PACS: 61.25.Mv, 61.18.-j

А.Б. Лысенко, О.Л. Кравец, Г.В. Борисова

МОДЕЛИРОВАНИЕ ПАРАМЕТРОВ МИКРОСТРУКТУРЫ БЫСТРОЗАКРИСТАЛЛИЗОВАННЫХ МЕТАЛЛОВ

Днепродзержинский государственный технический университет ул. Днепростроевская, 2, г. Днепродзержинск, 51918, Украина

Статья поступила в редакцию 13 июля 2006 года

С использованием разработанного алгоритма согласованного решения тепловой и кинетической задач исследована кинетика роста кристаллов в тонких слоях алюминия, охлаждающихся на массивной медной подложке. Для слоев толщиной от 0.05 до 50 µт рассчитаны наиболее вероятные размеры кристаллов и их суммарное количество в единице объема. Получены зависимости, связывающие структурные параметры быстрозакаленных лент со скоростью охлаждения расплава, которые согласуются с литературными данными.

Введение

Широкое промышленное применение технологий закалки из жидкого состояния (ЗЖС) обусловлено прежде всего тем, что получаемые этими методами материалы с широким спектром метастабильных структур, включая нанокристаллические и аморфные, обладают уникальными комплексами физических свойств [1,2]. Однако степень неравновесности структурных состояний в конкретных сплавах и, следовательно, уровень их свойств во многом определяются термической предысторией (параметрами охлаждения), ввиду чего исключительную важность приобретает изучение закономерностей структурообразования в процессе ЗЖС. Несмотря на существенный прогресс в развитии измерительных методик и аппаратуры, возможности экспериментальных исследований процессов формирования структур в типичных условиях закалки весьма ограничены скоротечностью ($\leq 10^{-3}$ s) этих процессов в объектах с характерными размерами порядка 1–100 µm. Поэтому для прогнозирования структуры быстрозакаленных материалов широко используется метод компьютерного моделирования.

В наиболее строгих примерах модельных исследований [3–5] представлены алгоритмы совместного численного решения уравнений теплопроводности и уравнения Колмогорова [6], описывающего кинетику гомогенной кристаллизации:

$$x(t) = 1 - \exp\left\{-\frac{4}{3}\pi \int_{0}^{t} I(t') \left[\int_{t'}^{t} u(t'') dt''\right]^{3} dt'\right\},$$
(1)

где x(t) – доля объема, закристаллизовавшегося за время t; I(t) – частота зародышеобразования; u(t) – скорость роста кристаллов.

Разработанные алгоритмы дают возможность исследовать температурные поля в нормальном сечении затвердевающей ленты и теплоприемника, рассчитывать критическую скорость охлаждения, обеспечивающую аморфизацию сплава, определять температуру и скорость массовой кристаллизации, число кристаллов в единице объема и распределение их среднего размера по толщине ленты. Однако моделирование кинетики роста кристаллов, зарождающихся в различные моменты охлаждения, расчеты наиболее вероятных размеров кристаллитов и анализ кинетики многофазной кристаллизации в рамках уравнения (1) являются достаточно сложными задачами [7,8]. Это ограничивает применение моделей [3–5] для анализа параметров кристаллической структуры быстроохлажденных материалов.

В настоящей работе предлагается модифицированный алгоритм моделирования процессов кристаллизации, протекающих в условиях высокоскоростного охлаждения расплава. В отличие от цитированных выше подходов [3–5], данный алгоритм базируется на оригинальном кинетическом уравнении [9], в котором эффект замедления кристаллизации за счет жесткого столкновения соседних кристаллов достигается путем введения специального параметра – эффективной скорости роста. Применение этого параметра в рамках предположения о гомогенном механизме кристаллизации позволяет определять характерные размеры кристаллов, формирующихся в условиях быстрого охлаждения, и тем самым дает более подробную информацию о влиянии скорости охлаждения на структуру быстроохлажденных сплавов.

