-level model is adopted to

find microscopic expressions for transverse tensor of dielectric permittivity, 

gyrotropy tensor and rotary power of topologically disordered non-ideal systems with

an arbitrary number of sublattices.  

3.2 Transverse tensor of dielectric permittivity of randomly disordered

molecular crystals. 

Similar to the calculation carried out in Section 1.1 the calculation of rotatory

power is fulfilled with the help of the dielectric permittivity transverse tensor. This

tensor is calculated by the linear response method and it is expressed by Fourier

transform of the two-time retarded Green function ( ) ( )
r

j lJ J
ω

−k k from the

current density operator [14]. In impurity crystals finding the dielectric permittivity

tensor by the specified method requires averaging of the calculated quantities over all

possible configurations of point defects. In the result of this calculation method the

part of dielectric permittivity transverse tensor ilχ ⊥Δ depending on k can be

presented in the form
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In (3.1) N is the number of elementary cells in volume V , P̂ is the operator of

configurational averaging [22], ( )Cν α
α is the concentration of point defects of ( )ν α -th

sort in α -th sublattice. Fourier transform of the two-time retarded Green function  

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )

1

0 0

1

0 0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ (3.2)
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n n n n n n m m

ex ex ex
m m n n

B B B B B B H B B
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α α β β α α β β
ω

β β α α
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− Ψ − + − Ψ

of the difference of creation and annihilation operators ˆ
nB α
+ and ˆ

nB α corresponds to

exciton Hamiltonian ( )ˆ exH , which for all considered systems has the standard form :

( )( )1ˆ ˆ ˆ ˆ ˆ ˆ ˆ
2

ex
n n n n m n n m m

n n
m

H E B B V B B B Bα α α α β α α β β
α α

β

+ + += + + +    (3.3)

From (3.1) it is seen, that microscopic calculation ( ){ }( ), ,il Cν α
αχ ω⊥Δ k is

directly connected with the configuration averaging of the production of molecular

currents by Green function (3.2). This procedure is easy to carry out if one expresses

molecular characteristics nE α , n mV α β and ( )nαJ k through configurationally

dependent random quantities ( )
n
ν α
αη . The latter ones have the following meanings:  

( ) 1n
ν α
αη = , if in site nα there is point defect of the ( )ν α -th sort and in ( ) 0n

ν α
αη = in any

other case. Molecular characteristics are expressed through random quantities in the

following way:

( ) ( ) ( ) ( )

( )

( )

1

r

n n

α
ν α ν α

α α α
ν α

η
=

=J k J k ,    (3.4a)
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( ) ( ) ( ) ( )

( ) ( )
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=    (3.4c)

At that  

( )

( )

( )

1

1
r

n

α
ν α
α

ν α
η

=

=  .   (3.4d)

where ( ) ( )n
ν α

αJ k and ( )Eν α
α are matrix element of Fourier transform of current density

operator and exciton energy of the α-th molecule of ( )ν α -th sort; value ( ) ( )
n mWν α μ β
α β

corresponds to Coulomb interaction of point defect of ( )ν α -th sort in site ( )n α with

point defect of ( )m β -th sort in site mβ (if in sites ( )n α or ( )m β there is a vacancy, 

the corresponding ( ) ( )
n mWν α μ β
α β equals zero); ( )r α is the number of molecular groups in

α-th sublattice, each of which corresponds to a particular sort of corresponding

defects. 

From formula (3.4d) it follows that concentrations ( )Cν α
α are subject to

constraint

( )

( )

( )

1

1
r

C
α

ν α
α

ν α =

=      (3.5)

Function ˆ ˆ ˆ ˆ
r

n n m mB B B Bα α β β
ω

+ +− − , appearing in (3.1), is expressed through the

quantities nE α , n mV α β and for exciton Hamiltonian ( )ˆ exH quadratic in operators ˆ
nB α
+ , 

ˆ
mB α can be determined accurately. Employing the method of motion equations [23]

we obtain:



26

( ) ( ){ }1
2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 2 2

r

n n m m
n m

B B B B E V E E Vα α β β
ω α β

ω
−

+ +− − = − − + +      

(3.6)

where ˆ
n nm

n m
E E α αβα β

δ δ= , ˆ
n m

n m
V V α βα β

= .  

Formulas (3.1) and (3.4 ) show that finding the frequency and concentration

dependences  ( ){ }( ), ,jl Cν α
αχ ω⊥Δ k is immediately connected to configuration

averaging of the following production of random quantities:

( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ
r
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α β α α α β β β

ω
η η+ +Φ ≡ ⋅ − − ⋅ . 

