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PREFACE 
 

 

1D photonic crystalline superlattice is modeled as both a layered 

crystal and striped thin film. These 1D systems are sets of elements 

(layers or strips) with randomly included extrinsic (with respect to the 

ideal superlattices) elements (layers or strips) of a variable thickness or 

composition. The photon modes spectrum of a non-ideal superlattice 

with an arbitrary number of layers (strips) per elementary cell, obtained 

within the virtual crystal approximation, is concretized for the Si – 

diamond layered system, Si-liquid crystal and Si/SiO2/GaAs striped film. 

Dependence of the band gap width upon concentration of admixture 

elements and refractive index peculiarities is analyzed. The study carried 

out shows that optical characteristics of the nonideal photonic crystals 

may vary due to transformation of its photon modes spectrum caused by 

the presence of admixture elements (layers or strips). 

 

 





 

 

 

 

 

 

Chapter 1 

 

 

 

INTRODUCTION 
 

 

At present, propagation of electromagnetic waves in thin films and 

layered crystal media (see [1-4] and references therein), in particular, in 

photonic magnetic crystals [5-7] and composite crystals based on silicon 

and liquid crystal [8-12], are being investigated extensively. Interest in 

investigation of these objects is motivated, on the one hand, by the 

demand for different layered structures with given properties in solid-

state electronics and, on the other hand, by achievements in technologies 

providing the possibility of growing such films and periodic structures 

with controlled characteristics by the molecular-beam epitaxial method. 

A large number of works ([13-15] and references therein) have been 

devoted to theoretical and experimental investigation of exciton-type 

excitations in dielectric ideal superlattices. The general theory of optical 

waves in anisotropic crystals, including those composed of macroscopic 

layers, is considered in [16]. In [11], the forbidden photonic bands of a 

crystal made of alternating silicon and liquid crystal layers are calculated. 

1D photonic band gap structures attract lot of attention of researches due 

to their omnifarious using for optical filtering [17], sensing [18] and so 

on. The logic of further development of the theory of layered structures 

requires consideration of more complex systems - superlattices with 

impurity layers, as well as with layers of variable composition and 

thickness. In [6], the dispersion of polaritons in a superlattice with a 

single impurity layer has been studied. At the same time, of considerable 

interest are investigations of nonideal superlattices with an arbitrary 

number of impurity layers and of the dependence of the polariton 
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spectrum on the concentration of corresponding defects, which make it 

possible to expand the capabilities of modeling the properties of such 

systems and to create layered materials with given characteristics. 

The method of calculation of polariton excitations has much in 

common with methods of finding other quasiparticle excitations 

(electron, phonon, etc.) in solids. In the present chapter authors offer for 

description of photon modes in macroscopically heterogeneous ambience 

approach, based on configuration averaging (it specifically is new in this 

case), which was used before [19] for the microscopic calculation of 

disordered systems quasiparticles spectra. A relatively simple 

approximation in framework of this approach for calculation polariton 

spectra and corresponding optical characteristics of disordered ambiences 

is the virtual-crystal approximation (VCA) [19-21]. VCA (first it was 

used by L. Nordheim and R.H. Parmenter [19]) consist of replacing of 

correct one-electron potential (appropriate to a given configuration of 

atoms of the alloy) by its average which is taken over all possible random 

configurations. The approximation is a widely used for study of 

disordered structures. For example, based on the pseudopotential scheme 

under the VCA in which the effect of compositional disorder is involved, 

the dependence of optoelectronic properties of GaAs x Sb1-x on alloy 

composition x have been studied in [22]. Within this approximation the 

configurationally dependent parameters of the Hamiltonian are replaced 

with their configurationally averaged values. Description of 

transformation of a polariton spectrum in a sufficiently simple 

superlattice, using VCA, is the first step towards the study of imperfect 

systems. However investigation of properties of polariton spectra and the 

related physical quantities (density of elementary excitation states, 

characteristics of the normal electromagnetic waves etc.) in less simple 

systems requires application of more complex methods. Such are the 

method of the coherent (one- or many-site) potential [21], the averaged 

Т-matrix method [23] and their numerous modifications used for various 

particular problems. 