Вывод базового кинетического уравнения

Рассмотрим тонкий слой жидкого металла объемом V и толщиной l, который быстро охлаждается путем отвода тепла в полубесконечную теплопроводящую подложку. Предположим, что к моменту t_m достижения расплавом температуры плавления T_m в слое устанавливается регулярный режим охлаждения [10] и весь его объем переходит в переохлажденное состояние одновременно.

При температурах $T < T_m$ пленка начинает кристаллизоваться путем гомогенного образования зародышей и их дальнейшего изотропного роста. Превращение осуществляется в интервале температур от T_m до некоторого конечного значения T_e , при котором прирост кристаллизующейся массы прекращается либо по причине полного исчерпания жидкой фазы, либо вследствие перехода материала в твердое аморфное состояние. В последнем случае точка T_e имеет смысл температуры стеклования T_g . Во временном масштабе процесс кристаллизации занимает промежуток $t_m - t_e$. Допустим, что к моменту времени $t_m < t' < t_e$ доля закристаллизованного объема составляет x(t'). За малый промежуток времени от t' до t' + dt' в жидкой части исследуемого объема возникает dN(t') кристаллических зародышей критического размера $R_c(t')$:

$$dN(t') = V(1 - x(t'))I(t')dt', \qquad (2)$$

где I(t') – скорость гомогенного зародышеобразования.

Предположим, что зародыши имеют сферическую форму, и будем считать, что эта форма наследуется кристаллами при их свободном изотропном росте с линейной скоростью u(t'), где $t'' \in [t', t_e]$. В действительности независимое формирование отдельных кристаллов имеет место лишь в начальные моменты превращения, когда доля закристаллизованного объема ничтожно мала ($x \ll 1$). С течением времени по мере нарастания общего количества центров кристаллизации и их укрупнения повышается вероятность взаимных столкновений кристаллов, зародившихся в смежных участках расплава. При этом в местах контакта процессы роста кристаллов приостанавливаются, в результате чего они утрачивают сферическую форму, превращаясь в полиэдрические зерна, и достигают меньших размеров, чем при свободном развитии.

Поскольку столкновения кристаллов носят случайный характер, строгий расчет конечных размеров и формы отдельных зерен в структуре затвердевшего металла достаточно сложен [7]. Однако основные кинетические и структурные проявления процессов взаимной блокировки роста кристаллов можно воспроизвести, полагая, что в ходе превращения образуются кристаллиты сферической формы, эффективная скорость роста которых u_{eff} связана с реальной физической скоростью u и долей закристаллизованного объема x соотношением

$$u_{\rm eff} = (1 - x)u \,. \tag{3}$$

Как видно из последнего выражения, на ранних этапах кристаллизации при $x \ll 1$ эффективная и физическая скорости роста практически совпадают, но по мере дальнейшего развития превращения величина u_{eff} начинает отставать от значений u, стремясь к нулю при приближении x к единице. Таким образом, согласно предлагаемой модели, кристаллы в течение всего периода своего развития растут изотропно, но не с физической, а с эффективной скоростью.

В рамках рассмотренных выше предположений определим размеры гипотетических кристаллов, зародившихся в течение временного промежутка t', t' + dt' и изотропно растущих со скоростью u_{eff} вплоть до некоторого момента $t' < t < t_e$:

$$R(t',t) = R_c(t') + \int_{t'}^{t} u_{\text{eff}}(t'') dt''.$$

$$\tag{4}$$

Приращение доли закристаллизованного объема, обусловленное зарождением и дальнейшей эволюцией этих кристаллов, составит

$$dx(t',t) = \frac{1}{V}\frac{4}{3}\pi R^{3}(t',t)dN(t') = \frac{4}{3}\pi (1-x(t'))I(t') \left[R_{c}(t') + \int_{t'}^{t} u_{eff}(t'')dt'' \right]^{3}dt'.$$
 (5)

Интегрируя выражение (5) с учетом соотношения (3), получим кинетическое уравнение, позволяющее рассчитывать долю объема, испытавшего превращение на любой заданный момент времени *t*:

$$x(t) = \frac{4}{3} \pi \int_{t_m}^t (1 - x(t')) I(t') \left[R_c(t') + \int_{t'}^t (1 - x(t'')) u(t'') dt'' \right]^3 dt'.$$
(6)