Taking into account (3.4 ) and (3.4 ) ( )ˆ
n mP ναμ β
α βΦ can be written in the following way:

( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ){ }

( ){ }( ) ( )
( ) ( )

( ) ( ) ( )

2 2

1
1

ˆ 2

ˆ ˆ,

n m nm

n m

P C E g E

C u g E

ν α μ β ν α ν α ν α ν α
α β α α αβ α αν α μ β

ν α μ β
ν α μ β μ β
α β β

α β

δ δ δ ω ω

σ ω ω ω
−

−

Φ = − ⋅

⋅ − ×
(3.7)

Here

( ){ }( ) ( )
0

ˆˆ ˆ ˆˆ ˆ,
q

q

C P u Qν α
ασ ω η ω η

∞

=

= ,

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ 2 2n m m mn m
u E g W E g

ν α μ β ν α ν α ν α μ β μ β μ β
α α α β β βα β

ω ω ω= ,

( ) ( ) ( )( )
12

2 2g Eν α ν α
α αω ω

−

= − , ˆ ˆ ˆQ I P= − , 

[ ] ( ) ( ) ( )
( ) ( )ˆ n nmn m

ν α μ β ν α
α αβ ν α μ βα βη η δ δ δ= , 

Î is the unity operator. Derivation of formula (3.7) relies on the projection operator  

formalism [21], which is convenient for the above relation of nE α , n mV α β , ( )nαj k to

the random quantities ( )
n
ν α
αη . Since the four-index matrix (3.7) has the same structure
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as the two-index mass operator for the averaged resolvent [22], ( ){ }( )ˆ , Cν α
ασ ω can be

evaluated by the same methods and approximations as in Refs. [21,22]. In the

simplest one-site approximation (approximation of average -matrix) the specified

function is diagonal by all indices and has the following form:

( ){ }( ) ( ) ( ) ( )
( ) ( )ˆ , nm

n m
C C

ν α μ β
ν α ν α
α α αβ ν α μ β

α β
σ ω δ δ δ=    (3.8)

After the substitution of (3.7) into (3.1) and simple transformation we will receive the

microscopic expression for ( ){ }( ), ,jl Cν α
αχ ω⊥ k   in the excitonic spectral range:

( ){ }( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }( )
( )

( )

( )

( )

2 2
0 2

10

2

, 10

8
, , 1

8
, , ,

r
j l

jl jl

r r
j l

C J J C

J J F C

ακ
ν α ν α μ β ν α
α α β α

α ν α

α βκ
ν α μ β ν α μ β ν α

α β αβ α
α β ν α μ β

πχ ω ω ω δ
ν ω

π ω
ν

⊥

=

=

= − + − −

− −

k k k

k k k

  (3.9)  

where

( ) ( ) ( ){ }( ) ( ) ( ) ( ) ( ) ( ){ }( ) ( )
( ) ( )1

1ˆ ˆ, , , , , ,F C g g C u
ν α μ β

ν α μ β ν α ν α μ β ν α
αβ α α β α

αβ

ω ω ω σ ω ω
−

−= −k k k

( ){ }( ) ( ) ( ) ( ){ }( ) ( ) ( )
( )1ˆ ˆ, , , exp n m

n mn

C C i
ν α μ β ν α μ β

ν α ν α
α α α β

αβ α β
σ ω σ ω− = −k kr , 

( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ, exp n mn m
n

u u i
ν α μ β ν α μ β

α βαβ α β
ω ω= −k kr , 

( ) ( ) ( ) ( ) ( )j jJ J Eν α ν α ν α
α α α=k k , 0v V N= . Expression for plasma frequency is given in

Ref.  [13] (where one can also find the reason of the appearance of not depending on

k first term in (3.9)). 

The obtained expression for ( ){ }( ), ,jl Cν α
αχ ω⊥ k in the form of Eq. (3.9) has a

universal form for all randomly disordered molecular crystals and it is found within

the framework of a singular model, without any simplifying assumptions (unlike in
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Ref. [24], where function ( ) ( ) ( ){ }( ),n m Cν α μ β ν α
α β αωΦ was taken in approximate form). The

calculation of characteristics of normal electromagnetic waves with the help of (3.9)

can be carried out taking into account and ignoring spatial dispersion. 

3.3 Calculation of rotatory power and analysis of its dependence on the point

defect concentration.  

