PACS: 81.20.Sh

Г.С. Баронин¹, А.М. Столин², Ю.А. Ольхов³, К.В. Шапкин¹, Д.В. Пугачев¹, А.Ю. Крутов¹, С.А. Иванов¹, Ю.В. Канищева¹

СРАВНИТЕЛЬНЫЕ МОЛЕКУЛЯРНО-РЕЛАКСАЦИОННЫЕ И СТРУКТУРНЫЕ ХАРАКТЕРИСТИКИ АБС-СОПОЛИМЕРА ЖИДКО- И ТВЕРДОФАЗНОЙ ЭКСТРУЗИИ

¹Тамбовский государственный технический университет ул. Советская, 106, г. Тамбов, 392000, Россия

²Институт структурной макрокинетики и проблем материаловедения РАН г. Черноголовка, Россия

³Институт проблем химической физики РАН г. Черноголовка, Россия E-mail: tmm-dm@nnn.tstu.ru

На основе сравнительного изучения молекулярно-релаксационных, структурных и физико-механических характеристик АБС-сополимера, полученного жидкофазной (ЖФЭ) и твердофазной (ТФЭ) экструзией, предложены общие закономерности формирования молекулярно-топологического строения и свойств аморфнокристаллического полимера псевдосетчатого (ПС) строения в результате переработки в твердой фазе. Полученные экспериментальные результаты объясняются с позиций термомеханической спектроскопии (ТМС) и подтверждаются при изучении технологических процессов ТФЭ АБС-сополимера.

Твердофазные технологии переработки полимеров в изделия, основанные на развитии пластической деформации материала в условиях высокого гидростатического давления, являются технологиями будущего, так как относятся к энергосберегающим [1]. Твердофазная технология – это новый и перспективный метод переработки широкого класса материалов, в том числе полимеров [2]. Ее использование позволяет решить общую фундаментальную задачу по созданию новых композиционных материалов и изделий с улучшенными физико-механическими свойствами и широкой областью применения в промышленности.

Объектом исследования является сополимер акрилонитрила, бутадиена и стирола (АБС, ГОСТ 12851–87).

Для изучения молекулярно-топологического строения, релаксационных и структурных характеристик АБС-сополимера, полученного ТФЭ и ЖФЭ (традиционный технологический метод), в работе используется ТМС, разработанная в Институте проблем химической физики РАН [3]. Экспериментальные исследования особенностей ТФЭ АБС-сополимера проводили на экспериментальной установке с ячейкой высокого давления, разработанной в Тамбовском государственном техническом университете [1], а также в лаборатории пластического деформирования ИСМАН РАН (г. Черноголовка) [4] на машине «Инстрон» при различных скоростях выдавливания в диапазоне V = 2-200 mm/min. Оценку прочностных свойств в условиях напряжения среза образцов АБС, полученных ЖФЭ и ТФЭ, проводили на разрывной машине с использованием специального приспособления типа «вилка» при скорости перемещения подвижного зажима 50 mm/min. Внутренние ориентационные напряжения в экструдатах после ТФЭ АБС-сополимера определяли с помощью метода построения диаграмм изометрического нагрева. Исследования осуществляли на модернизированной экспериментальной установке [5]. Для регистрации сигнала использовали аналогово-цифровой преобразователь марки Е-270 с дальнейшей обработкой сигнала на ПЭВМ.

По результатам эксперимента ТФЭ АБС-сополимера выделен оптимальный диапазон изменения скоростей 50 < V < 200 mm/min, который соответствует устойчивому режиму выдавливания с гладкой поверхностью образцов. В областях скоростей V < 5 и 5 < V < 50 mm/min наблюдается неустойчивый режим выдавливания с появлением на поверхности образцов чешуек и трещин. В настоящей работе обсуждаются различные механизмы неустойчивости ТФЭ-материала, которые связаны с особенностью протекания релаксационных процессов высокоэластической деформации, сопровождающих пластическое течение полимера.

