PACS: 61.72.Mm, 81.41.Lm

В.А. Белошенко, В.З. Спусканюк, Н.И. Матросов, Е.А. Павловская, В.В. Чишко, Л.Ф. Сенникова, Э.А. Медведская, Б.А. Шевченко, И.М. Коваленко

ИССЛЕДОВАНИЕ ФАЗОВОГО СОСТАВА И УПРОЧНЕНИЯ СПЛАВА 60Т ПРИ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКЕ С ПРИМЕНЕНИЕМ РАВНОКАНАЛЬНОГО МНОГОУГЛОВОГО ПРЕССОВАНИЯ

Донецкий физико-технический институт им. А.А. Галкина НАН Украины ул. Р. Люксембург, 72, г. Донецк, 83114, Украина E-mail: chishko@ukr.net

Статья поступила в редакцию 26 апреля 2005 года

Исследованы закономерности влияния комбинированных методов обработки, основанных на применении немонотонной деформации равноканальным многоугловым прессованием (РКМУП) и монотонной деформации гидроэкструзией, а также их деформационно-термических схем на фазовый состав и прочность сплава 60Т.

Введение

В настоящее время целесообразность применения сверхпроводников в различных областях техники не вызывает сомнения. В то же время остаются актуальными поиск новых материалов и совершенствование методов их получения для повышения сверхпроводящих и эксплуатационных характеристик. Большое внимание уделяется методам баротермомеханической обработки. Путем подбора условий и режимов деформации и термообработки можно получать образцы с нужным набором дефектов кристаллической решетки, выполняющих роль пиннинг-центров, в том числе выделений вторичных фаз и дислокационных ансамблей [1–4].

Сверхпроводящие композиты на основе сплавов системы ниобий-титан, стабилизированных медью, алюминием и сплавами на их основе, изготавливаются прессованием, гидростатическим выдавливанием, профильной прокаткой, ротационной ковкой и волочением. Для обеспечения качества сверхпроводящих композитов необходимо знать характер структурных превращений при различных способах деформации, условия сохранения строения композита и необходимых механических свойств его компонентов [5].

Ранее нами отмечалось [6,7], что знакопеременная холодная пластическая деформация в дробном режиме методом РКМУП приводит к формированию

мелкодисперсной однородной структуры с размытой текстурой и активизации процессов распада β-матрицы с выделением вторичных фаз, в том числе α-фазы. Однако до настоящего времени не установлены или недостаточно изучены устойчивость наблюдаемых структурных изменений, созданных РКМУП, при последующей обработке традиционным монотонным деформированием – гидроэкструзией, а также характер изменения фазового состава и упрочнения в зависимости от режимов многомаршрутной (многооперационной) термомеханической обработки.

Цель настоящей работы – исследовать влияние холодной деформации методом РКМУП в сочетании с последующей гидроэкструзией и отжигами на фазовые превращения и механические свойства ниобий-титанового сплава. Представляет интерес сравнить эти результаты с данными, полученными на этой системе без обработки указанным методом.

Материал и методы исследований

В качестве исходных заготовок в экспериментах использованы биметаллические прутки сплава 60T (Nb + 60 at.% Ti) в медной (МОб) оболочке диаметром 15 mm, полученные горячим прессованием при 750°C.

РКМУП осуществлено по схеме деформации через четыре пересекающихся канала с углами пересечения $\Phi_1 = \Phi_3 = 160^\circ$ и $\Phi_2 = 140^\circ$ при степени деформации за цикл $e_1 = 0.82$. Для целенаправленного формирования равноосной структуры сплава применен маршрут обработки заготовки с ее переворотом на 180° вокруг оси поперечного направления и поворотом на 90° относительно продольной оси в каждом последующем цикле прессования. Накопление деформации осуществляли повторением циклов прессования в интервале от 1 до 20. Накопленная величина знакопеременной деформации РКМУП составляла e = 0.82-16.4, а величина монотонной деформации методом гидроэкструзии e = 2.2 (маршрут формоизменения диаметра 15.0 \rightarrow 5.0 mm).