Using (3.9) the microscopic expression for rotatory power ( ){ }( ), , Cν α
αρ ωs of the

system under consideration can be simplified to the form:

( ){ }( ) ( ) ( ) ( ) ( ){
( )

( )

( )

( )

( ) ( ) ( ){ }( ) ( ) ( ) ( ){ }( ) ( ) ( )

( ) ( ) ( ){ }( ) ( ) ( ) ( ){ }( ) ( ) ( ) ( ) ( )

( ) ( )

2

,0

2
, ,

, , , ,

, , , ,

, ,

r r l
tlt

l
tl

C i S E E Q
v c

F C F C Q

F C F C E E

F C

α βκ
ν α ν α μ β ν α μ β
α α β α β

α β ν α μ β

ν α μ β ν α μ β ν α ν α ν α μ β
αβ α βα α α β

ν α μ β ν α μ β ν α ν α ν α μ β ν α μ β
αβ α βα α α β α β

ν α μ β
αβ

π ωρ ω

ω ω

ω ω

ω

= × ⋅

⋅ + × ⋅

⋅ + + × ⋅

⋅ ∂

s s P

s s s P

s s P P

s k ( ){ }( )( )
0

, (3.10)tkν α
α

=
∂

k

where repeated indices imply summation, c is the speed of light. The last term in Eq. 

(3.10) for crystal with primitive lattice is zero (as well as for nonideal systems). 

Expression (3.10) becomes simpler for systems where the only point defects are

vacancies and for orientationally disordered systems (with or without vacancies). The

last is due to the fact that in the former case ( )E Eν α
α α≡ , ( ) ( ) ( )g gν α

α αω ω≡ for all

( )ν α , while in the latter case ( ) ( ) ( )1 2 ... rE E E α
α α α= = = , 

( ) ( ) ( ) ( ) ( ) ( )1 2 ... rg g g α
α α αω ω ω= = = . Concentration dependence of rotatory power and

peculiarities of electro-optical activity for various strengths of external electric field

is studied for such systems in Ref. [25].  
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When studying natural optical activity of nonideal systems considerable

interest lies in concentration dependence of rotatory power ( ){ }( ), , Cν α
αρ ωs in various

frequency domains. Below such dependence is illustrated on the example of

molecular crystals with primitive lattice that have only vacancies as point defects. In

this case 1κ = , and formula (3.5) is of the form: 1vC C+ = (C is molecule

concentration, vC is vacancies concentration). For such system the rotatory power in

single-site approximation (see formula (3.8)) is described by the formula:

[ ] ( )
( )( )

2 2

2 2 2 2
0 0 0

14
( , , )

2 1

v

v t tl

vl

C
C i s Q

v c E E W C

ωπρ ω
ω

−
= ×

− − −
s s P

s
.  (3.11)  

Here 0E and ( )W s are correspondingly molecule

excitation energy and Fourier transform of the matrix

of resonance molecular interaction in an ideal

crystal. Formula (3.11) shows that for the systems

under study there are two frequency areas that have

significantly different corresponding values of

rotatory power on C. The graphs of the specified

dependences for 4 1
1 3,63 10 cmω −= ⋅ and

4 1
2 4,00 10 cmω −= ⋅ are shown (in relative units) in

figure 3.1. 

The calculations use representative values of 0E

and ( )W s , which are 4 13 10 −⋅ and 0,7 4 110 −⋅

correspondingly. Figure 3.1 shows that in the first

frequency area optical activity is less sensitive to the changes in vacancies

concentration than the second one. Such behavior of rotatory power is connected to

renormalization of exciton energy and its dependence on vC . Relatively wide

(compared with ( )1, , vCρ ωs , at that 2
1 0 02E E Wω > − ) range of values ( )2, ,Cρ ωs

Fig. 3.1. Concentration
dependence of rotatory
power for two frequency
areas. 
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(one should note that 2
2 0 02E E Wω > − ) testifies to the possibility of significant

changes in NOA connected with vacancies presence.  

It is evident that in the case of systems with complex lattices there are more

(than in the given example) frequency areas, whose rotatory power dependences on C

are qualitatively different from each other. From Ref. [24] it follows that the above

microscopic analysis of NOA is easily generalized for the case of mixed and

orientationally disordered systems with vacancies. For those the characteristics and

peculiarity of rotatory power are determined by dependences ( )nαJ k , nE α , n mV α β on

the configurations of both vacancies and impurity molecules. As even for the systems

of one type these dependences can be significantly different (like with the case of

orientationally disordered crystals with various reorientation angles [18]), the role of

the examined defects in NOA of corresponding media can be essentially different.    

4. Optical activity of a nonideal dielectric 1D-superlattice  

4.1. Introduction

Investigations of the optical properties of dielectric superlattices [3,4,26-28]

occupy a prominent place in condensed matter physics. These studies are mainly

stimulated by the needs of electrical engineering and electronics in layer structures

and, therefore, by the need to simulate composite materials with the given properties. 