В основу ТМС-метода положены два фундаментальных положения, характеризующих поведение макромолекул полимера, помещенного в переменное во времени температурное поле [3]. Первое положение – сегментальная релаксация макромолекул начинается и заканчивается строго в соответствии с закономерностями Вильямса–Ландела–Ферри и Каргина–Слонимского [6]. Оно предполагает последовательный в порядке увеличения молекулярной массы полимергомологов их переход в режим молекулярного течения в соответствии с уравнением

$$\lg M_i = \lg M_0 + A \frac{\Delta T}{(B + \Delta T)},\tag{1}$$

где M_i и M_0 – молекулярные массы соответственно полимергомологов и сегмента Куна; ΔT – температурный интервал между температурами стеклования T_{gl} и текучести T_{vield} ; A и B – коэффициенты.

Второе положение заключается в том, что при TMC в момент достижения полимергомологом T_{yield} в нагруженном полимере за счет распада физической сетки и скачкообразного снижения модуля материала *E* происходит деформационный скачок, пропорциональный весовой доле этих гомологов в полимере.

В температурном диапазоне $\Delta T = T_{yield} - T_{gl}$ все макромолекулы полимера проходят состояние течения и сопутствующие ему деформационные скачки. Температура T_{yield} соответствует течению самого высокомолекулярного гомолога. Отмеченный выше принцип равновесности деформации в переходной области $T_{gl} - T_{yield}$ всех без исключения полимеров является основополагающим в теории метода ТМС [3].

На рис. 1 показаны термомеханические кривые (ТМК) АБС-сополимера, полученные ЖФЭ в двух режимах испытания образца: параллельно и перпендикулярно вектору ЖФЭ полимера. При анализе экспериментальных данных установлено, что АБС-сополимер в процессе переработки через стадию расплава лишь незначительно (не более 10%) изменяет свою степень изотропности. В таблице приведены молекулярно-релаксационные и структурные характеристики АБС-сополимера, полученного ЖФЭ и ТФЭ, из которых следует практически неизменная степень изотропности АБСсополимера после ЖФЭ. При этом при ЖФЭ полимера лишь на 10% меняется суммарная степень кристалличности в зависимости от направления испытания образца. Существенных изменений не обнаружено в измеренных непосредственно и рассчитанных молекулярно-релаксационных и структурных количественных характеристиках. Не меняется и характер ММР в межузловых цепях матричного блока сополимера после ЖФЭ. Некоторые изменения наблюдаются в значениях, усредненных по блокам молекулярных масс. Общий вывод из сравнительного анализа сополимера АБС однозначен – при ЖФЭ в нем практически полностью сохраняется изотропный характер не только общей топологической структуры, но и молекулярнорелаксационных характеристик. При анализе ТМК АБС-сополимера и его

Рис. 1. ТМК АБС-сополимера, полученного ЖФЭ при $T_{\text{extr}} = 463-483$ К в режимах испытания образца параллельно (*a*) и перпендикулярно (*б*) вектору ЖФЭ

молекулярно-релаксационных характеристик установлены температурные интервалы трех основных состояний полимера – стеклообразного, высокоэластического и вязкотекучего, необходимых для выбора оптимальных температурных режимов ТФЭ, а также обнаружено наличие кристаллической фазы двух-трех модификаций в зависимости от направления испытания.

Методом ТМС в работе определены молекулярные массы всех межузельных гомологов M_i , подсчитаны среднечисленные $M_{av.n}$ и средневесовые $M_{av.w}$ молекулярные массы аморфного блок-матрицы, кластерного блок-узла разветвления (таблица) АБС-сополимера после ЖФЭ и ТФЭ при различных скоростях выдавливания. Отношением $M_{av.w}/M_{av.n}$ определены коэффициенты полидисперсности K в каждом отдельном блоке полимера. Анализ термомеханического поведения АБС-сополимера в области температур $T_{gl} - T_{yield}$ дает основание однозначно утверждать, что данный высокотемпературный блок полимера имеет ПС-строение, в котором основную объемную долю полимера составляют межузельные цепи ($\varphi_a = 0.58-0.59$) ЖФЭ–АБС. Каркасными узлами в структуре блока являются наиболее прочные с точки зрения межцепного взаимодействия ПС-кластеры или кристаллические структуры различного строения и модификации.