При исследовании термомеханической обработки сплава реализованы варианты маршрутов с различным количеством (до 3) промежуточных термообработок (ПТО) при полной накопленной деформации РКМУП e = 16.4, с предварительной деформацией РКМУП до первой термообработки e = 9.84, с деформацией РКМУП между промежуточными отжигами $e_{int} = 1.64$ и заключительной деформацией РКМУП $e_{fin} = 3.28$. Величина предварительной деформации РКМУП при комбинированной деформации сплава с последующей гидроэкструзией не превышала e = 13.12.

Нагрев исследуемых исходных и деформированных образцов с непрерывной выдержкой длительностью от 1 до 47 h и суммарной выдержкой до 131 h проводили при 400°C в вакууме 10⁻⁵ mm Hg.

Особенности структурообразования и упрочнения сплава 60Т на различных этапах термомеханической обработки и комбинированной деформации изучали методами оптической микроскопии, рентгеноструктурного анализа и микроиндентирования. Микроструктуру сплава исследовали с помощью микроскопа «НЕОФОТ». Тонкую структуру (D_{OKP} , $\Delta a/a$), текстуру и фазовый состав сплава изучали рентгеноструктурным методом на установке ДРОН-УМ1 с применением методов качественного и количественного анализов. Измерение микротвердости производили на приборе ПМТ-3 при нагрузке 50 g. Ошибка измерений микротвердости при этом составляла 2.5%, параметров тонкой структуры – 10%, вторичной α -фазы – 1%.

Результаты и их обсуждение

На изменение физико-механических свойств при пластической деформации существенно влияют несовершенства кристаллического строения сплава, к которым относятся размер фрагментов и блоков, внутренние напряжения, дислокационная структура, фазовый состав. Уменьшение размера блоков, увеличение плотности дислокаций в стенках ячеек, влияние выделений α-фазы и других вторичных фаз распада β-твердого раствора сплава способствуют упрочнению и токонесущей способности. В свою очередь, эти факторы зависят от режимов обработки.

Результаты экспериментальных исследований свидетельствуют о том, что в образцах, подвергнутых деформации РКМУП в дробном режиме без изменения сечения заготовки, наблюдается однородная, практически нетекстурированная структура с характерным размером блоков мозаики 150–200 nm. Последующая деформация гидроэкструзией сплава 60T, подвергнутого предварительной обработке РКМУП, приводит к образованию ориентированных в направлении вытяжки полосовых структур, содержащих мелкие, близкие к равноосным структурные образования (ячейки, субзерна), и разделенных между собой границами деформационного происхождения. Размер областей когерентного рассеивания составляет 130–150 nm.

Последующий нагрев при температуре 300–400°С не приводит к существенному изменению характерного размера тонкой структуры сплава, деформированного РКМУП и гидроэкструзией.

Это можно объяснить тем, что по границам субзерен выделяются дисперсные частицы вторичных фаз, в частности α-фазы, препятствующие их росту.

По данным рентгеноструктурного фазового анализа исследуемые обработанные образцы являются двухфазными. Наряду с интерференционными линиями β -фазы в них обнаружены также максимумы интенсивностей на углах 20°30', 26°24', 37°58', 38°30', что соответствует положению линий (011), (012), (112) и (021) α -фазы.

Изменения содержания α-фазы и микротвердости в зависимости от режимов обработки сплава 60T представлены в таблице.

Данные о характере изменений фазового состава и упрочнения в зависимости от условий термомеханической обработки позволяют утверждать следующее. Деформация методом РКМУП в сочетании с промежуточными и заключительным отжигами приводит к формированию структуры с тенденцией повышения объемного содержания выделений α-фазы от 1 до 10.5%.