The study of the spatial dispersion effects is of considerable interest, since they are a

valuable and often unique tool for revealing subtle structural features of spatially

dispersive media [11]. In connection with this, the development of the theory of the

aforementioned effects that reveal of their specificity in multilayer systems and

finding corresponding frequency characteristics based on model representations are

of current interest. The urgency of these investigations is evident because, at present, 

there are many complicated organic complexes and polymers that are optically active

due to the features of their structure or the optical activity of molecules that enter into
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their composition [10, 29]. The problem of finding normal electromagnetic waves

(which are necessary to calculate gyrotropy characteristics) in spatially dispersive

superlattices is unsolved. Nevertheless, it is evident that, in the case when the

thickness of the layers of a multilayer system considerably exceeds the characteristic

scales of spatial dispersion, the corresponding values can be calculated approximately

if the contribution of each layer to the gyrotropy is considered to be independent. 

With regard to natural optical activity (NOA), this means that the knowledge of only

the specific rotation angles of the layer ( )nαρ ω ( is the light frequency, n is the

number of a unit cell of the one-dimensional lattice, is the number of a layer in the

cell) and the concentration of extraneous layers (if they are present) is sufficient to

find the specific rotation angle ( )ρ ω of the polarization plane. In this work, the

aforementioned approximation is used to calculate ( )ρ ω of a one-dimensional

superlattice that contains randomly distributed extraneous layers, which differ from

the corresponding layers of an ideal system in the physico-chemical composition

and/or in the thickness. The expression for ( )ρ ω obtained below makes it possible to

numerically simulate the concentration dependence of the optical activity, which was

done for a SiO2-liquid-crystal multilayer system. With the known microscopic

expressions for ( )nαρ ω , the approach described in this work makes it possible to

reveal and identify the predominating gyrotropy mechanisms, which are important for

experiment, to establish the relation of the above_mentioned function with

microcharacteristics of the medium (such as the dipole, quadrupole, and magnetic

dipole moments of structural units), and to find the corresponding frequency

characteristics. Superlattices that consist of macroscopically homogeneous systems

with pointlike defects are of special interest. In this case, ( )ρ ω is a function of not

only the concentration of defects in extraneous layers, but also of the concentration of

pointlike defects. In this work, numerical calculations were performed for the

frequency dispersion of the optical activity of a nonideal superlattice made up of

layers of impurity molecular crystals. The latter condition widens the possibilities of

simulating composite materials because it permits one to continuously vary their
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gyrotropy properties and the disordering parameters (with respect to the composition

or/and thickness).  

4.2 Specific rotation angle of light polarization plane in a nonideal 1D

superlattice

In keeping with the above mentioned approximate approach, the rotation angle

( )ρ ω of the polarization plane of light has the following form:  

( ) ( )
1 1

N

n n
n

a
σ

α α
α

ρ ω ρ ω
= =

= .          (4.1)

In (4.1), ( )nαρ ω and na α are the configuration_dependent thickness of the -th layer

of the n-th unit cell and the specific rotation angle of the plane of polarization of light

caused by this layer, respectively, and is the number of layers of the unit cell. It is

evident that formula (4.1) is valid for the case of light propagation along layer optical

axes perpendicular to the plane of the layers of a nonideal, topologically ordered, 

one_dimensional superlattice consisting of N unit cells. We suppose that the number

of cells N is so large that it is possible to form a configuration that averages in

correspondence with the general principles of physics of disordered systems [30, 31]. 

According to [30, 31], the experimentally measured rotation angle is defined as

( ) ( )P̂ρ ω ρ ω≡ , where P̂ is the configuration averaging operator [22] that acts on

the configuration-dependent function ( )ρ ω . There are two types of disorders in the

considered nonideal 1D superlattice; therefore, there are two types of configuration

dependences. The disordering of the first type is caused by the fact that the

superlattice contains extraneous (defective) layers that differ from the corresponding

layers of an ideal system in the physico-chemical composition (the corresponding

configuration_dependent quantity is ( )nαρ ω ). The second disordering is caused by

the presence of layer defects that differ from an ideal superlattice in thickness (the

corresponding configuration_dependent quantity is na α ). It is evident that these

factors do not depend on each other.  
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The connection of ( )nαρ ω and na α with the configuration-dependent stochastic

variables ( )
n
μ α
αη and ( )

n
ν α
αη has the following form:

( ) ( ) ( )

( )

( )

1

r

n n

α
μ α μ α

α α α
μ α

ρ ω ρ η
=

= ,   ( ) ( )

( )

( )s

n na a
α

ν α ν α
α α α

ν α
η= ,      (4.2)

and

( ) ( )