In the chapter a superlattice is modeled as a set of macroscopically 

homogeneous layers with randomly included extrinsic (with respect to 

the ideal superlattice) layers. Corresponding configuration-dependent 

material tensors in our model of an imperfect superlattice are represented 

in terms of random quantities. After configuration-averaging the 

translational symmetry of a considered system is "restored" that allows 
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us obtain the system of equations which define normal modes of 

electromagnetic waves, propagating in one-dimensional (1D) ―periodic‖ 

medium. Within the VCA we study of peculiarities of the dependence of 

the band gap width and refractive index upon concentration of admixture 

layers for the non-ideal photonic crystalline system (that is layered 

crystal or striped thin film). 

 





 

 

 

 

 

 

Chapter 2 

 

 

 

PROPAGATION OF ELECTROMAGNETIC 

WAVES IN INHOMOGENEOUS 

STRUCTURES 
 

 

Since the optical properties of a periodic medium are defined by the 

corresponding material tensors - the dielectric permittivity  r


̂  and the 

magnetic permeability  r


̂  the following equalities are satisfied for the 

above ideal systems: 

 

   dzyxzyx  ,,ˆ,,ˆ  ,  

   dzyxzyx  ,,ˆ,,ˆ  .    (1) 

 

Here, 





1j

jad  is the period of the superlattice, σ is the number of layers 

in the unit cell, and ja  is the thicknesses of the j-th layer of the one-

dimensional chain of elements on the z axis. Propagation of 

electromagnetic waves in inhomogeneous structures is described by the 

Maxwell equations, which take the following form in the  ,k


 

representation: 
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     

     



























,,ˆ,

,,ˆ,

qHqkqqd
c

kEk

qEqkqqd
c

kHk





,  (2) 

 

where     ,,, kHkE


 are the Fourier amplitudes of the electric and 

magnetic field strengths. In the coordinate representation, the material 

tensors ̂  and ̂  of the crystal superlattice with an arbitrary number σ 

of layers perpendicular to the z axis are expressed as follows: 

 

 

 
  








































































, 11

)1(1
ˆ

ˆ

ˆ

ˆ

n j
jn

j
njn

n

n
adnzaadnz

z

z  (3) 

 

 

In (3),  z  is the Heaviside function; ...,2,1 n  is the cell 

number in the one-dimensional crystal; and the index  ,...,2,1  

enumerates the elements of the cell. It can be easily shown that the 

Fourier images of the material tensors    qkqk


  ˆ,ˆ  in system (2) 

for the case of the superlattice under study have the form 

 

 
 

           





















n

zz

n

n

zzyyxx ndqkiqkFqkqk
qk

qk
exp

ˆ

ˆ
2

ˆ

ˆ 2




















 

(5) 

 

where the function  zz qkF   is defined by the expression 

 

         

























 





 
1

exp1exp
j

jzzzzzzzz daqkiaqkiqkqkF .  

 

Here,  zk  is the Fourier image of the Heaviside function  z . For 

an ideal superlattice, 
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  
  

    

 
 

 
   






























































n
zzzz

yyxx

naqkiqkF

qkqk
qk

qk

1exp
ˆ

ˆ

2
ˆ

ˆ

0

0

2

0

0





,  (6) 

 

and 

 

       0000 ˆˆ,ˆˆ
   nn . 

 





 

 

 

 

 

 

Chapter 3 

 

 

 

DEPENDENCE OF THE POLARITON 

SPECTRUM ON THE CONCENTRATION OF 

IMPURITY LAYERS IN A 

NONIDEAL SUPERLATTICE 
 

 

The variation in the composition. A nonideal system whose disorder 

is related to the variation in the composition (rather than in the thickness) 

of impurity layers (therefore,  aan  ) is considered. The 

configuration-dependent tensors   nn
ˆ,ˆ  in our model of a nonideal 

superlattice are represented in terms of random quantities 

n  (


n

=1, if in the site  n  of the crystal chain the layer of type )(  is 

situated, and 

n =0, otherwise), 

 

 

 
 

 






















)( ˆ

ˆ

ˆ

ˆ























n

n

n
.    (4) 

 

Normalizing condition for this case is 



)(

1)(

)(
1










r

n
, )(r  is number of 

layer types. The polariton spectrum of a nonideal superlattice is 

calculated in the framework of the VCA (in analogy with the 
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quasiparticle approach) by applying the following replacements: 