Таблица

Vanaumanuamuuu	АБС после ЖФЭ	АБС после ТФЭ	
АБС		Скорость выдавливания, mm/min	
		2	100
Аморфный блок-матрица			
$T_{\rm gl}, ^{\circ}{\rm C}$	-83(-83)	-60(-86)	0(-88)
$M_{\rm av.n} \cdot 10^{-3}$	64.5(73.9)	143.2(21.4)	297.9(40.5)
$M_{\rm av.w} \cdot 10^{-3}$	113.6(120.2)	214.1(35.0)	390.0(69.6)
K	1.76(1.63)	1.50(1.63)	1.31(1.72)
φ_a	0.69(0.79)	0.23(0.08)	0.47(0.16)
Кристаллический блок-1			
$T_{\text{melt}}, ^{\circ}\text{C}$	119(108)	-(53)	-(66)
$M_{\rm cr}(M_{\rm cl}) \cdot 10^{-3}$	35.5(31.6)	-(10.0)	-(12.6)
$\varphi_{cr}(\varphi_{cl})$	0.11(0.10)	0.0(0.15)	0.0(0.12)
Кристаллический блок-2			
$T_{\rm cl}(T_{\rm melt}), ^{\circ}{\rm C}$	144(132)	63(82)	75(92)
$M_{\rm cl}(M_{\rm 1cl}) \cdot 10^{-3}$	63.1(63.1)	70.8(100.0)	35.4(63.1)
$\varphi_{cr}(\varphi_{1cl})$	0.20(0.11)	0.77(0.77)	0.53(0.72)
Усредненная по блокам масса АБС			
$M_n \cdot 10^{-3}$	58.9(64.1)	80.1(37.8)	60.4(40.2)
$M_w \cdot 10^{-3}$	94.9(105.0)	103.8(81.3)	202.0(58.1)
K	1.6(1.6)	1.3(2.2)	3.4(1.4)

Молекулярно-релаксационные и количественные характеристики сополимера АБС после ЖФЭ и ТФЭ для направлений испытаний параллельно (перпендикулярно) ориентации векторов*

* В скобках приведены обозначения характеристик и их величины для направления испытания перпендикулярно ориентации векторов.

Результаты исследований молекулярно-топологических, релаксационных и структурных характеристик АБС-сополимера после ТФЭ при различных скоростях выдавливания показали, что ТФЭ полимера приводит к полной трансформации структуры из изотропной в анизотропную с коренным изменением ММР ЖФЭ АБС, его степени кристалличности и других количественных характеристик структуры. Из таблицы следует, что величина средневесовой молекулярной массы аморфного блока резко возрастает со скоростью ТФЭ при испытании образца вдоль ориентации и так же сильно уменьшается при взаимно перпендикулярном направлении векторов ТМА и выдавливания в режиме ТФЭ. Это свидетельствует о существенной ориентации полимера вдоль направления ТФЭ. При этом снижение коэффициента полидисперсности К аморфного блока при ТМА в обоих направлениях говорит о том, что наиболее подвижные низкомолекулярные фрагменты цепей покидают зону аморфного состояния, переходя в кристаллическую область структуры. Последнее подтверждается еще и тем фактом, что T_{gl} сополимера АБС заметно повышается с увеличением скорости выдавливания при соосной ориентации векторов ТМА и ТФЭ, в отличие от случая ТМА при перпендикулярном направлении соответствующих векторов.

В итоге степень кристалличности АБС-сополимера возрастает с 20–30 wt.% после ЖФЭ до 84–92 wt.% после ТФЭ. При этом заметно уменьшается плотность упаковки цепей в обеих кристаллических модификациях (блоках), снижаются температура начала плавления T_{melt} и T'_{melt} (более чем на 40°С) и скорость плавления, хотя молекулярная масса закристаллизованных цепей не претерпевает существенных изменений.

Увеличение доли кластерного блок-узла разветвления и кристаллического блока-2 с $\varphi_{cl} = 0.11 - 0.13$ в АБС после ЖФЭ до $\varphi_{cl} = 0.72 - 0.77$ в полимере после ТФЭ за счет механодеструкции высокомолекулярных фрагментов и перехода наиболее подвижных молекулярных цепей аморфного блока в кристаллический блок свидетельствует о процессах ориентационной кристаллизации при обработке полимера в твердой фазе.