( )

( )

( )

( )

1 1

1, 1.
r s

n n

α α
μ α ν α
α α

μ α ν α
η η

= =

= =      (4.3)

where ( ) 1n
μ α
αη = , if theα -th layer of the n-th unit cell is the layer of ( )μ α -type

( ( ) ( )1.2... )rμ α α= and  0s
μ
αη = - in any other case; ( ) 1n

ν α
αη = , if thickness of the α -

th layer of the n-th unit cell equals ( )aν α
α ( ( ) ( )1.2.. )sν α α= and 0s

ν
αη = - in any other

case. ( ) ( )μ α
αρ ω is the specific rotation angle of the α - th layer of ( )μ α type. Now

and then index μ enumerates layers of variable composition, ν - of variable

thickness. 

Using formulas (1)–(3) and the averaging rules [22,30,31] for ( )ρ ω , we obtain

the following expression:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

( )
( ) ( ) ( ) ( )

( )

( )

( ) ( ) ( ) ( ) ( )

( )

( )

( )

( )

1 1 1 1

1 1 1

1 1

, (4.4)

r s

r s

N a a C a C

a C C

α ασ
μ α μ α ν α ν α

α α α α α α α α
α μ α ν α

α α
μ α ν α μ α ν α
α α α α

μ α ν α

ρ ω ρ ω ρ ω ρ ω

ρ ω

= = =

= =

= + Δ + Δ +

+ Δ Δ

( ) ( ) ( ) ( ) ( ) ( )1 1, a a aμ α μ α ν α ν α
α α α α α αρ ρ ρΔ = − Δ = − as well as ( ) ( ),C Cμ α ν α

α α are the

concentrations of defects of layers that differ from the layers of the basic compound

(for which the layers of the first sort are conventionally taken) in the composition

and/or thickness, respectively. The first summand in (4.4) corresponds to the rotation

angle of the light polarization plane of an ideal 1D superlattice made up of layers of

the first sort. The second summand is caused by the disordering of the superlattice
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with respect to the composition; it vanishes in the absence of variations in the

composition. The third summand reflects disordering in the thickness (in the absence

of this disordering, this summand vanishes). The last summand is caused by the

simultaneous disordering of the superlattice with respect to both the composition and

the thickness of the layers. The absence of at least one of the disorderings leads to the

vanishing of the fourth summand in (4.4). Each of the four summands of (4.4) in the

sum over has the meaning of the rotation angle per one unit cell. Unlike ( ) ( ),
n
μ α ν α
αρ

(which is measured in degrees/unit of length), these angles are measured in degrees. 

To illustrate the obtained results, let us consider NOA in a nonperfect 1D superlattice

with two elementary layers in a unit cell the first layer of which is SiO2 ( -quartz)

( ( )1
1ρ = 780 degrees/mm, =152.3 nm) and the second layer is a model liquid crystal

( ( )1
2ρ = 2000 degrees/mm). Let the first sublattice contain impurity layers that only

differ from the basic (ideal) sublattice in thickness and let both the thickness and the

composition vary in the second liquid crystal sublattice ( ( )2
2ρ = 2500 degrees/mm). 

Let the concentration and thickness of the layer of the basic compound in the first and

the second sublattices be denoted as ( )1
1C , ( )1

1a and ( )1
2C , ( )1

2a , respectively, and those

of the impurity as ( )2
1 ( )C TC , ( )2

1a and ( )2
2 ( )C TC , 2

2a (index C(T) denotes the variations in the

impurity layers in the composition or in the thickness). Based on formula (4.4), 

simple transformations permit one to obtain the following concentration dependence

of the specific rotation angle of the light polarization plane in the considered

two_sublattice nonideal 1D superlattice ( ( )2
1 0CC = ) as follows:

( )
( )

( )
( )( )2 2

1 2, / N dρ ρ ρ= ≡ . Here, d is the averaged period of the cell of the

1D superlattice, i.e., ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )1 1 2 1 2 2 1 2
1 2 1 1 1 2 2 2T Td a a a a C a a C= + + − + − . The diagram

of the concentration dependence of the specific rotation angle ( )
( )

( )
( )( )2 2

1 2,ρ ρ= of

the light polarization plane in the studied nonideal superlattice is presented in Figs. 1
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and 2. Figure 1 reflects the variation of the superlattice layers only in thickness, and

Fig. 2 presents the function ( ) ( )( )2 2
2 2, Tρ ρ= .  