 ˆˆ,ˆˆ   (the angular brackets denote the configuration 

averaging). In this case, (4) and [21] imply 

 

 

 
 

 
 





















































,ˆ

ˆ
C

n

n
,     (7) 

 

where 
 

C  is the concentration of the impurity layer of the type 

   in the  th sublattice,  

 
 



 1C . Since the configuration 

averaging "restores" the translational symmetry in the crystal system, as 

applied to the case of the nonideal superlattice under study, the 

"acquired" translational invariance of the one-dimensional chain provides 

the possibility to represent system (2) in the form of the following 

integral matrix equation: 

 

   

   

 

 
0

,

,

ˆˆ

ˆˆ




















































qH

qE

qK
c

qqK

qqKqK
cqd 








  (8) 

 

Here, 

























0

0

0

ˆ

xy

xz

yz

qq

qq

qq

q
 is the antisymmetric tensor dual to the 

wave vector q


. In (8), the arbitrary wave number k


 was replaced by 

the Bloch wave vector K


. This is possible for a nonideal superlattice 

owing to the configuration averaging that has "restored" the periodicity 

of the medium. According to the Floquet theorem, a general solution to 

system (2) 

 

 

 

 
 

 rki
kH

kE
kd

rH

rE 







































 exp
,

,

,

,








 in a periodic medium represents a 

superposition of the normal modes       ,,,exp, zyxrKirE
K


  , and 
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    ,,,,,, dzyxzyx  ;  ,,0,0 KK 


 NdmK /2 ; 

Nm  ,...,3,2,1  (among all possible values of m , there are only N 

values yielding N independent modes). 

For nonmagnetic systems, Îˆ  , and the dielectric permittivity of 

the nonideal superlattice under study is the function 

    ilil dzz   . In this case, the dispersion relation  K
j


   

of the general form, which follows from (5) and from the condition of 

solvability of integral equation (8), has the form 

 

  
1

1 1

1

1

222

)(
2

exp

2
exp

2

1



 









































































 










 




















j
j

j
j

nn

j

aa
d

j
i

a
d

j
i

jd

a

KcK

.  (9) 

 

The integer j enumerates the polariton branches. 

The variation in the thickness of impurity layers. For an imperfect 

superlattice, in which disordering is connected with variation of the 

thickness (rather then of the composition) of admixture layers we have to 

use the following procedure of configuration averaging: 
     ,

n
a a C d d C

   

      (here  
C

 


 is the admixture layer 

concentration of the   -th sort thickness in the  -th sublattice) and 

n   , ˆ ˆ
n   . 

Since the configurationally averaging "restores" the translational 

symmetry of a crystalline system, in the considered case of imperfect 

superlattice the "acquired" translational invariance of the one-

dimensional chain allows us to present Maxwell equations (for harmonic 

dependency of the electric and magnetic field strengths     ,,, rHrE


 

on a time) in the form: 

 

           ˆˆ, , , , ,
i i

E r z H r H r z E r
c c

 
           

. (10)  
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Hence, according to the Floquet theorem, Fourier-amplitudes 
),(

,

HE

pKf


 of 

the electric and magnetic field strengths satisfy the following relation: 

 

( )

,( )

,

( ) ( )
, ,

ˆ

2

ˆ

E

l K p lH

K p l

z E H
K p l K p l

l

f
f

K p e
d cf f


 








  
    

                
  




 (11) 

 

Here 


 is an arbitrary planar (in the XOY plane) wave vector, ze


 is a 

unit vector along the z-axis, the Bloch vector is (0,0, )K K . The 

system (11) defines normal modes of electromagnetic waves, 

propagating in the considered ―periodic‖ medium. Furthermore, we (like 

in [24]) assume, that K  is close to the value, defined by the Bragg’s 

condition: 2
K K

d


 

, 2 2 2

0c K   . This case corresponds to a 

resonance of plane waves between the components 
( , )

,

E H

K pf  at 0, 1p    

(these terms dominate in the system (11)). After eliminating the 
 H

f


 

variables, Eqs. (11) with respect to 
 E

f


 take the form:  

 

 

 

 

 

12 2
(0)2

2 2
,0

212 2
(0) , 1

2 2

0
2

E

K

E

K

K
fc c

f
K

c d c

  


   






 
   
   
        
   

 



  

, (12) 

 

where 
   0 1

0 1,l l   


   . Putting the determinant of the system 

(12) equal to zero we obtain the dispersion relations  K   . 

