PACS: 81.40.-z, 62.20.-x

А.И. Коршунов, И.И. Ведерникова, Л.В. Поляков, Т.Н. Кравченко, А.А. Смоляков, П.Н. Низовцев

ИССЛЕДОВАНИЕ ИЗМЕНЕНИЯ МЕХАНИЧЕСКИХ СВОЙСТВ ПО СЕЧЕНИЮ ЗАГОТОВКИ ПОСЛЕ РКУ-ПРЕССОВАНИЯ

Российский Федеральный Ядерный Центр – ВНИИЭФ пр. Мира, 37, г. Саров, 607190, Нижегородская обл., Россия

На примере отожженной меди марки M1 (содержание меди не менее 99.9%) изучено влияние количества проходов при равноканальном угловом (PKV) прессовании на неравномерность механических свойств по сечению заготовки. Исследования проведены на заготовках квадратного сечения (сторона квадрата 8 mm), вырезанных из листа толщиной 8 mm вдоль направления проката. Установлено распределение микротвердости по сечению образца. На микрообразцах диаметром 1.5 mm, вырезанных вдоль направления прессования, определены механические свойства при растяжении (предел прочности, условный предел текучести и относительное удлинение) в 9 точках по сечению образца. Исследования проведены после 1- и 2-го проходов по маршрутам B_C и C.

Введение

Создание материалов, обладающих новыми качественными свойствами, вызывает естественный научный и практический интерес. Одним из методов получения ультрамелкозернистых материалов является метод интенсивной пластической деформации, в частности метод РКУ-прессования [1].

Важное условие получения ультрамелкозернистых материалов – не только обеспечение уникальных макросвойств, но и получение однородности физико-механических свойств по всему объему образца, которая является необходимым условием работоспособности изготовленных в последующем изделий. Как следует из результатов макромоделирования процесса РКУпрессования [2,3], наблюдается значительная неоднородность накопленных пластических деформаций по сечению заготовки. Это означает, что аналогичная неоднородность должна проявиться и для механических свойств.

Методика исследований

В качестве материала для исследования была выбрана отожженная листовая медь М1 толщиной 8 mm.

Заготовки для РКУ-прессования с размерами $8 \times 8 \times 60$ mm вырезали из листа таким образом, чтобы сторона заготовки размером 60 mm была ориентирована вдоль направления проката. Верх листа при РКУ-прессовании был ориентирован в сторону выходного канала штампа. Направление РКУ-прессования совпадало с направлением проката. Поворот заготовки при прессовании по схеме B_C выполняли по часовой стрелке, если смотреть на заготовку со стороны приложения нагрузки.

РКУ-прессование меди проводили при комнатной температуре со скоростью перемещения пуансона 50 mm/min, выдавливание из горизонтального канала осуществляли свинцом. При прессовании использовали смазку на основе натурального растительного масла с добавлением дисульфида молибдена.

Из полученных после РКУ-прессования заготовок вырезали стандартные пятикратные образцы диаметром 5 mm для исследования механических свойств при растяжении. Испытания проводили при комнатной температуре и скорости деформирования $\dot{\epsilon} \approx 10^{-3} \text{ s}^{-1}$. В результате исследований определяли механические характеристики: предел прочности σ_{uts} , условный предел текучести $\sigma_{0.2}$ и относительное удлинение после разрыва δ_5 [4].

При исследовании распределения механических свойств в заготовке после РКУ-прессования для идентификации точек и сечений принята система координат, изображенная на рис. 1,*a*. При этом начало координат расположено в геометрическом центре заготовки. Из каждой заготовки после РКУпрессования вырезали по 9 пятикратных микрообразцов на растяжение с начальным диаметром 1.5 mm вдоль оси X таким образом, чтобы оси образцов совпадали с точками, обозначенными на рис. 1,*б*. Координата по оси X геометрического центра каждого из образцов была одинакова и равнялась 10 mm. Определяли те же механические характеристики, что и на стандартных образцах.

Рис. 1. Принятая система координат (a) и координаты осей (b) для микрообразцов

Твердость по Виккерсу измеряли на приборе ТПП-2 в плоскости *Y0Z* при значении X = 0 (рис. 1,*a*).

Результаты исследований и их анализ

На рис. 2 представлены графические зависимости механических характеристик исследуемого материала от числа проходов РКУ-прессования, полученные на стандартных образцах.

Рис. 2. Зависимости механических свойств меди M1 от числа проходов РКУпрессования по схемам $B_C(a)$ и C (б)

Распределения механических свойств по сечению заготовки после РКУпрессования приведены на рис. 3–5. Там же представлены распределения механических свойств меди в исходном состоянии.

После РКУ-прессования можно отметить существенное повышение прочностных и уменьшение пластических свойств, определенных на образцах стандартных размеров. При этом все три исследованные механические характеристики практически одинаковы как для схемы B_C, так и для схемы C.

В то же время наблюдается существенное различие в распределении механических характеристик по сечению заготовки, определенных на микрообразцах. Из рис. 3 и 4 видно, что имеет место неравномерность распределения по сечению заготовки прочностных свойств (σ_{uts} , $\sigma_{0.2}$) после 1-го прохода и 2-го прохода по схеме С (~ 12–15%). После 2-го прохода по схеме B_C неравномерность этих свойств практически отсутствует (~ 5%) аналогично исходному состоянию.