Таблица

№	Вариант обработки	Степень	Длительность	Количество	Η _μ ,
Π/Π		деформации е	термообработки, h	α-фазы, %	MPa
1.	Исуолное гораненрас	_	_	~ 1	1400
2.	сованное состояние	_	1	~ 1	1420
3.		—	47	< 3	1630
4.	РКМУП		—	~ 3	1610
5.			1	> 3	1660
6.	РКМУП + ТО	16.4	47	9	1740
7.			87*	10	1890
8.			131**	13	2030
9.	РКМУП	9.84	_	~ 3	1520
10.	РКМУП + ТО	9.84	$5 \times 8^{***}$	5	1745
11.	РКМУП + ПТО + + РКМУП	9.84 + 1.64	5×8	~ 3	1460
12.	РКМУП + ПТО + + РКМУП + ТО	9.84 + 1.64	$2(5 \times 8)$	5	1740
13.	РКМУП + ПТО + + РКМУП + ПТО + + РКМУП	9.84 + 1.64 × 2	2(5 × 8)	4	1548
14.	РКМУП + ПТО + + РКМУП + ПТО + + РКМУП + ТО	9.84 + 1.64 × 2	$2(5 \times 8) + 44$	10.5	1880
15.	РКМУП + ПТО + + РКМУП + ПТО + + РКМУП + ПТО + + РКМУП	9.84 + 1.64 × 2 + + 3.28	$2(5 \times 8) + 44$	7	1550
16.	Гидроэкструзия (ГЭ) исходного образца	2.2	_	< 3	1470
17.	$\Gamma \div + \Gamma O$	2.2	1	< 3	1640
18.	РКМУП + ГЭ	9.84	_	~ 3	1803
19.	РКМУП + Γ Э + TO	9.84 + 2.2	1	> 3	1850
20.	РКМУП + 3 ПТО + + ГЭ	9.84 + 1.64 × 2 + + 2.2	$2(5 \times 8) + 44$	5	1700
21.	РКМУП + 3 ПТО + + ГЭ + ТО	$9.84 + 1.64 \times 2 + 2.2$	$2(5 \times 8) + 44 + 3$	7	1916

Изменение фазового состава и микротвердости в зависимости от режимов обработки сплава 60Т

*5 циклов отжига длительностью по 8 h + 1 цикл непрерывной выдержки 47 h;

**1 цикл отжига с выдержкой 47 h, 5 циклов – по 8 h и 1 цикл длительностью 44 h;

***5 циклов отжига длительностью по 8 h.

Рис. 1. Влияние пластической деформации и отжига на уровень H_{μ} и содержание α -фазы в сплаве 60Т при добавлении операций термомеханической обработки (номер схемы соответствует номеру в таблице): $\square - H_{\mu}, \square - n_{\alpha}$

Величина микротвердости при этом возрастает от 1400 до 1880 MPa, коррелируя с характером изменения содержания α-фазы. Результаты этой зависимости представлены диаграммой на рис. 1.

Промежуточные деформации методом РКМУП между отжигами и заключительная деформация методом РКМУП или гидроэкструзии после отжига вызывают дробление выделений α-фазы и, возможно, частичное их растворение. Очевидно, поэтому непосредственно после деформации каждый раз наблюдается снижение объемного содержания α-фазы и уменьшение величины микротвердости, косвенным образом подтверждающей изменение фазового состава, а после очередного отжига – вновь повышение уровней указанных характеристик (рис. 1).

В отношении непрерывных и циклических термообработок можно говорить об однозначной положительной их роли в изменении фазового состава и физических свойств сплава. Однако из данных рентгеноструктурного анализа, в силу его ограниченных возможностей различать и фиксировать тонкие пластинчатые выделения вторичных фаз, в частности α-фазы, вытекает, что непрерывный характер термообработки в сравнении с циклическим приводит к более ускоренному росту α-выделений.

Можно предположить, что исследуемые технологические схемы 11–15 (таблица) с циклическим повторением операций термообработки и деформации при достижении близкого объемного содержания α-выделений предпочтительнее в сравнении со схемами 5–8 из предпосылок формирования структурно-фазового состояния с более благоприятными для сверхпроводящих свойств сплава размерами, плотностью и распределением выделений вторичных фаз [3].

