PACS: 62.20.-x

А.И. Коршунов, И.И. Ведерникова, Л.В. Поляков, А.А. Смоляков, Т.Н. Кравченко, И.В. Коротченкова

ИССЛЕДОВАНИЕ ВЛИЯНИЯ КОЛИЧЕСТВА ЦИКЛОВ РАВНОКАНАЛЬНОГО УГЛОВОГО ПРЕССОВАНИЯ НА СКОРОСТНУЮ ЧУВСТВИТЕЛЬНОСТЬ ТИТАНА ВТ1-0

Российский федеральный ядерный центр – ВНИИЭФ пр. Мира, 37, г. Саров, Нижегородская обл., 607190, Россия E-mail: korshun1@sar.ru

Исследовано влияние равноканального углового прессования (РКУП) по маршруту B_C титана ВТ1-0. Показано, что существует зависимость его механических характеристик от скорости деформации. При повышении скорости в исходном состоянии наблюдаются уменьшение прочностных и увеличение пластических характеристик, после 1, 4 и 8 проходов – наоборот, увеличение прочностных и уменьшение пластических свойств. Установлено, что с ростом количества проходов РКУП и степени деформации коэффициент скоростной чувствительности увеличивается.

Введение

Процесс РКУП нашел широкое применение как один из методов получения материалов с мелкодисперсным зерном и, как следствие, с уникальными механическими свойствами [1]. При РКУП течение материала, особенно в зоне пересечения каналов, происходит при различных скоростях деформации [2]. При моделировании процессов с реализацией больших пластических деформаций, в частности процесса РКУП, влияние скорости деформации пластического течения как правило учитывается через коэффициент скоростной чувствительности, определяемый экспериментально при ступенчатом изменении скорости [3]. Далее неявно подразумевается, что этот коэффициент остается постоянным и не зависит от степени деформации.

В настоящей работе проведены эксперименты, позволяющие определить коэффициент скоростной чувствительности в зависимости от степени истинной деформации. Эксперименты проведены в диапазоне скоростей деформации от $6.2 \cdot 10^{-5}$ до $6.2 \cdot 10^{-2}$ s⁻¹, что соответствует условиям, при которых протекает процесс РКУП.

Методика исследований

В качестве материала для исследований был выбран титан BT1-0 в виде листа толщиной 8 mm.

Заготовки для РКУП с размерами $8 \times 8 \times 60$ mm вырезали из листа таким образом, чтобы сторона заготовки размером 60 mm была ориентирована вдоль направления проката. Верх листа при РКУП был ориентирован в сторону выходного канала штампа. Пересечение входного и выходного каналов выполнено под углом 90°. Направление прессования совпадало с направлением проката. Поворот заготовки при прессовании по схеме B_C выполняли по часовой стрелке, если смотреть на заготовку со стороны приложения нагрузки.

РКУП титана ВТ1-0 проводили при температуре 450°С со скоростью перемещения пуансона 50 mm/min, выдавливание из горизонтального канала осуществляли медью. Для предотвращения схватывания и уменьшения трения между титаном и сталью на титановые образцы наносили медное гальваническое покрытие. При прессовании использовали смазку РАНОЛ-03.

Из исходных титановых заготовок, а также заготовок после 1, 4 и 8 циклов РКУП по схеме B_C для испытаний на растяжение вырезали стандартные пятикратные образцы диаметром 4 mm. Растяжение проводили при температуре 450°C в диапазоне скоростей деформации от $6.2 \cdot 10^{-5}$ до $6.2 \cdot 10^{-2}$ s⁻¹.

Результаты исследований и их анализ

В результате исследований для титана ВТ1-0 в исходном состоянии и после 1, 4 и 8 проходов по схеме B_C при различных скоростях деформации определяли механические характеристики при растяжении: предел прочности $\sigma_{\rm B}$, условный предел текучести $\sigma_{0.2}$, относительное удлинение после разрыва δ_5 и относительное сужение после разрыва ψ . На рис. 1 показаны зависимости полученных характеристик от количества проходов РКУП для изучаемых скоростей деформации.

Как следует из приведенных данных, для титана BT1-0 существует зависимость механических характеристик от скорости деформации. При увеличении скорости в исходном состоянии наблюдаются незначительные уменьшение прочностных и увеличение пластических характеристик, после 1, 4 и 8 проходов – наоборот, увеличение прочностных и уменьшение пластических свойств. После 8 проходов зависимость характеристик прочности и относительного удлинения от скорости особо значима в интервале скоростей 10^{-5} – 10^{-3} s⁻¹, где прочностные характеристики изменяются в 1.5 раза, а удлинение – в 3 раза.