Общая характеристика модели и принципы моделирования кинетики роста кристаллов

Как следует из вывода уравнения (6), в предлагаемой модели рассматриваются процессы образования кристаллов сферической формы, которые зарождаются самопроизвольно и далее растут изотропно с эффективной скоростью. Величина u_{eff} отличается от физической скорости роста в тем большей степени, чем меньшую долю объема занимает жидкая фаза. Использование параметра u_{eff} позволяет учесть замедление кристаллизации вследствие взаимной блокировки соседних кристаллов способом, отличным от принятого в кинетическом уравнении Колмогорова, и дает возможность рассчитывать наиболее вероятные размеры кристаллов в продуктах быстрой закалки.

С математической точки зрения модель представляет собой алгоритм согласованного решения кинетического уравнения (6) с уравнениями теплопереноса между тонким слоем расплава и полубесконечным теплоприемником. Для формализации тепловых процессов использовали одномерные дифференциальные уравнения для расплава (8) и подложки (9) с краевыми условиями (10)–(15), отражающими основные физические предпосылки модели: толщину пленки расплава, начальную температуру пленки и подложки, а также условия теплообмена пленки с окружающей средой и холодильником:

$$c_1 \rho_1 \frac{\partial T_1(z_1, t)}{\partial t} = k_1 \frac{\partial^2 T_1(z_1, t)}{\partial z_1^2} + \Delta H_m \rho_1 \frac{\partial x(t)}{\partial t}, \qquad (8)$$

$$c_2 \rho_2 \frac{\partial T_2(z_2, t)}{\partial t} = k_2 \frac{\partial^2 T_2(z_2, t)}{\partial z_2^2}.$$
(9)

Начальные условия:

$$T_1(z_1,0) = T_m + \Delta T , \qquad (10)$$

$$T_2(z_2, 0) = T_0. (11)$$

55

Граничные условия для пленки расплава:

$$\left. \frac{\partial T_1(z_1,t)}{\partial z_1} \right|_{z_1=0} = 0, \qquad (12)$$

$$k_1 \frac{\partial T_1(z_1,t)}{\partial z_1} \bigg|_{z_1=l} = \alpha \Big[T_2(0,t) - T_1(l,t) \Big].$$
(13)

Граничные условия для подложки:

$$k_2 \frac{\partial T_2(z_2,t)}{\partial z_2} \bigg|_{z_2=0} = \alpha \Big[T_2(0,t) - T_1(l,t) \Big], \tag{14}$$

$$T_2(z_2,t)\Big|_{z_2\to\infty}\to T_0.$$
 (15)

В уравнениях (8)–(15) T_i , c_i , ρ_i , k_i – соответственно температура, теплоемкость, плотность и теплопроводность расплава (i = 1) и подложки (i = 2); z_i – координата в направлении теплоотвода в пределах пленки расплава (i = 1; $0 \le z_1 \le l$) и подложки (i = 2; $0 \le z_2 < \infty$); ΔH_m – удельная теплота кристаллизации; ΔT – величина предварительного перегрева расплава; T_0 – начальная температура подложки; l – толщина пленки расплава; α – коэффициент теплоотдачи на границе между расплавом и подложкой.^{*}

Для вычисления доли закристаллизованного объема интегральное уравнение (6) преобразовывали путем последовательного дифференцирования функции x(t) и интегральных составляющих получаемых производных в систему дифференциальных уравнений, которую решали численно методом Эйлера [12].

Температурные зависимости входящих в уравнение (6) кинетических параметров I, u, R_c представляли формулами классической теории кристаллизации, соответствующими механизмам гомогенного зарождения и нормального роста кристаллов [13–16]. При расчетах частоты зародышеобразования в условиях непрерывного охлаждения расплава учитывали эффект нестационарного распределения гетерофазных флуктуаций по размерам [16].

В соответствии с поставленными задачами с помощью разработанной математической модели изучали кинетику роста кристаллов в тонких слоях расплава, охлаждающихся на теплопроводящей подложке, а также параметры микроструктуры быстрозакаленных металлов. С этой целью сначала определяли общую длительность кристаллизации Δt_c и величину временного отрезка Δt_n , в течение которого в единичном объеме образуются новые кристаллические зародыши.