Важно подчеркнуть, что указанные процессы трансформации топологической и, по-видимому, надмолекулярной структур полимера зависят от скорости деформирования материала в режиме ТФЭ, т.е. имеют релаксационную природу. Невысокая (2 mm/min) скорость выдавливания материала при ТФЭ за счет уменьшения доли аморфного блока обеспечивает развитие процессов ориентационной кристаллизации ($\varphi_{cl} = 0.77$) на большую глубину в сравнении с процессами, протекающими при V = 100 mm/min. С повышением скорости ТФЭ отмечено проявление процессов механодеструкции, приводящих к увеличению молекулярной массы полимера. Отмеченные закономерности должны учитываться при выборе скоростей приложения нагрузки в режиме ТФЭ и в других технологических процессах обработки АБС давлением в твердой фазе.

При освоении новой твердофазной технологии получения полимерных материалов с улучшенными эксплуатационными характеристиками важнейшим технологическим параметром, наряду со скоростью приложения нагрузки, является температура переработки материала в твердой фазе, в случае $T\Phi \Im - T_{extr.}$

В работах [1,2] оптимальная температура переработки в твердой фазе полимеров находится из соотношения Бойера [7]:

для аморфно-кристаллических полимеров

$$T_{\text{extr}} = (0.75 \pm 0.15)T_{\text{melt}};$$
 (2)

для стеклообразных

$$T_{\rm extr} = (0.75 \pm 0.15)T_{\rm gl}.$$
 (3)

В случае АБС-сополимера такой оптимальной температурой является $T_{\text{extr}} = 358-359$ К. Для сравнения процесс ТФЭ проводили и при температуре окружающей среды $T_{\text{extr}} = 295$ К.

При оценке физико-механических показателей в условиях напряжений среза образцов АБС-сополимера после ТФЭ по сравнению с образцами, полученными ЖФЭ, наблюдается резкое (в 2–2.5 раза) повышение прочностных характеристик материала в направлении, перпендикулярном ориентации в режиме ТФЭ, которое связано с изменением молекулярнотопологической структуры и структурных характеристик АБС-сополимера после обработки в твердой фазе.

Из полученных экспериментальных данных следует, что наибольшее повышение прочности в условиях среза наблюдается после ТФЭ при оптимальной $T_{\text{extr}} = 359$ K по сравнению с ТФЭ при $T_{\text{extr}} = 295$ K. Полученные экспериментальные результаты свидетельствуют о том, что процессы трансформации структуры и ориентационной кристаллизации АБСсополимера при ТФЭ протекают наиболее эффективно и на большую глубину при $T_{\text{extr}} = 359$ K.

Рис. 2. Диаграммы изометрического нагрева образцов АБС-сополимера после ТФЭ при $\lambda_{\text{extr}} = 2.07$ и температурах $T_{\text{extr}} = 295 (1)$ и 359 К (2)

Аналогичные качественные закономерности отмечены при изучении усадочных явлений в АБСсополимере при оценке уровня внутренних остаточных напряжений и величины деформационной теплостойкости материала после $T\Phi Э$ (рис. 2). Из рис. 2 следует, что при $T\Phi Э$ и $T_{extr} = 359$ К уровень остаточных напряжений в образцах АБС-сополимера снижается более чем в 2.5 раза, а температура деформационной теплостойкости материала $T_{\text{тп}}$ повышается на 20°С по сравнению с образцами, полученными ТФЭ при $T_{\text{extr}} = 295 \text{ K}.$

Выводы

1. Методом ТМС проведено сравнительное исследование молекулярнотопологического строения АБС-сополимера после ЖФЭ и ТФЭ с различной скоростью приложения нагрузки на материал в режиме капиллярной экструзии. В обоих способах переработки АБС-сополимера в материале обнаружена топологически трехблочная аморфно-кристаллическая структура ПСстроения. В каждом блоке определены их молекулярно-релаксационные и структурные количественные характеристики.

2. Показано, что изотропный характер молекулярно-топологического строения сополимера с двумя кристаллическими модификациями после его ЖФЭ трансформируется в анизотропную после ТФЭ.

3. Независимо от скорости ТФЭ в сополимере резко возрастает степень кристалличности (от 20–30 wt.% после ЖФЭ до 84–92 wt.% после ТФЭ), более чем на 40°С снижается T_{melt} за счет снижения плотности упаковки кристаллического блока при неизменной молекулярной массе кристаллического блока.

