PACS: 61.50.Ks

В.М. Рыжковский, В.С. Гончаров

КРИСТАЛЛОСТРУКТУРНОЕ СОСТОЯНИЕ СПЛАВОВ $Mn_{1+x}Sb$ (0 $\leq x \leq 1.0$) ПОСЛЕ ТЕРМОБАРИЧЕСКОЙ ОБРАБОТКИ

Объединенный институт физики твердого тела и полупроводников НАН Беларуси ул. П. Бровки, 19, г. Минск, 220072, Беларусь E-mail: Goncharov@ifttp.bas-net.by

Исследовано влияние высокого давления и температуры (P = 8 GPa, T = 2300 K) на кристаллоструктурное состояние сплавов $Mn_{1+x}Sb$ ($0 \le x \le 1.0$). Обнаружено, что термобарическое воздействие расширяет область однофазности сплавов $Mn_{1+x}Sb$ с гексагональной структурой до состава $Mn_{1.5}Sb$. В сплавах с x > 0.5 после термобарической обработки реализуется двухфазное состояние – гексагональная и кубическая фазы.

В последнее время в связи с развитием техники высоких давлений значительно увеличилось количество как новых соединений, полученных под воздействием высокого давления и температуры, так и материалов, которые при термобарической обработке существенно изменяют свои свойства. Хорошим примером этому является система Mn–Sb, в которой кроме соединений MnSb и Mn₂Sb [1] вследствие термобарической обработки прибавилось еще два соединения: MnSb₂ [2] и Mn₃Sb [3,4]. В то же время не ослабевает интерес и к исследованиям влияния высокого давления и температуры на соединения MnSb [5], Mn₂Sb [6] и сплавы на их основе [7].

Соединение MnSb представляет особый интерес, поскольку обладает широкой областью однофазности при изменении легирования, что позволяет рассматривать сплавы Mn_{1+x}Sb (до $x \le 0.3$) как фазу переменного состава с физическими свойствами, изменяющимися в широких пределах в зависимости от концентрации и внешних воздействий [8]. Однако практически во всех работах, посвященных исследованию указанных сплавов после термобарической обработки, авторы ограничиваются узкой областью составов, близких к MnSb. Между тем, несомненно, интересным является вопрос о границе области однофазности со стороны большего содержания марганца после термобарической обработки сплавов и их структурном состоянии. В настоящей работе было исследовано кристаллоструктурное состояние сплавов $Mn_{1+x}Sb$ ($0 \le x \le 1.0$), как полученных при нормальном давлении, так и подвергнутых воздействию высокого давления и температуры.

Исходные поликристаллические сплавы $Mn_{1+x}Sb$ ($0 \le x \le 1.0$) получали методом прямого сплавления порошков исходных компонентов в однозонной печи сопротивления в алундовых тиглях, помещенных в вакуумированные до 10^{-3} mm Hg кварцевые ампулы. Температуру в печи постепенно повышали до 1350 K с промежуточной выдержкой в течение 4 h при 1200 K. При температуре 1350 K ампулы выдерживались еще 4 h с последующей закалкой в холодную воду.

Термобарическую обработку образцов проводили с использованием аппаратуры, подробно описанной в [4]. В настоящей работе образцы подвергали воздействию квазигидростатического давления 8 GPa в течение 5 min при температуре 2300 K с последующей закалкой.

Рентгенографический анализ проводили с использованием программы FullProf [9] по данным, полученным при комнатной температуре и нормальном давлении на порошковом автоматизированном дифрактометре ДРОН-3 с применением Си K_{α} -излучения, монохроматизированного плоским графитовым монохроматором на отраженном пучке, в интервале углов $2\theta = 20-90^{\circ}$ с шагом 0.02° и экспозицией 5 s.

Определенные рентгенографически параметры кристаллической решетки различных кристаллоструктурных фаз в сплавах $Mn_{1+x}Sb$ ($0 \le x \le 1.0$), полученных при нормальном давлении и после их термобарической обработки, представлены в таблице.

Таблица

	Образец						
	исходный				после <i>Р</i> - <i>Т</i> -обработки		
Значение	Фаза с параметрами, Å						
x	гексагональная		тетрагональная		гексагональная		кубиче-
							ская
	а	С	а	С	а	С	а
0.0	4.138	5.781	_	_	4.212	5.704	_
0.1	4.169	5.774	_	_	4.226	5.696	_
0.2	4.203	5.733	_	_	4.221	5.694	_
0.3	4.237	5.714	_	_	4.223	5.689	_
0.4	4.239	5.719	4.079	6.554	4.228	5.683	_
0.5	4.238	5.722	4.082	6.551	4.279	5.671	_
0.6	4.241	5.716	4.078	6.547	4.291	5.665	4.003
0.7	4.236	5.721	4.080	6.549	4.308	5.636	4.002
0.8	4.228	5.725	4.083	6.548	4.327	5.625	4.006
0.9	4.192	5.748	4.077	6.553	4.322	5.631	4.001
1.0	4.145	5.782	4.082	6.551	4.325	5.619	4.004

Параметры кристаллической решетки сосуществующих фаз сплавов $Mn_{1+x}Sb$ ($0 \le x \le 1.0$)

55

Физика и техника высоких давлений 2007, том 17, № 2

Рис. 1. Рентгенограммы сплавов MnSb, Mn_{1.5}Sb, Mn₂Sb: a – исходных, δ – после термобарической обработки