Нижнюю границу t_m интервала Δt_c относили к моменту достижения центром пленки расплава температуры плавления T_m . Верхнюю границу t_e для полностью кристаллизующихся слоев находили из условия:

Численные значения α определяли по методике работы [10] в зависимости от величины *l*.

$$x(t_e) = 1 - 10^{-6} \,. \tag{16}$$

Моменты начала t_{bn} и окончания t_{en} процесса зародышеобразования, которые задают величину Δt_n , рассчитывали с помощью соотношений:

$$\int_{t_m}^{t_{bn}} I(t) \mathrm{d}t = 1, \qquad (17)$$

$$\int_{t_{en}}^{t_e} (1 - x(t)) I(t) dt < 1.$$
(18)

В основном блоке расчетов определяли число центров кристаллизации ΔN_i , возникающих в единице объема в различные моменты времени $t_{bn} < t_i < t_{en}$:

$$\Delta N_i = (1 - x(t_i)) I(t_i) \Delta t_i, \qquad (19)$$

где Δt_i – используемый в вычислительной программе шаг разбиения шкалы времени, величину которого в зависимости от толщины пленки задавали в пределах от 10^{-15} s для $l = 10^{-2}$ µm до 10^{-9} s для $l = 10^2$ µm.

Расчеты выполняли для кристаллов, зарождающихся при различных значениях приведенного времени:

$$t_{ir} = (t_{in} - t_{bn}) / (t_{en} - t_{bn}), \qquad (20)$$

где *t*_{in} – момент образования центров кристаллизации *i*-серии.

Далее для кристаллов каждой серии строили зависимости их размеров R_i от времени. Текущие значения $R_i(t)$ находили по уравнению

$$R_{i}(t) = R_{ic} + \int_{t_{in}}^{t} (1 - x(t')) u(t') dt', \qquad (21)$$

где R_{ic} – радиус критического зародыша, соответствующий моменту t_{in} ; $t \in [t_{in}, t_e]$.

Аналогичным образом рассчитывали конечные размеры R_{ie} кристаллов всех серий, используя в уравнении (21) в качестве верхнего предела интегрирования момент окончания вычислений t_e .

Помимо эффективных размеров, анализировали изменения скорости роста кристаллов в ходе превращения, фиксируя ее начальные $u(t_{in})$ и конечные $u(t_e)$ значения (таблица). Вычисляли также суммарное число кристаллов N_S , образующихся в единице объема за весь период затвердевания Δt_c :

$$N_{S} = \int_{t_{m}}^{t_{e}} (1 - x(t)) I(t) dt , \qquad (22)$$

и изучали зависимость N_S от скорости охлаждения расплава v_m при $T = T_m$.

Таблица

<i>l</i> , μm	$v_m, \mathrm{K} \cdot \mathrm{s}^{-1}$	Δt_{nr}	i	t _{ir}	$u(t_{in}), \mathbf{m} \cdot \mathbf{s}^{-1}$	$u(t_e), \mathrm{m}\cdot\mathrm{s}^{-1}$	<i>R_{ie}</i> , m	R^* , m	N_S , m ⁻³
			1	0.08	3.2		$9.0 \cdot 10^{-8}$		
0.05	$1.4 \cdot 10^{10}$	0.53	2	0.59	3.0	2.5	$4.1 \cdot 10^{-8}$	$2.1 \cdot 10^{-8}$	$1.5 \cdot 10^{22}$
			3	0.85	2.5		$1.9 \cdot 10^{-8}$		
0.5	6.7·10 ⁸	0.34	1	0.25	3.3	2.0	$9.6 \cdot 10^{-7}$	$3.7 \cdot 10^{-7}$	6.7·10 ¹⁸
			2	0.50	3.3		$6.8 \cdot 10^{-7}$		
			3	0.75	3.2		$4.1 \cdot 10^{-7}$		
5	3.3·10 ⁷	0.22	1	0.26	3.2	1.6	$1.3 \cdot 10^{-5}$	4.6·10 ⁻⁶	1.9·10 ¹⁵
			2	0.51	3.3		$9.4 \cdot 10^{-6}$		
			3	0.74	3.3		$6.2 \cdot 10^{-6}$		
50	3.6·10 ⁵	0.11	1	0.28	3.2	1.3	$6.2 \cdot 10^{-4}$		7.6·10 ⁹
			2	0.67	3.2		$3.9 \cdot 10^{-4}$	$2.7 \cdot 10^{-4}$	
			3	0.94	1.4		$2.4 \cdot 10^{-4}$		