4. С повышением скорости ТФЭ проявляются процессы механодеструкции с последующей рекомбинацией макрорадикалов, приводящей к увеличению молекулярной массы.

5. С позиций ТМС проанализированы структурно-механические свойства АБС-сополимера после ЖФЭ и ТФЭ. Показано существенное (в 2–2.5 раза) повышение прочности АБС-сополимера в условиях срезывающих напряжений в зависимости от температуры ТФЭ.

6. Проанализирована важнейшая роль температуры получения полимерных материалов и изделий из них с позиций решения фундаментальной задачи твердофазной технологии – получения полимерных материалов и изделий с повышенными эксплуатационными характеристиками. Из соотношения Бойера предложена оптимальная температура переработки АБСсополимера в режиме ТФЭ.

7. Экспериментальными исследованиями структурно-механических свойств АБС-композитов показано, что переработкой сополимера при оптимальной температуре $T_{\text{extr}} = 359$ К в режиме ТФЭ достигаются минимальный уровень остаточных напряжений, достаточная теплостойкость и повышенные прочностные показатели по сравнению с АБС после ТФЭ при $T_{\text{extr}} = 295$ К.

Работа выполнена при финансовой поддержке Федерального агентства по образованию РФ в рамках аналитической ведомственной целевой программы «Развитие научного потенциала высшей школы» 2006–2008 гг. Код проекта: РНП 2.2.1.1.5355.

- 1. Г.С. Баронин, М.Л. Кербер, Е.В. Минкин, Ю.М. Радько, Переработка полимеров в твердой фазе. Физико-химические основы, Машиностроение, Москва (2002).
- 2. Г.С. Баронин, М.Л. Кербер, Е.В. Минкин, П.С. Беляев, Переработка полимеров в твердой фазе: Учебное пособие, Изд-во Тамб. гос. техн. ун-та, Тамбов (2005).
- Ю.А. Ольхов, С.Р. Аллаяров, Термомеханическая спектроскопия новая комплексная диагностика молекулярно-топологического строения политетрафторэтилена, Изд-во ИПХФ РАН, Черноголовка (2002).
- 4. Л.С. Стельмах, А.М. Столин, в кн.: Концепция развития СВС как области научно-технического прогресса, А.П. Мержанов (ред.), Территория, Черноголовка (2003).
- 5. Ю.М. Радько, Ю.В. Минкин, М.Л. Кербер, М.С. Акутин, Заводская лаборатория № 7, 669 (1980).
- 6. Дж. Ферри, Вязкоупругие свойства полимеров, Иностранная литература, Москва (1963).
- 7. *Переходы* и релаксационные явления в полимерах, А.Я. Малкина (ред.), Мир, Москва (1968).

G.S. Baronin, A.M. Stolin, Yu.A. Olkhov, K.V. Shapkin, D.V. Pugachev, A.Yu. Krutov, S.A. Ivanov, Y.V. Kanitsheva

MOLECULAR-RELAXATIONAL AND STRUCTURAL-MECHANICAL COMPARISON CHARACTERISTICS FOR ABS-COPOLYMER OBTAINED THROUGH LIQUID- AND SOLID-PHASE EXTRUSION

General rules for the formation of molecular-topological structure and properties of amorphous-crystalline polymer with pseudogrid (PG) structure resulted from the solid phase processing have been put forward. The research is based upon the comparison studies of molecular-relaxational, structural as well as physical and mechanical characteristics of ABS-copolymer, obtained in the course of liquid-solid phase extrusion (LPE) and solid-phase extrusion (SPE). The experimental data thus obtained can be interpreted in the context of thermomechanical spectroscopy and are confirmed in the processing investigation of SPE o ABS copolymer.

Fig. 1. Thermomechanical curves of ABS-copolymer obtained through liquid-phase extrusion at $T_{\text{extr}} = 463-483$ K in test direction parallel (*a*) and perpendicular (δ) to LPE vector

Fig. 2. Diagrams of isometrical heating of ABS-copolymer samples after SPE for $\lambda_{\text{extr}} = 2.07$ and $T_{\text{extr}} = 295$ K (*1*) and 359 K (*2*)