Two roots of this equation 
  define the boundaries of the spectral 

band: at frequencies    K K      (band gap) the roots are 
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complex and electromagnetic waves decay (Bragg’s reflection); 

frequencies ,       correspond to propagating waves. 

 

 

RESULTS AND DISCUSSION 
 

For simplicity, we shall restrict our study to the case of light, 

propagating along the z-axis ( 0


) in a nonmagnetic diamond - Si 

crystal system ( Îˆ   is a unit matrix) with admixture layers of a 

variable composition only. The layers we treat as macroscopically 

homogeneous and isotropic (
ij ij
  ). Let us limit ourselves to the 

consideration of propagation of electromagnetic radiation in a 

nonmagnetic superlattice with two isotropic layers, elements, per unit 

cell. We denote the concentration and the dielectric permittivity of the 

main substance (matrix) in the first and second sublattices by  
,

1

1
C

 1

1
5.7   and  

,
1

2
C   

7.11
1

2
  respectively, while these quantities for 

the impurity are designated as  2

1

)2(

1 , C  and    2

2

2

2 , C .  

Taking into account the aforesaid, the dispersion of the polariton 

spectrum of a nonideal binary diamond-silicon system is determined by 

the following dispersion equation that is derived from (9): 

 

   

     

         

1

22

22

12

11

22

22

12

11

222

/sin/sin







































j

daj
Cf

j

daj
Cf

d

a
Cf

d

a
Cf

KсKj










, (13) 

 

where            2

1

1

1

2

1

1

1

2

11
CCf   , and 

           2

2

1

2

2

2

1

2

2

22
CCf   . The same approximations as in [15] 

(where an ideal periodic structure was studied) were used to obtain 

relation (10); therefore, the shape of the dispersion curves does not differ 

qualitatively from those given in [16]. Nonetheless, unlike the case 

studied in [16], the specific feature of the problem under study is that the 
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parameters of the family of dispersion curves depend on the 

concentration 
 

C  of defective layers. In particular, our model makes 

it possible to obtain an expression for the width of the forbidden band, 

which, with  K
j


   in the form of (13), is given by 

 

                     
                  daCCdaCC

jdajCCjdajCC

j

//

//sin//sin

2

2

2

2

2

1

2

1

21

2

1

2

1

1

1

1

1

2

2

2

2

2

1

2

1

21

2

1

2

1

1

1

1

1













 . (14) 

 

The concentration dependence of the energy gaps in the diamond-silicon 

superlattice for different values of j  was shown in [25]. Below we are 

considered the case of admixture layers of a variable both thickness and 

composition only in Si-sublattice. Concentration, dielectric permeability 

and thickness as well of the base material in the first and the second 

sublattice are denoted by 
     1 1 1

1 1 1
, ,C a  and 

     1 1 1

2 2 2
, ,C a  

respectively. For admixture this quantities are denoted by 
 2

1C
C  (it is 

related to the variable composition) and 
 2

1T
C  (it is related to the variable 

thickness) 
   2 2

1 1
, a  as well as (there are no admixtures in the Si-

sublattice). Simple transformations (with the account that 
   11  


) 

lead to the following relations for the refractive index /n cK 
 
  of 

the studied system: 

 

                    

    2 2

1 1 12 2 0 2 2 1 2 2 02

1 1 1 1 1 1

,
, , , 1

C T

C T C T C T

C C
n C C C C C C


  




 
    
 
 

(15) 

 

Here 
 0

  and 
 1

  can be expressed as the following: 

 

     
0

2
1 / 1

C T T
f f f    ,    (16) 
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 1 2 1
1

T

C

T

f
f Sin

f

 



 


.    (17) 

 

The functions         2 2 1 1

1 1 1 1 2
1 1 / /

C C
f C       

 
 and 

        2 2 1 1

1 1 1 1 2
1 1 / /

T T
f C a a a a   

 
 depend on the concentration of 

admixture layers, their relative thickness and dielectric permeability. 