Fig. 4.1. Concentration dependence of

the specific rotation angle

( ) ( )( )2 2
1 2,T Tρ ρ= of the light

polarization plane in the studied

nonideal superlattice: (2) (1)
2 2/ 0. 5a a = ;

(1) (1)
2 1/a a and (2) (1)

1 1/a a are, 

respectively, (1) 0.3 and 0.5, (2) 0.3

and 0.1, and (3) 3 and 0.1. 

a)

b)

Fig. 4.2. Concentration dependence of

the specific rotation angle

( ) ( )( )2 2
2 2, Tρ ρ= of the light

polarization plane in studied nonideal

superlattice: (a)  (1) (1)
2 1/ 3a a = , 

(2) (1)
1 1/ 5a a = , (2) (1)

2 2/ 0. 5a a = , and

(2)
1 0.3TC = , ; (b) (1) (1)

2 1/ 10a a = , 

(2) (1)
1 1/ 0.1a a = , and (2) (1)

2 2/ 0. 5a a = ;

concentration (2)
1TC is (1) 0.1, (2) 0.3, 

and (3) 0.9. 
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Moreover, Fig. 4.2a shows a considerable variation of the specific angle ρ with

variation of the relative thicknesses ( ) ( )1 1
2 1/a a , ( ) ( ) ( ) ( )2 1 2 1

1 1 2 2/ , /a a a a of the layers at

constant (2)
1TC , and Fig. 2b permits one to conclude that, for particular values of the

relative thicknesses of the layers, the value of depends rather weakly on the variation

of the superlattice composition. 

The study of these composite materials (polymer and LC superlattices) is

important due to the variety of their functional properties in a wide application area

[3,4,10,29]. Below, by the example of systems with only one type of disorder (in

thickness), we study the NOA of two-layer superlattices made up of layers of binary

mixed (the first layer) and orientation-disordered (the second layer) molecular

crystals. In the following section of this work, using the microscopic expressions

obtained previously [32] for ( )nαρ ω , features of the frequency–concentration

dependence ( )ρ ω related to the relative positions of excitonic energies of both

sublattices and with layer thicknesses are studied for the excitonic region of the

spectrum. 

4.3. Microscopic theory of optical activity of imperfect superlattices

The expression for the specific rotation angle

    ( ) ( )( ) ( )1 2, , , ,mi orC C C C Nρ ω ρ ω≡

of the polarization plane of linearly polarized light passing through a nonideal two-

layer molecular superlattice (the first layer is a mixed molecular crystal and the

second layer is orientationally disordered), as follows from (4.4), has the form

( ) ( )( ) ( ) ( )( ) ( ) ( )( )1 2 1 2
1 1 2 2, , , , , ,mi or mi mi or orC C C C C a a C C a a Cρ ω ρ ω ρ ω= + Δ + + Δ ,        (4.5)

where ( ) ( ), , ,mi mi or orC Cρ ω ρ ω - specific rotation angles for mixed and

orientationally disordered molecular crystals; 1 2,a a - thicknesses of first and second
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layers of corresponding perfect superlattice; ,mi orC C - concentrations of isotopic

impurities and orientationally disordered molecules, ( ) ( )1 2,C C - concentrations of

foreign layers in relevant sublattices with thickness differing 1 2,a aΔ Δ from those of

the perfect system. Here each of the summands has the sense of the rotation angle (by

a corresponding sublattice) per one unit cell. 

   In the most general case, the specific rotation angle { }( ), Cρ ω for a

multicomponent topologically ordered impurity (including both mixed and

orientationally disordered) molecular crystal with a primitive lattice in the exciton

region of the spectrum is, within the framework of single-level model, of the form:

{ }( ) { }( )
2

2
, 1

2
, ,

r

C A F C
c

νμ νμ

ν μ

πωρ ω ω
υ =

= .          (4.6)

Here υ - volume of the unit cell of molecular crystal, r – number of molecular

groups, each relating to a definite ν -th or μ - th type of molecules;

{ } 1 2, , ..., rC C C C≡ . Quantities Aνμ and Fνμ are:

( ) ( )1/2 1/2

0 0 0
i zl zi l
f f of f ilzA E E P Q E E Q P eνμ ν μ ν μ

ν μ μ ν= + ,         (4.7)

{ }( )
( )

{ }( ) ( ){ }
( )

1
1

2 22 2 2 2

1 1ˆˆ, , , ,F C C U
E E

νμ
νμ

ν μ

ω σ ω ω
ω ω

−−= −
− −

s s . 