Результаты распределения относительного удлинения после разрыва δ_5 по сечению заготовки (рис. 5) показывают, что после 1-го прохода наблюдается некоторая неравномерность, практически исчезающая после 2-го прохода по обеим схемам B_C и C.

г

38

20 15

10

-2

г

Ò

Y, mm

2

4

Рис. 5. Распределение относительного удлинения после разрыва δ_5 по сечению заготовки в исходном состоянии (*a*), после 1-го (*б*) и 2-го прохода по схемам B_C (*в*) и C (*г*) РКУ-прессования: $-\Delta$ – верх заготовки (Z = 2.6 mm); $-\circ$ – центр (Z = 0.0 mm); $-\Box$ – низ (Z = -2.6 mm)

Рис. 6. Распределение твердости по сечению заготовки меди после 2-го прохода по схемам $B_C(a, e)$ и $C(\delta, c)$ РКУ-прессования

Физика и техника высоких давлений 2004, том 14, № 4

Распределение твердости по Виккерсу в сечении заготовок после 2-го прохода по обеим схемам нагружения приведено на рис. 6. Во всех случаях наблюдается средняя зона, равная примерно 5 mm, с одинаковой твердостью.

Выводы

1. Медь М1 в исходном состоянии обладает достаточной однородностью по сечению, по прочностным свойствам σ_{uts} , $\sigma_{0.2}$ и относительному удлинению δ_5 .

2. После 1-го цикла РКУ-прессования наблюдается значительная неоднородность по всем механическим характеристикам.

3. После 2-го прохода по схеме B_C неравномерность распределения по сечению всех прочностных (σ_{uts} , $\sigma_{0.2}$) и пластических (δ_5) свойств практически отсутствует.

4. Исследование РКУ-прессования после 2-го прохода по схеме С показывает более ярко выраженную неоднородность по всем свойствам по сравнению с распределением свойств по схеме В_С и достаточно похожую по отклонениям на 1-й проход.

5. Во всех случаях РКУ-прессования меди М1 в заготовках наблюдается средняя зона с одинаковой твердостью. На краях отмечаются небольшие изменения по твердости.

Исследования выполнены по проекту № Т2-0197 (LANL-IPP).

- 1. *R. Valiev*, Nature Materials **3**, 511 (2004).
- 2. H.J. Roven, S. Dumoulin, J.C. Werenskiold, Ultrafine Grained Materials III, TMS (2004), p. 117.
- 3. *I.J. Beyerlein, S. Li, D.J. Alexander, C.T. Necker, C.N. Tome, M.A. Bourke*, Ultrafine Grained Materials III, TMS (2004), p. 185.
- 4. A.I. Korshunov, T.N. Kravchenko, O.M. Saveleva, Strength Mater. (USA) 14, 1268 (1982).

A.I. Korshunov, I.I. Vedernikova, L.V. Polyakov, T.N. Kravchenko, A.A. Smolyakov, P.N. Nizovtsev

RESPONSE OF MECHANICAL PROPERTIES ACROSS THE SAMPLE TO ECAP

Heterogeneity in mechanical properties across the sample depending on the number of equal-channel angular pressing (ECAP) passes was studied using annealed copper M1 (min. Cu content 99.9%) as a test material. The samples under examination had a square section with a side length of 8 mm and were cut out from an 8-mm thick sheet along the rolling direction. Microhardness distribution across the sample was determined. Mechanical properties at tension (tensile strength, conventional yield strength, and elongation at

rupture) were determined at 9 points across the sample using small-size specimens, 1.5 mm in diameter, cut out along the pressing direction. The investigations were carried out after first and second passes by routes B_C and C.

Fig. 1. Coordinate system adopted (a) and coordinates of small-size specimens' axes (δ)

Fig. 2. Dependencies of mechanical properties of copper M1 on the number of ECAP passes by routes $B_C(a)$ and $C(\delta)$

Fig. 3. Tensile strength σ_{uts} distribution across the sample: initial (*a*), after first pass (δ), after second ECAP pass by routes B_C (*e*) and C (*e*): $-\Delta -$ – top of sample (*Z* = 2.6 mm); $-\circ -$ – centre (*Z* = 0.0 mm); $-\circ -$ – bottom (*Z* = -2.6 mm)

Fig. 4. Conventional yield strength ($\sigma_{0,2}$) distribution across the sample: initial (*a*), after first pass (δ), after second ECAP pass by routes B_C (ϵ) and C (ϵ): $-\Delta$ - – top of sample (Z = 2.6 mm); $-\circ$ - – centre (Z = 0.0 mm); $-\circ$ - – bottom (Z = -2.6 mm)

Fig. 5. Elongation at rupture (δ_5) distribution across the sample: initial (*a*), after first pass (δ), after second ECAP pass by routes B_C (*a*) and C (*z*): $-\Delta - -$ top of sample (Z = 2.6 mm); $-\circ - -$ centre (Z = 0.0 mm); $-\circ - -$ bottom (Z = -2.6 mm)

Fig. 6. Hardness distribution across the sample after second ECAP pass by routes $B_C(a, b)$ and $C(\delta, c)$