Знакопеременная многоцикловая деформация методом РКМУП (без изменения сечения заготовки) в комбинации с последующим монотонным формоизменением методом гидроэкструзии приводит к существенному (~ 30%) упрочнению исходного сплава 60Т. В случае исключения предварительной обработки методом РКМУП эффект упрочнения после гидроэкструзии составляет ~ 5% (таблица, диаграмма на рис. 2). Такое различие объясняется

Рис. 2. Уровень микротвердости сплава 60Т при различных схемах комбинированной термомеханической обработки

тем, что знакопеременная деформация подготавливает структуру сплава к интенсивной фрагментации при последующей монотонной деформации методом гидроэкструзии. РКМУП и гидроэкструзия способствуют активизации процессов дисперсных выделений вторичных фаз за счет возрастания плотности границ субзерен и мест зародышеобразования и, следовательно, повышения коэффициента диффузии титана, а также включения в действие помимо диффузионного барического механизма фазовых превращений β-матрицы.

Роль величины предварительной знакопеременной деформации РКМУП при комбинированной обработке методом РКМУП и последующей гидроэкструзии в упрочнении сплава 60Т представлена на рис. 3 на примере изменения величины микротвердости в зависимости от степени деформации РКМУП. Результаты измерений микротвердости подчеркивают отчетливое влияние степени предварительной деформации методом РКМУП на эффект упрочнения при последующей гидроэкструзии. С другой стороны, подобные

Рис. 3. Влияние предварительной деформации РКМУП (кривая 1) на величину микротвердости при комбинированной (РКМУП + ГЭ) (кривая 2) обработке сплава 60Т

эффекты комбинированной пластической деформации не наблюдаются в изменении объемного содержания α-фазы.

После гидроэкструзии образцов в исходном горячепрессованном состоянии сплав содержал до 3% α -фазы, с увеличением степени предварительной деформации РКМУП количество α -фазы изменялось незначительно. По-видимому, напряженные состояния не настолько отличаются друг от друга, чтобы существенно повлиять на интенсивность происходящего в сплаве полиморфного β - α -превращения. Уровень микронапряжений $\Delta a/a$ в сплаве после обработки РКМУП составляет (0.8–1.2)·10⁻³, после совместной обработки РКМУП и гидроэкструзией $\Delta a/a = (0.65-0.8) \cdot 10^{-3}$, термообработка снижает микронапряжения до значений (0.22–0.5)·10⁻³. Наблюдаемое небольшое увеличение содержания α -фазы происходит, очевидно, за счет совокупного влияния сдвиговых деформаций при РКМУП и фактора высокого давления, сопровождающего деформацию сплава в процессе гидроэкструзии.

Отсутствие корреляции в степени изменений уровня микротвердости и содержания α-фазы, наблюдаемых при комбинированной пластической деформации методом РКМУП и гидроэкструзии, не является жестким противоречием, так как микротвердость отражает деформационное упрочнение от выделений не только α-фазы, но и всех вторичных стабильных и метастабильных фаз. Обнаружение всех вторичных фаз требует применения особых низкотемпературных методик рентгеноструктурного анализа при исключении влияния текстуры образцов [4].

Термообработка, применяемая в технологических схемах обработки сверхпроводника, приводит к увеличению количества α -фазы в сплаве независимо от вида деформации. Количество α -фазы после отжига в двухфазной области диаграммы состояния сплава увеличивается за счет распада β -твердого раствора. Обработка при температуре 400°C приводит, с одной стороны, к интенсификации диффузионных процессов, которые способствуют увеличению содержания второй фазы по механизму образования и роста зародышей, а с другой – к уменьшению внутренних напряжений и, вследствие этого, укрупнению выделений α -фазы. Обоснование выбора оптимального температурного интервала термообработки (старения) сплава, деформированного РКМУП (e = 16.4) и комбинированным методом (РКМУП, $e = 9.84 + \Gamma$ Э, e = 2.2), приведено на рис. 4. Видно, что оптимальной температурой воздействия, с по-

Рис. 4. Изменение микротвердости в зависимости от температуры термообработки: $I - PKMY\Pi$, e = 16.4; $2 - PKMY\Pi$, $e = 9.84 + \Gamma\Theta$, e = 2.2. Время выдержки – 1 h

мощью которой можно усилить структурно-фазовые изменения в сплаве после комбинированной деформации, является интервал 350– 400°С. Этот эффект значительно усиливается после применения длительных термообработок.