Hence the lowest photonic band gap width is 
  1

, 

 02 2

1
/ ( ) / 2n n  

 
   . It follows from Eq. (15) that the quantity 

1
  is determined by the corresponding coefficient of the Fourier 

expansion (5), which in this case is 
 1 . In Refs. [16,25] it was shown 

that the band gaps of higher orders are as well determined by 

corresponding Fourier-coefficients of the dielectric permeability.  

Figure 1 shows the concentration dependence of the refractive index 

  /cKn  of the studied composite superlattice. It is readily seen, 

that the form of the corresponding surfaces has a complex character, it 

depend on the dielectric permeability of both admixtures and its 

thicknesses. In Figure 2 the lowest energy photonic gap width is plotted 

vs. the concentrations  2

1C C
C C ,  2

1T T
C C  of admixture layers for a 

superlattice with alternating silicon and diamond layers. The energy gap 

1
  vanishes at 1 0

1

T

C

T

f
f Sin

f


 


 for the case a) on Figure 2. 

 

Figure 1. (Continued). 

 a) 
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Figure 1. Refractive index  , ,
C T

n n C C
 

 of the composite superlattice (with 

alternating diamond and silicon layers) vs. the concentrations of admixture layers 

of a variable thickness and composition for  1

1 2
/ 1a a  : а)    2 1

1 1
/ 0.001a a  , 

   2 1

1 1
/ 20   ; b)    2 1

1 1
/ 10a a  ,    2 1

1 1
/ 0.2   . 

 

 

Figure 2. Relative width of the lowest photonic band gap 
1
/   of the 

composite superlattice (with alternating diamond and silicon layers) vs. the 

concentrations of admixture layers of a variable thickness and composition for 
 1

1 2
/ 1a a  : а)    2 1

1 1
/ 0.001a a  ,    2 1

1 1
/ 20   ; b)    2 1

1 1
/ 10a a  ,    2 1

1 1
/ 0.2   . 

 b) 

 

 a) 

  b) 

 



 

 

 

 

 

 

Chapter 4 

 

 

 

PROPAGATION OF ELECTROMAGNETIC 

EXCITATION IN IMPERFECT QUASI-TWO-

DIMENSIONAL PHOTONIC 1D CRYSTAL 
 

 

Previously (see [26] and refs therein) we studied the propagation of 

electromagnetic waves localized in an ultrathin homogeneous film and 

found the dispersion laws that determine the relevant integral optical 

characteristics. At the same time, the up-to-date progress in 

nanotechnology and photonics [27-30], as well as the necessity of the 

creation of ultrathin composite materials, stimulates the investigation of 

more complex quasi-two-dimensional structures than the structures 

studied in [26]. This investigation can be most easily performed for 

ultrathin films that consist of strips that differ from each other both in the 

composition and in the thickness. In this case, the methods developed 

previously in [31] for the calculation of the concentration dependence of 

polariton spectra can be used directly for the calculation of 

corresponding excitations. In this chapter, we studied the propagation of 

electromagnetic excitation localized in a nonideal quasi-two-dimensional 

system, which, in the general case, is a topologically ordered ensemble of 

strips with a random number of defect strips. The defect strips may differ 

from the basic ones (for an ideal periodic structure) in both the 

composition and thickness. These systems can be numerically simulated 

in some approximations; in this study, we use the virtual crystal 

approximation (VCA). In this chapter we studied the concentration 

dependence of the lowest photonic band gap of a striped quasi-two-
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dimensional binary or ternary film (the 1D-superlattice has two or three 

elements in the unit cell) which contains defect strips of both variable 

composition and variable thickness. 

 

 

THEORETICAL FUNDAMENTALS 
 

In the case of an ultrathin film (with the thickness d on the order of 

the electronic excitation radius), the interaction of the electromagnetic 

field with the film can only be macroscopically described based on 

model representations, for example, as, e.g., in [26]. Let us consider the 

propagation of a plane electromagnetic wave with a frequency   and a 

wave vector q


 in the plane of an ultrathin film according to the 

phenomenological approach. The long-wavelength field ( d ) 

outside the film does not depend on the characteristics of the crystal 

structure and on the polarization distribution along the film thickness. It 

is described by the D’Alembert equation, and the sole nontrivial 

information about the effect of the film on the electromagnetic field 

consists of the boundary conditions, which couples the field amplitudes 

from both sides of the film. The latter circumstance allows us to use the 

continuous approximation to find the exciting field inE


 and field 

induced polarization of the plane layer. The material relations take the 

form 

 






























in

inHE

H

E

m







,̂ .     (18) 

 

Here, 


 and m


 are the surface densities of the electric and magnetic 

dipole moments, respectively. The tensor function 
HE,̂  of the film 

response in our quasi-two-dimensional case has the dimension of length. 