      (4.8)

In formulas (4.7), (4.8) ilze is the Levy - Civita tensor, / k=s k , ,E Eν μ - molecular

excitation energies,  0,of fP Pν μ - matrix elements of the dipole-moment operators, 

0 0,zi zi
f fQ Qν μ - matrix elements of operators derived from operators of molecular currents

( ) ( )0fJν μ k of the ν -th and μ -th molecular types, respectively, 

( )0 0 0 0|zi zi zi z
f f fQ Q i J kν μ ν

== − = ∂ ∂ kk .   (4.9)

Matrix elements of locator function σ̂ and matrixÛ (proportional to matrix Wνμ of

the resonance intermolecular interaction) are of the form:
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{ }( ) { }( ) ( )
0

ˆ ˆ, , exp nm
n nm

C C i
νμ νμνμσ ω σ ω

=

= − ⋅
k

s k r , (4.10)

( ) ( ) ( )
0

ˆ ˆ, exp nm
n nm

U U i
νμ νμνμ ω ω

=

= − ⋅
k

s k r .   (4.11)

Matrix elements of locator function in the nodal representation { }( )ˆ ,
nm

C
νμ

σ ω (in

(10)) are expressed through matrix ( )Û ω as follows:

{ }( ) ( )( )
0

ˆ ˆˆ ˆˆ ˆˆ ,
p

nm
p nm

C U I
νμ

σ ω η ω η
∞

=

= Π − Π .   (4.12)

Expression (4.12) is written in terms of projection operator Π̂ , Î - unit operator. 

[ ]ˆ
n nmnm

νμ μ
νμη η δ δ= , configuration-dependent random unit n

μη equals 1, if in node n

there is anν -type molecules, and it is zero in any other case. Matrix elements

( )ˆ ,U s
νμ

ω relate to the matrix of resonance intermolecular interaction (figuring in

exciton Hamiltonian [33]) as:

( ) ( )( ) ( )( )
1/211 222 2 2 2ˆ 2 nm

nm
U E E E E W

νμ νμ
ν μ ν μω ω ω

−−
= − −   (4.13)

For binary systems, values 11 22 12 21, , ,F F F F in mononodal approximation are:

( )
( ) ( )

( ) ( )

1/22 2 2 22 12
1 2 2 2 2 1 1 2

1/2 21 2 2 2 11
1 2 2 1 1 2 2 1 1 1

2 21
, , 2 2

C E C E W C C E E W
F

C C C C E E W C E C E W

νμ
ω

ϕ ω ω

− −
=

− −
, 

(4.14)

( ) { } (
) ( )

1 4 4 2 2 11 22
1 2 1 1 2 2

2 2 11 22 12 21 2 11 2 22 2 2
1 2 1 2 1 2 1 2 1 2 1 2 1 2

ˆˆ, , ( , ) ( ) 2 2

4 2 2

C C C U E C W E C W

E E E E C C W W W W E E W C E E W C E E

ϕ ω σ ω ω ω ω−≡ − = − + +

+ + + − + + +

(4.15)

1 2 1.C C+ =



39

In expression (4.15) 1C is the molecular concentration for the basic substance of a

mixed or orientationally disordered molecular crystal, and 2 ( )mi orC C≡ .  

) b)

Fig.4.3. Concentration dependence exciton energy levels of a molecular crystal:

) ( ) ( )1 2,ex ex
mi miE C E C ;  b) ( ) ( )1 2,ex ex

or orE C E C . 1 2,ex exE E is given in units of 4 110 cm− − .  

Zeros of function ( )1 2, ,C Cϕ ω define renormalized exciton energy levels

( ) ( )1 ( ) 2 ( ),ex ex
mi or mi orE C E C of a molecular crystal, each lying in a definite interval of

values (see Fig.4.3). 

4.4. Results and discussion

The character of the frequency-concentration dependence of rotator power is

specified by the relative position of exciton energies and by values of parameters

Aνμ , ( ) ( )1 2
1 1 2 2, , , , , , ,mi orC C C C a a a aΔ Δ . It follows from formula (4.15) that for

frequencies of light running over one of the regions of ( ) ( )1 ( ) 2 ( ),ex ex
mi or mi orE C E C

values (see Fig.4.3) the rotator power ( ) ( )( )1 2, , , ,mi orC C C Cρ ω is divergent if

damping is neglected. For numerical calculations we limit ourselves with the two

cases out of variety of types of the optical-activity concentration dependence for

certain frequencies of electromagnetic wave. In the first case, the energy of
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electromagnetic excitation is in the interval ( ) ( )1 1
ex ex

mi orE C E Cω< < , and the

corresponding concentration dependence of the specific rotation angle of light

passing through the layered structure under consideration is illustrated in Fig.4. In the

second case (Fig.4.5), which is described by inequalities ( ) ( )2 2
ex ex

mi orE C E Cω< < , 

for definite values of frequencies of light, the energy of electromagnetic excitation

lies in the neighborhood of exciton resonance. 