Результаты моделирования кинетики роста кристаллов в слоях Al различной толщины

Результаты моделирования и их анализ

С помощью представленного алгоритма исследовали кинетику роста кристаллов в условиях быстрого охлаждения расплава алюминия на медном закалочном блоке. Значения термодинамических и кинетических параметров, определяющих температурные зависимости скоростей зарождения и роста кристаллов Al, оценивали по методикам, описанным в работах [17,18]. Ре-

Рис. 1. Кинетические кривые роста кристаллов, зарождающихся в слое расплава Al толщиной 0.05 μ m в различные моменты приведенного времени t_{ir} : 0.08 (1); 0.59 (2); 0.85 (3)

зультаты моделирования получали в виде графиков изменения со временем эффективных размеров кристаллов, образующихся на различных стадиях превращения, в слоях расплава толщиной от 0.05 до 50 μ m. В качестве примера на рис. 1 показана типичная серия кинетических кривых $R_i(t)$, соответствующая одному из исследованных вариантов модели. В обобщенном виде результаты кинетического анализа представлены в таблице.

Как видно из графических зависимостей $R_i(t)$ и данных таблицы, кристаллы первой серии (i = 1), зарождающиеся в начальной фазе превращения ($t_{1r} = 0.08$), характеризуются высокой стартовой скоростью роста (3.2 m/s) и к моменту окончания процесса достигают размеров $9.0 \cdot 10^{-8}$ m. Кристаллы третьей серии, возникающие на завершающей стадии зарождения ($t_{3r} = 0.85$), растут с меньшей (2.5 m/s) скоростью, в течение более короткого отрезка времени и по этим причинам приобретают значительно меньшие конечные размеры ($R_{3e} = 1.9 \cdot 10^{-8}$ m).

Следует отметить, что расчетные значения размеров кристаллитов лежат в диапазоне 20–90 nm, что свидетельствует о возможности получения первичной нанокристаллической структуры в быстрозакаленных фольгах алюминия субмикронной толщины. Основными причинами формирования такой структуры в условиях достаточно быстрого роста кристаллов, согласно данным модельных расчетов, являются высокая плотность образующихся центров кристаллизации $(N_S \approx 10^{22} \text{ m}^{-3})$ и малая абсолютная длительность процесса ($\Delta t_c \approx 5 \cdot 10^{-8}$ s).

С ростом толщины быстрозакристаллизованные фольги приобретают все более «крупнокристаллическую» структуру, в которой эффективные размеры кристаллов возрастают до ~ 10^{-4} m при l = 50 µm. Наблюдаемая трансформация микроструктурной картины обусловлена тем, что по мере снижения скорости охлаждения суммарное число центров кристаллизации, образующихся за все время охлаждения расплава, существенно уменьшается, а общая продолжительность превращения возрастает при сохранении достаточно высокого (не менее 1.3 m/s) уровня скорости роста кристаллов (таблица).

Обработкой кинетических кривых $R_i(t)$ совместно с результатами расчетов числа центров кристаллизации ΔN_i , возникающих за элементарные промежутки времени Δt_i , получали графики распределения кристаллов по размерам (рис. 2). Расчетные точки на представленном рисунке имеют смысл числа

Рис. 2. Модельные графики распределения кристаллов по размерам для быстрозакаленных фольг Al толщиной, µm: 0.05 (*1*); 0.5 (*2*); 5 (*3*); 50 (*4*)

кристаллов, которые образуются в единице объема расплава за единицу времени и в ходе дальнейшей эволюции дорастают до определенного конечного размера R_{ie} . Использование параметра $\Delta N_i / \Delta t_i$ позволяет сравнивать кривые распределения для слоев различной толщины, независимо от величины элементарного временного интервала Δt_i в формуле (19).