The joint solution of the system of equations relating to the boundary 

conditions and the material relations (18) yields the dispersion laws of 

exciton polaritons of the ,  and n polarizations localized in the layer 
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[32]. Here zn ||


 is the vector normal to the film, )||(/ xqq 


  and 




 n . 

Let us study the propagation of an electromagnetic wave of the n 

polarization in the field frequency region far from magnetic dipole 

transitions. This limitation allows us to make the replacement 

 ˆˆˆ ,


EHE . Thus, in the general case of an inhomogeneous film, the 

material relation takes the form 

 

          
  ,,,ˆ,
1

qqSkkqkdqE nin


. (19) 

 

As shown in [31,32],     2/12222
/,


 cqqqSn 


.  

We consider the film as a topologically ordered (periodic) set of 

strips, i.e., a one-dimensional superlattice composed of compositionally 

homogeneous elements (strips). A cell s of the 1D superlattice can have 

an arbitrary number of elements   with a thickness sa  that are 

oriented perpendicular to the x axis (Figure 3). 

Assuming that the polarizability of the ( s )-  s , we can 

write the film polarizability in the coordinate representation: 

 

      
































































 

, 11

11

s j

sj

j

ssjs aLsxaaLsxx .(20) 

 

In Eq. (20)  x  is the Heaviside function, ,...2,1s  is the number 

of a 1D-crystal cell, index  ,...,2,1  designates the elements of the 

cell. Here, L is the cell spacing; for the ideal 1D structure,    Lxx   . 

The latter allows us to describe the vector of the surface density of 

electric dipole moment using the Floquet theorem 

 

    









p

pK x
L

ipfiKxx
2

expexp , ,  (21) 
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the Bloch vector  0,0,KK 


 being directed along the x axis. Thus, 

since the Fourier representation  x , owing to (21), has the form 

   









p
pK

p
L

Kqfq



2

,

, we obtain from (19) the following 

system of equations with respect to the Fourier amplitude pKf , : 

 

    




l

lpKlpKn ffKS ,
1

,,  .    (22) 

 

 

Figure 3. 1D superlattice composed of compositionally homogeneous elements 

(strips). 

The object of this study is a nonideal 1D superlattice. The 

imperfection in our case can be caused by variations in the both 

composition and thickness of strips. We will determine the configuration 

disorder of strips using the random value 

 s : 1


 s  if the   -

type of strips lies in the s -site and the value 0

 s  in the 

opposite case. In the case of the variations in the composition 

configuration-dependent value is the film polarizability 

 
   

 












ss
.     (23) 

 

Similarly to the solid quasi-particle approach, calculation of a polariton 

spectrum for the imperfect superlattice is realized within the VCA which 

is implemented through the replacement   , where angular 
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parentheses mean a procedure of configurationally averaging. In 

addition, from Eq. (23) we have the relation 

 

   

 








 

,

Cs .    (24) 

 

Where 
 

C  is the concentration of the   -th sort of admixture 

strip in the  -th sublattice. Here a simple normalization condition 

 

 
 




 1C  holds true. It follows from Eq. (20) that the Fourier-

amplitudes of the inverse polarizability  l1  and the averaged value 

   s
1

 of strips (24) are related as 
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



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11 2
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2
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2
j

j

j

jsl aal
L
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i
l

i
(25) 

 

If the strips are inhomogeneous in their thickness, the configuration-

dependent value is sa : 

 
   

 












ss
aa .     (26) 

 

After averaging the configuration of expression (26) and the 

corresponding replacements:  

 
     





 CLLCaaa ss  , , we have 

   

 









 ss
Caa .     (27) 

 