Рентгенофазовый анализ исходных образцов показал, что однофазные образцы с гексагональной кристаллической структурой образуются до состава $Mn_{1,3}$ Sb. При этом в образце MnSb присутствует незначительное количество сурьмы, что соответствует выводам о невозможности существования соединения MnSb строго эквиатомного состава [10]. Как видно из таблицы, параметры решетки изменяются практически линейно, при этом параметр а увеличивается, а параметр c – уменьшается. При дальнейшем повышении содержания марганца в образцах появляется тетрагональная фаза Mn₂Sb, количество которой увеличивается с ростом содержания марганца при одновременном уменьшении количества гексагональной фазы. Параметры решетки обеих фаз при этом остаются практически неизменными, что свидетельствует в пользу постоянства их составов. Однако, начиная с состава $Mn_{1.8}Sb$, параметр *a* гексагональной фазы уменьшается, а параметр *c* – увеличивается. Образец состава Mn₂Sb представляет собой соединение Mn₂Sb с тетрагональной кристаллической структурой с параметрами решетки a = 4.08 Å, c = 6.55 Å и незначительным количеством примесной гексагональной фазы со значениями параметров решетки, как у MnSb.

На рис. 1 представлены рентгенограммы некоторых сплавов системы $Mn_{1+x}Sb$ ($0 \le x \le 1.0$), полученных при нормальных условиях синтеза (*a*) и после их термобарической обработки (δ).

Из рентгенограмм следует, что воздействие на исходные образцы высокого давления и температуры расширяет область однофазности сплавов с гексагональной кристаллической структурой до состава Mn_{1.5}Sb включительно. Однако на рентгенограммах образцов составов с $x \le 0.2$ в интервале углов $2\theta \sim 30-35^{\circ}$ присутствует несколько слабых дополнительных рефлексов. Последние проиндицированы как рефлексы фазы MnSb₂, имеющей орторомбическую структуру с параметрами ячейки a = 6.03 Å, b = 6.88 Å, c = 3.31 Å. Количество этой фазы в образце MnSb составляет, по нашим оценкам, не более 10%. При этом параметры решетки гексагональной фазы сплавов указанных составов соответствуют составу Mn_{1.3}Sb.

Термобарическая обработка образцов составов с x > 0.5 приводит к трансформации их структурного состояния. В образцах наряду с гексагональной появляется кубическая фаза Mn₃Sb, количество которой увеличивается при приближении концентрации марганца к x = 1.0. При этом параметр кристаллической решетки кубической фазы практически не изменяется, что дает основание считать ее состав постоянным (Mn₃Sb).

Подвергнутый термобарической обработке образец соединения Mn_2Sb находится в двухфазном кристаллическом состоянии и включает гексагональную и кубическую фазы. Такой же результат был получен нами ранее из нейтронографических исследований [6]. Следовательно, термобарическая обработка сплавов с x > 0.5 реализует в них двухфазное (гексагональная и кубическая фазы высокого давления) кристаллоструктурное состояние, аналогичное возникающему при термобарической обработке соединения Mn₂Sb. Отметим, что полученные результаты свидетельствуют о высокой кристаллохимической устойчивости MnSb по сравнению с Mn₂Sb, что проявляется в их различном поведении при термобарической обработке.

Работа поддержана Белорусским республиканским фондом фундаментальных исследований (проект Ф05К-052).

- 1. *М. Хансен, К. Андерко*, Структуры двойных сплавов, Т. 2, Металлургиздат, Москва (1962).
- 2. H. Takizawa, M. Shimada, Y. Sato, T. Endo, Materials Letters 18, 11 (1993).
- 3. T. Yamashita, H. Takizawa, T. Sasaki, K. Uheda, T. Endo, J. All. Comp. 348, 220 (2003).
- 4. В.С. Гончаров, В.М. Рыжковский, Неорган. материалы 41, 5, 1 (2005).
- 5. Н.П. Гражданкина, И.В. Медведева, Ю.С. Берсенев, ЖЭТФ 71, 820 (1976).
- 6. В.М. Рыжковский, В.С. Гончаров, С.Е. Кичанов, Д.П. Козленко, Б.Н. Савенко, Труды Межд. научн. конф. «Актуальные проблемы физики твердого тела», Минск (2005), т. 1, с. 120.
- 7. Н.П. Гражданкина, И.В. Медведева, ФММ 55, 96 (1983).
- 8. I. Teramoto, A.M.J.G. Van Run, J. Phys. Chem. Solids 29, 347 (1968).
- 9. J. Rodriguez-Cravajal, Physica B192, 55 (1993).
- 10. В.Г. Ванярхо, Н.А. Мощалкова, В.М. Гунченко, Н.В. Фадеева, Неорган. материалы **24**, 900 (1988).

V.M. Ryzhkovskii, V.S. Goncharov

STRUCTURE STATE OF $Mn_{1+x}Sb$ ($0 \le x \le 1.0$) ALLOYS AFTER THERMOBARIC TREATMENT

An influence of high pressure and temperature (P = 8 GPa, T = 2300 K) on the structure state of Mn_{1+x}Sb ($0 \le x \le 1.0$) alloys has been studied. Thermobaric effect is found to enlarge the single-phase region of hexagonal Mn_{1+x}Sb alloys up to Mn_{1.5}Sb composition. In alloys with x > 0.5 after thermobaric treatment the two-phase (hexagonal and cubic) state is realized.

Fig. 1. XRD spectra of MnSb, Mn_{1.5}Sb, Mn₂Sb alloys: a – initial, δ – after thermobaric treatment