Для исследуемого титана в исходном состоянии и после 8 проходов РКУП при различных скоростях деформации построены истинные диаграммы деформирования, показанные на рис. 2. При их построении участок диаграмм после локализации формоизменения аппроксимировался степенной функцией

Рис. 1. Зависимость предела прочности $\sigma_{\rm B}(a)$, условного предела текучести $\sigma_{0.2}(\delta)$, относительного удлинения после разрыва $\delta_5(\epsilon)$, относительного сужения после разрыва $\psi(\epsilon)$ титана ВТ1-0 от количества проходов РКУП *n* для различных скоростей деформации $\dot{\epsilon}$, s⁻¹: -0- - 6.2·10⁻⁵, -D- - 1.2·10⁻³, - Δ - - 6.2·10⁻²

Рис. 2. Истинные диаграммы деформирования титана ВТ1-0 в исходном состоянии (*a*) и после 8 циклов РКУП по схеме B_C (δ) для различных скоростей деформации $\dot{\epsilon}$, s⁻¹: -0- - 6.2·10⁻⁵, -D- - 1.2·10⁻³, - Δ - - 6.2·10⁻²

Рис. 3. Зависимость коэффициента скоростной чувствительности m для титана ВТ1-0 в исходном состоянии (кривая 1) и после 8 циклов РКУП по схеме B_C (кривая 2) от степени деформации e_i

$$\sigma_i = \sigma_{0.2} + a_i e_i^b,$$

где $\sigma_{0.2}$ – условный предел текучести; *а* и *b* – константы, зависящие от скорости деформации.

Для оценки скоростной чувствительности исследуемого материала использовали коэффициент [3]:

$$m = \frac{\lg(\sigma_{i2}/\sigma_{i1})}{\lg(\dot{\varepsilon}_2/\dot{\varepsilon}_1)},$$

где $\dot{\epsilon}_2 > \dot{\epsilon}_1$ – скорости деформации; $\sigma_{i2} > \sigma_{i1}$ – соответствующие этим скоростям истинные напряжения для одной и той же истинной деформации.

Зависимость коэффициента скоростной чувствительности от степени деформации для исходного состояния и после 8 проходов РКУП приведена на рис. 3. Для получения этой зависимости использовали истинные диаграммы деформирования, полученные при скорости деформации $6.2 \cdot 10^{-5}$ и $6.2 \cdot 10^{-2}$ s⁻¹.

Результаты показывают, что для титана ВТ1-0 с увеличением количества проходов РКУП и степени деформации коэффициент скоростной чувствительности возрастет.

Заключение

1. Существует скоростная чувствительность всех стандартных механических характеристик титана ВТ1-0, которая значимо проявляется уже после 1 цикла РКУП.

2. Коэффициент скоростной чувствительности для титана ВТ1-0 увеличивается с ростом числа циклов РКУП и повышением степени истинной деформации.

Данные исследования выполнены в рамках проекта CRDF T2-0197.

- 1. Р.З. Валиев, И.В. Александров, Наноструктурные материалы, полученные интенсивной пластической деформацией, Логос, Москва (2000).
- 2. P.N. Nizovtsev, A.A. Smolyakov, V.P. Solovyev, A.I. Korshunov, L.V. Poliakov, International conference on novel composite materials «Nanocomposites-2004», Sochi, Russia (2004).
- 3. *О.А. Кайбышев*, Сверхпластичность промышленных сплавов, Металлургия, Москва (1984).

A.I. Korshunov, I.I. Vedernikova, L.V. Polyakov, A.A. Smolyakov, T.N. Kravchenko, I.V. Korotchenkova

EFFECTS OF THE NUMBER OF EQUAL-CHANNEL ANGULAR PRESSING PASSES ON THE STRAIN RATE SENSITIVITY OF TITANIUM VT1-0

The influence of equal-channel angular pressing (ECAP) of titanium VT1-0 by route B_C has been investigated. Mechanical properties of VT1-0 were shown to be sensitive to the strain rate. As the strain rate increases, in the as-received condition, strength and plasticity were observed to decrease and increase, respectively, whereas after 1, 4 and 8 passes the strength properties are observed to increase and plastic to decrease. The strain rate sensitivity coefficient was found to grow with the number of ECAP passes and strain growth.

Fig. 1. Tensile strength $\sigma_{\rm B}(a)$, conventional yield strength $\sigma_{0.2}(\delta)$, elongation at rupture $\delta_5(\epsilon)$, contraction after rupture $\psi(c)$ of titanium VT1-0 as functions of the number of ECAP passes *n* for different strain rates $\dot{\epsilon}$, s⁻¹: -0- - 6.2·10⁻⁵, -D- - 1.2·10⁻³, - Δ - - 6.2·10⁻²

Fig. 2. True deformation curves of as-received titanium VT1-0 (*a*) and after 8 ECAP passes by route $B_C(\delta)$ for different strain rates $\dot{\epsilon}$, s^{-1} : $-\circ - - 6.2 \cdot 10^{-5}$, $-\Box - 1.2 \cdot 10^{-3}$, $-\Delta - - 6.2 \cdot 10^{-2}$

Fig. 3. Strain rate sensitivity coefficient *m* as a function of strain e_i for titanium VT1-0 in the as-received condition (curve *I*) and after 8 ECAP passes by route B_C (curve *2*)