    In particular calculations it is considered that for a mixed molecular crystal it can

be, within a good accuracy, assumed [14] 11 12 21 22
miW W W W W≈ ≈ ≈ ≡ , 1 2

0of fP P≈ , 

1 2
0

ˆ ˆ
of fQ Q≈ (as a consequence, all miA const Aνμ = ≡ ). For orientationally disordered

molecular crystals 1 2E E≈ [15]. 

Fig. 4.4. Concentration dependence of

the specific rotation angle

( ),or miC Cρ ρ= for

4 13.99 10 cmω −= ⋅ . 

Fig. 4.5. Concentration dependence of

the specific rotation angle

( ),or miC Cρ ρ= for

4 14.06 10 cmω −= ⋅ . 
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It is assumed that for a mixed molecular crystal 4 1
1 3 10miE cm−= ⋅ , 4 1

2 4 10miE cm−= ⋅ , 

3 12 10miW cm−= ⋅ , whereas for the orientationally disordered one -

4 1
1 2 4.01 10or orE E cm−≈ = ⋅ , 11 22 3 10.8 10or orW W cm−≈ = ⋅ , 12 21 3 10.3 10or orW W cm−≈ = ⋅ and

12 21/ / 3mi mi
or orA A A A≈ = , 11 22/ / 2mi mi

or orA A A A≈ = . Here, the numerical simulation was

done for the following values of concentration of heterogeneous superlattice layers:

( ) ( )1 20.2, 0.3C C= = , and for relative thicknesses 1 1 2 2/ / 0,1a a a aΔ = Δ =   

( 1 2a a= ). The concentration dependences of the specific rotation angle of light are

graphically shown in Fig 4.4-4.6 in relative units / Kρ , where 1
2

2 mia A
K

c

π
υ

= (see

(4.6)).    The frequency dependences of the specific rotation angle ( ), ,or miC Cρ ρ ω=

for specific values of concentration orC and miC is illustrated in Fig. 4.6 (a, b). 

a) b)

Fig. 4.6. Frequency dependences of the specific rotation angle ( ), ,or miC Cρ ρ ω= for

values of concentration orC and miC equal, respectively, to: case ) 1 – 0.2 and 0.17; 2 – 0.2

and 0.45; case b) 1 – 0.2 and 0.2; 2 - 0.5 and 0.2 ( is given in units of 4 110 cm− ). 

It is seen that changes in concentration miC with orC constant result in mutual

removal of resonance frequencies (case ), whereas changes in orC with miC constant

– in their approaching (case b). So the curves ( ), ,or miC Cρ ρ ω= are determined by



42

the specific dependence of exciton energy levels ( ) ( )1 ( ) 2 ( ),ex ex
or mi or miE C E C on the

concentration of point defects considered superlattice (see Fig.4.3). 

Conclusion

The theory developed in the first three sections of the present review can serve

as a solid basis for further investigation of behavior of gyrotropy under external

actions such as electric and magnetic fields, mechanical stress etc. Of particular

interest are low-dimensional structures and superlattices.  

    Studies on optical properties of dielectric superlattices comprise a significant

part of the modern-day condensed matter physics [3,4,36]. Their importance is

enhanced by the constantly growing demands of electronics and electrical

engineering for high-performance layered materials with prescribed optical

characteristics. The related phenomena of spatial dispersion are of particular interest

as they provide a valuable and very frequently the sole tool for revealing fine

structural features in spatially dispersive media [37]. This calls for theoretical models, 

permitting to elucidate the said phenomena in multilayers and would hopefully allow

to calculate the corresponding frequency characteristics. The problem appears even

more topical in the light of the vast diversity of synthesized complex organic

polymers, which happen to be optically active either due to their structural features or

due to optical activeness of the comprising molecules [1,2].  

In contrast to the previous works, where microscopic analysis was given for

optical activity of ideal crystals (see e.g. [38]), here we utilize microscopic approach

to study the optical activity of imperfect 1D-multilayer materials. Our method is

helpful for numerical simulations of the frequency-concentration dependence of the

specific rotation angle of molecular superlattices in the exciton region of spectrum. 

The system is modeled to be comprised by two sublattices with parameters typical of

orientationally disordered and mixed molecular crystals. Types of gyrotropy typical

of different disorder types are studied. A 1D-superlattice with point defect containing
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layers is investigated. The developed theory opens additional possibilities for

simulation of optically active multilayer composite materials.    

Finally, in more general terms, the results presented in this work contribute to

development of our views of the processes in externally influenced matter. They can

also be helpful in technological and engineering developments. 
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