Как видно из рис. 2, с увеличением толщины кристаллизующихся слоев кривые распределения становятся менее размытыми и закономерно смещаются в сторону больших значений *R*_{ie}. Подобные изменения формы и расположения исследуемых зависимостей являются следствием сокращения относительной длительности процесса зарождения, которая в таблице характеризуется параметром $\Delta t_{nr} = \Delta t_n/(t_e - t_{bn})$. Действительно, уменьшение приведенного времени зарождения означает, что центры кристаллизации возникают лишь в начальные моменты превращения и далее растут в течение все больших отрезков времени. С другой стороны, кратковременный режим зарождения создает для основной массы образующихся центров кристаллизации близкие начальные условия для дальнейшего роста, в результате чего уменьшается разброс конечных размеров кристаллов.

По максимумам кривых распределения устанавливали наиболее вероятные размеры кристаллов R^* в быстрозакристаллизованных пленках разной толщины и строили зависимость величины R^* от скорости охлаждения расплава, которую совмещали с зависимостью $N_S(v_m)$. Результаты соответствующих расчетов показаны точками l и 2 на рис. 3.

Анализ результатов моделирования показывает, что обе совокупности расчетных точек в логарифмических осях с хорошей точностью аппроксимируются линейными уравнениями (сплошная и штриховая прямые на рис. 3):

$$\lg R^* = 1.24 - 0.89 \lg v_m, \tag{23}$$

$$\lg N_S = -4.22 - 2.69 \lg v_m \,. \tag{24}$$

Поскольку скорость охлаждения при закалке из жидкого состояния может быть рассчитана по толщине слоя расплава [10], соотношения (23) и (24) позволяют прогнозировать основные микроструктурные характеристики быст-

Рис. 3. Зависимости наиболее вероятных размеров кристаллов (1, 3) и их суммарного количества в единице объема (2) от скорости охлаждения расплава Al: 1, 2 – результаты моделирования; 3 – расчет по соотношению из работы [20]; сплошная прямая – расчет по формуле (23); штриховая прямая – по формуле (24)

розакаленных фольг алюминия различной толщины.

В заключение отметим, что полученные с помощью разработанного алгоритма значения R^{*} коррелируют с экспериментальными оценками размеров зерен в быстрозакристаллизованных пленках алюминия, приведенными в работе [19]. Кроме того, уравнение (23), аппроксимирующее результаты описанных выше модельных расчетов, практически совпадает с аналогичной зависимостью, выведенной для Al авторами работы [20] (рис. 3). Хорошее согласие расчетных значений R^{*} с экспериментальными данными и результатами независимых теоретических исследований свидетельствует о корректности предлагаемой математической модели.

Выводы

1. Предложена оригинальная математическая модель кристаллизации металлов в условиях закалки из жидкого состояния. В отличие от известных подходов, модель облегчает расчеты текущих и конечных размеров кристаллов, зарождающихся на различных этапах превращения, что дает более полную информацию о кинетике процесса и особенностях строения продуктов быстрой закалки.

2. С помощью разработанного алгоритма выполнены модельные исследования кинетики кристаллизации тонких слоев алюминия, охлаждающихся на медном закалочном блоке. Показано, что с ростом толщины пленки расплава от 0.05 до 50 µm суммарное число кристаллов в единице объема N_S уменьшается от $2 \cdot 10^{22}$ до $8 \cdot 10^9$ m⁻³, а их наиболее вероятные размеры R^* возрастают в пределах $2 \cdot 10^{-8} - 3 \cdot 10^{-4}$ m. Предсказываемые моделью изменения параметров N_S и R^* согласуются с экспериментальными данными и объяснены сокращением относительной длительности процесса зарождения Δt_{nr} от 0.53 до 0.11.