The configurationally averaging "restores" the translational symmetry of 

a crystalline system. The normal modes of electromagnetic waves 
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propagating in this ―periodic‖ structure are determined by the system of 

Eqs. (22). For simplicity, below we assume that the value of the Bloch 

vector K is close to the values determined by the Bragg’s condition. In 

this case, when the main terms of (22) are pKf ,  at p = 0 and p= –1, 

which corresponds to the resonance between these components of the 

plane waves, the system of equations (22) takes the form 

 

     
     

0
/2,

,

1,

0,

0
1

1
1

1
1

0
1









































K

K

n

n

f

f

LKS

KS




. (28) 

 

The dispersion relations  K   follow from the equality of the 

determinant of the system (28) to zero. 

 

 

RESULTS AND DISCUSSION 
 

To specify the results, consider the propagation of electromagnetic 

excitation in an imperfect quasi-two-dimensional 1D superlattice with 

two elements (strips) in the cell, namely, with the first strip of silicon and 

the second strip of SiO2 ( 7.32  ). Note that the approximation of the 

film by a thin isotropic plate with the thickness d allows one to obtain the 

relation between  nn
 component of the polarizability tensor and the 

plate permittivity  , 

 

   4/1 d .     (29) 

 

Below we are considered the case of admixture layers of a variable 

thickness and composition only in Si-sublattice. The concentration and 

thickness of the basic material layer in the first and second sublattices are 

denoted as 
     

1
1

1

1

1

1

1
,,  aC  and 

     
2

1

2

1

2

1

2
,,  aC , and the 

corresponding parameters of impurity strips (strips with a different 

composition and thickness), as 
 

CCC 
2

1  or 
 

TCC 
2

1  and 

   2

1

2

1
,a . Simple calculations taking into account (25)-(29), and the 
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equality    11
1

1 



   yield the following expression for the lowest 

photonic band gap width   of the system studied: 

 

   
   






2

||
||

0
1

1
1

maxmin






 cKK  (30) 

 

 

Figure 4. Concentration dependence for a nonideal quasi-two-dimensional 

Si/SiO2 1D superlattice which contains defect strips of a variable thickness and 

composition only in Si-sublattice.   is given in units of dc /2  (c is the 

speed of light and d is the film thickness). 

( LK / ) and allow us to plot the dependences  TC CC ,  

for different relative both composition and thickness of strips (see Figure 

4). Surface 1 refers the case of 
 

3.1/ 1
2

1
  and 

 
9.0/ 2

1

1
aa , 

   
10/

1

1

2

1
aa , surface 2 corresponds to the case of 

 
1.1/ 1

2

1
  and 

 
5.1/ 2

1

1
aa , 

   
01.0/

1

1

2

1
aa .  

Let us add to Si and SiO2 strips the third strip of GaAs ( 113  ). 

We denote the concentration and thickness of the basic material layer in 

the first, second and third sublattices as    
1

1
11

1
1 ,,  aC ; 

   
2

1
22

1
2 ,,  aC  and    

3
1

33
1

3 ,,  aC  as well as the corresponding 

parameters of impurity strips (strips with a different composition), as 
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   2

2

2

2 , C  and 
   2

3

2

3 , C  (  
0

2
1 C ). Simple calculations taking into 

account (25,28), yield the following expression for the lowest photonic 

band gap width   of the system studied (30) and allow us to plot the 

dependences     2

3

2

2 , CC  (see Figure 5). Here the values of  
0

1  

and  
1

1  are found from the relations: 

 

    Lfafaa /333222110   , 
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using eq. (29) and the following expressions: 

 

Laaa  321 ,  

 
 
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 
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


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


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
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


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


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1
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2
32
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2

2
22

22 11,11







CfCf .  (32) 

 

Figure 5 (cases a-c) shows the concentration dependence 
    2

3

2

2 , CC  of 

the studied nonideal quasi-two-dimensional Si/SiO2/GaAs structure, as 

1D composite superlattice, for different relative composition of strips. It 

is clearly seen that the shape of corresponding surfaces considerably 

depends on both thickness of strips and composition of randomly 

included admixture strips. For some values of the parameters the energy 
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gap of a quasi-two-dimensional Si/SiO2/GaAs photonic crystal may be 

equal to zero (see case a), but for another ones it is monotonic (see cases 

b and c). 