Многократные промежуточные отжиги с последующей деформацией способствуют повышению количества α-фазы в сплаве до 5–7%, создают особое структурное состояние с раздробленными частицами выделений. Такая обработка перспективна для повышения критической плотности тока в сверхпроводнике.

Выводы

1. Исследованы закономерности влияния методов пластической деформации, в том числе включающих немонотонную деформацию методом РКМУП и традиционную монотонную деформацию гидроэкструзией, а также деформационно-термических схем на фазовый состав и микротвердость сплава 60Т.

2. Установлена наследственная устойчивость положительных структурных изменений, вызванных РКМУП, при дальнейшем монотонном формоизменении. Знакопеременная многоцикловая деформация РКМУП в комбинации с монотонным формоизменением методом гидроэкструзии приводит к существенному (~ 30%) упрочнению исходного сплава.

3. Деформация методом РКМУП в сочетании с промежуточными и заключительным отжигами с суммарной длительностью 124 h вызывает увеличение объемного содержания выделений α-фазы до 10.5%.

- 1. В.П. Буряк, А.Б. Дугадко, Е.Н. Малышев, Е.А. Павловская, В.В. Стуканов, Изв. АН СССР, Металлы № 4, 180 (1980).
- 2. А.Б. Дугадко, Е.А. Павловская, Б.А. Шевченко, О.Н. Миронова, О.В. Черный, Г.Е. Сторожилов, Н.Ф. Андриевская, Л.А. Удов, ФТВД **4**, № 3–4, 107 (1994).
- 3. *M.T. Naus, R.W. Heussner, D.C. Larbalestier*, JEEE Trans. Appl. Supercond. 7, 1122 (1997).
- 4. В.П. Буряк, А.Б. Дугадко, Е.А. Павловская, В.В. Стуканов, Е.Н. Малышев, Изв. АН СССР, Металлы № 5, 205 (1983).
- Е.М. Савицкий, Ю.В. Ефимов, Я. Кружляк, К. Фишер, Б.П. Михайлов, П. Мюллер, П. Пауфлер, В. Чернушко, В. Грюнбергер, М. Юриш, Физико-химические основы получения сверхпроводящих материалов, Металлургия, Москва (1981).
- 6. В.З. Спусканюк, А.Б. Дугадко, И.М. Коваленко, Н.И. Матросов, А.В. Спусканюк, Б.А. Шевченко, ФТВД **13**, № 3, 85 (2003).
- 7. Н.И. Матросов, Л.Ф. Сенникова, Е.А. Павловская, А.Б. Дугадко, Э.А. Медведская, Б.А. Шевченко, Металлофиз. новейшие технол. 25, 1321 (2003).

V.A. Beloshenko, V.Z. Spuskanyuk, N.I. Matrosov, E.A. Pavlovskaya, V.V. Chishko, L.F. Sennikova, E.A. Medvedskaya, B.A. Shevchenko, I.M. Kovalenko

INVESTIGATION OF PHASE COMPOSITION AND HARDENING OF ALLOY 60T UNDER THERMOMECHANICAL TREATMENT USING THE EQUAL-CHANNEL MULTIPLE-ANGLE PRESSING

The investigated are regularities of the influence of combined methods of treatment based on the application of nonmonotonic deformation by the equal-channel multiple-angle pressing (ECMAP) and monotonic deformation by hydrostatic extrusion, as well as of their deformation-thermal schemes on phase composition and strength of alloy 60T. **Fig. 1.** Influence of plastic deformation and annealing on H_{μ} level and α -phase content in alloy 60T for the case of additional operations of thermomechanical treatment (scheme number corresponds to that in the Table): $\square - H_{\mu}$, $\square - n_{\alpha}$

Fig. 2. Level of alloy 60T microhardness under various schemes of thermomechanical treatment

Fig. 3. Influence of prestraining with ECMAP (curve 1) on value of microhardness under combined (ECMAP + HE) (curve 2) treatment of alloy 60T

Fig. 4. Changes in microhardness depending on temperature of treatment: I - ECMAP, e = 16.4; 2 - ECMAP, e = 9.84 + HE, e = 2.2. Time of holding - 1 h