3. Обработкой результатов моделирования получены соотношения, связывающие величины N_S и R^* со скоростью охлаждения расплава. Такого рода зависимости могут найти применение для выбора режимов ЗЖС, обеспечивающих получение быстрозакаленных материалов с заданными параметрами микроструктуры.

- 1. *И.С. Мирошниченко*, Закалка из жидкого состояния, Металлургия, Москва (1982).
- 2. A. Inoue, Prog. Mater. Sci. 43, 365 (1998).
- 3. В.П. Набережных, Б.И. Селяков, В.И. Ткач, Э.П. Фельдман, в сб.: Структура и свойства аморфных сплавов, УдГУ, Ижевск (1985), № 7, с. 141.
- 4. R. Sellger, W. Löser, Acta metall. 34, 831 (1986).
- 5. V.I. Tkatch, S.N. Denisenko, B.I. Selyakov, Acta metall. mater. 43, 2485 (1995).
- 6. А.Н. Колмогоров, Изв. АН СССР. Отдел. матем. и естеств. наук. № 3, 355 (1937).
- 7. В.З. Беленький, Геометрико-вероятностные модели кристаллизации, Наука, Москва (1980).
- 8. G. Yu, J.K.L. Lai, J. Appl. Phys. 79, 3504 (1996).
- 9. *А.Б. Лысенко, О.В Шулешова*, Тезисы докл. Х Национальной конф. по росту кристаллов, ИК РАН, Москва (2002), с. 443.
- 10. А.Б. Лысенко, Г.В. Борисова, О.Л. Кравец, ФТВД 14, № 1, 44 (2004).
- 11. А.А. Самарский, Введение в численные методы, Наука, Москва (1987).
- 12. Е.А. Волков, Численные методы, Наука, Москва (1982).
- 13. Дж. Кристиан, Теория превращений в металлах и сплавах, Ч. 1. Термодинамика и общая кинетическая теория, Мир, Москва (1978).
- 14. А.А. Чернов, Современная кристаллография 3, 7 (1980).
- 15. *Д.Е. Овсиенко*, Зарождение и рост кристаллов из расплава, Наукова думка, Киев (1994).

- 16. В.П. Скрипов, В.П. Коверда, Спонтанная кристаллизация переохлажденных жидкостей, Наука, Москва (1984).
- 17. А.Б. Лысенко, А.А. Якунин, В.И. Ткач, Г.В. Борисова, в сб.: Аморфные металлические сплавы, Металлургия, Москва (1983), с. 47.
- 18. В.И. Ткач, А.Б. Лысенко, Н.Н. Козина, в сб.: Вопросы формирования метастабильной структуры сплавов, ДГУ, Днепропетровск (1983), с. 3.
- 19. H. Jones, Rep. Prog. Phys. 36, 1425 (1973).
- 20. P.G. Boswell, G.A. Chadwick, Scr. Metall. 11, 459 (1977).

A.B. Lysenko, O.L. Kravets, G.V. Borisova

MODELING OF MICROSTRUCTURE PARAMETERS OF RAPIDLY SOLIDIFIED METALS

With use of developed algorithm of a self-consistent solution of thermal and kinetic problems the growth kinetics of crystals in thin layers of aluminum cooled on a massive copper substrate were explored. For layers 0.05 to 50 μ m thick the most probable sizes of crystals and their total volume density number in a unit volume were calculated. The relations between the structural parameters of rapidly cooled foils and the melt cooling rate have been obtained which agree with the literature data.

Fig. 1. Kinetic curves for growth of crystals nucleating in aluminum melt layer 0.05 μ m thick at various moments of reduced time *t_{ir}*: 0.08 (*1*); 0.59 (*2*); 0.85 (*3*)

Fig. 2. Model plots of crystals allocation in size for quenched aluminum foils of thickness, μ m: 0.05 (1); 0.5 (2); 5 (3); 50 (4)

Fig. 3. Dependences of the most probable sizes of crystals (1, 3) and their total number in a unit volume (2) vs. cooling rate of Al melt: 1, 2 – model results; 3 – calculation by relation from [20]; solid line – calculation by formula (23); dashed line – calculation by formula (24)