 

 

 

Figure 5. Concentration dependence 
    2

3

2

2
, CC  of imperfect quasi-two-

dimensional Si/SiO2/GaAs superlattice for different relative thickness of strips 

and composition of randomly included admixture strips: 

а)
22.0/,28.0/,5.0/ 321  LaLaLa

, 
       

1.1/,7.0/
1

3
2

3
1

2
2

2   ;  

b) 
1.0/,1.0/,8.0/ 321  LaLaLa

,

 

a) 

 

 

b) 

 
 

 

c) 
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       
3.1/,7.0/

1
3

2
3

1
2

2
2  

; 

c) 
41.0/,1.0/,49.0/ 321  LaLaLa

, 

       
7.0/,7.0/

1
3

2
3

1
2

2
2  

; 

  is given in units of dc /2  (с is the speed of light and d is the film 

thickness). 

 



 

 

 

 

 

 

Chapter 5 

 

 

 

CONCLUSION 
 

 

In the current interpretation, the quasi-particle excitation (e.g. 

polaritons) can be easily described using the Green function. For the 

disordered macroscopically homogeneous (in particular, topologically 

ordered) nonideal systems the averaged single-particle Green functions 

are applied, which are translational invariant within site representation 

and expressed through resolvent 











H
R

ˆ

1
)(ˆ





 of the 

corresponding quasi-particle Hamiltonian Ĥ  [21,33]. It is well known 

that  R̂  calculation reduces to the calculation of self-energy part 

),,(ˆ Ck 


  dependent on concentration C of impurities, frequency  and 

wave vector k


. The real part of ),,(ˆ Ck 


  defines renormalization of 

quasi-particle spectrum, the imaginary one – damping (and, as a 

consequence, the free path length) of corresponding excitations. This 

description is just only for those frequency intervals when the inequality 

 

̂Im  << ̂Re       (33) 

 

is satisfied. The frequency intervals (for which (33) is satisfied) depend 

on specific relationships between parameters of the system, as well as on 

value of defect concentration. Definition of the criteria for inequality (33) 

to be satisfied is a rather complicate problem solved, in particular, in 

papers [34]. As (33) is not always satisfied, the choice and application of 
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the approximation for finding ),,(ˆ Ck 


  should be based on 

experimental data. 

In this chapter (the same as in [24,25,31,35]) to consider 

translational invariant model systems (the configuration averaging 

restores configuration invariance) the virtual crystal approximation 

[19,20] is used, hence ̂Im =0 [21,23]. We were not concerned with the 

proving of VCA applicability (or with finding limits for satisfying 

conditions of (33). It is evident that the VCA is the roughest one among 

the mentioned [19-21,33,34] approximations, which is suitable for a 

general (without going in for details of quasi-particle spectrum fine 

structure) interpretation of experimental data (the values expressed 

through the averaged Green function). It is not universal. 

It should be noted that here as well as in previous papers dealing 

with the analysis of three-dimensional [24,25,31] or quasi-two-

dimensional [35] systems (as 1D superlattices), a one-dimensional chain 

is not the object of study. That’s why, the Fourier transform of the 

averaged Green function (and of the self-energy part) depends on three-

dimensional wave vector k


 (not on one-dimensional). In this chapter the 

problem relates to a particular case of electromagnetic excitation 

propagation with k


 directed along the normal to the layers. We can state 

that under certain conditions for three-dimensional [24,25,31] and quasi-

two-dimensional [35] layered systems with arbitrary number of extrinsic 

layers or stripes, there exist frequency range in which propagation of 

electromagnetic excitations through these structures is allowed. 

Our results show that the optical characteristics of imperfect 1D 

superlattice may be significantly altered owing to transformation of their 

polariton spectrum resulted a presence of admixture layers (strips). 

Graphic representation  )2(

2

)2(

1
,CC  proves that the concentration 

dependence for the binary or ternary systems considered above differs 

for different relative composition or thickness of layers (strips). The case 

of nonideal multilayered (multistriped) systems with a larger number of 

sublattices and components of alien layers (strips) supposes a wide 

variety of specific behaviors of the photonic gap width. This 

circumstance extends considerably the promises of modeling composite 

materials with predetermined properties. 
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