PACS: 61.10.Nz, 71.30.+h, 75.50.Dd, 76.60.-k

В.А. Бородин, В.Д. Дорошев, В.И. Каменев, А.С. Мазур, Т.Н. Тарасенко

МАГНИТНЫЕ И ТРАНСПОРТНЫЕ СВОЙСТВА САМОДОПИРОВАННЫХ МАНГАНИТОВ ЛАНТАНА ПРИ НОРМАЛЬНОМ И ВЫСОКОМ ДАВЛЕНИЯХ

Донецкий физико-технический институт им. А.А. Галкина НАН Украины ул. Р. Люксембург, 72, г. Донецк, 83114, Украина

Исследованы магнитные, транспортные и резонансные (ЯМР) свойства серии самодопированных манганитов лантана La_xMnO_3 (x = 1.0, 0.97, 0.94, 0.90, 0.815) при нормальных и высоких давлениях. Показано, что при увеличении степени нестехиометрии образцы становятся более магнитно-упорядоченными и меняют характер проводимости от полупроводникового ($d\rho/dT < 0$) к металлическому ($d\rho/dT > 0$) при низких температурах. Высокое (~ 12 kbar) гидростатическое давление вызывает переход образца с x = 0.94 из полупроводникового в металлическое состояние. Полученные значения барических коэффициентов $dT_C/dP = 1.44, 2.3$ и 2.1 K/kbar при x = 0.94, 0.90 и 0.815 соответственно близки к значениям, полученным для допированных составов. Обнаружена корреляция резонансных и транспортных свойств исследованной серии образцов.

1. Введение

Стехиометрический манганит лантана LaMnO₃ – это антиферромагнитный (AFM) изолятор *A*-типа, имеющий температуру Нееля $T_{\rm N}$ = 140 K. Допирование исходного LaMnO₃ двухвалентными ионами (Ca, Sr, Ba и т.д.) в узлах La существенно изменяет его магнитные и транспортные свойства. Помимо допирования двухвалентными ионами, свойства исходного LaMnO₃ можно изменить, нарушая его стехиометрию, т.е. создавая вакансии в узлах La или Mn. Свойства таких «самодопированных» составов и влияние на них внешних воздействий, например высокого гидростатического давления, изучены значительно меньше, чем для допированных составов [1–5]. Кроме того, имеющиеся литературные данные сильно отличаются друг от друга ввиду разных условий синтеза образцов. Нами была поставлена задача исследовать серию La-дефицитных образцов, полученных при одинаковых условиях и перекрывающих широкий диапазон степени нестехиометрии исходного LaMnO₃.

2. Эксперимент

Серия поликристаллических образцов $La_xMn_yO_3$ (La/Mn = 1.0, 0.97, 0.94, 0.90, 0.815) была синтезирована по стандартной керамической технологии. Выбор диапазона изменений La/Mn сделан согласно фазовой диаграмме [6]. В качестве исходных материалов были взяты предварительно прокаленные окислы La_2O_3 и MnO₂ высокой степени чистоты. Первоначальный обжиг производили при 1000°C в течение 28 h, затем образцы были размолоты, спрессованы и окончательный обжиг был проведен при 1100°C в течение 30 h на воздухе.

Кристаллическую структуру полученных образцов изучали методом рентгеновской дифракции в K_{α} -излучении Ni. Все образцы имели ромбоэдрическую структуру $R \overline{3} c$, посторонние фазы не были обнаружены даже при соотношении La/Mn = 0.815. Параметры решетки образцов и полные химические формулы приведены в таблице. Содержание Mn⁴⁺ и δ оценивали на основании данных исследований [2,6,7]. Подобный анализ связи структуры с ионным составом самодопированных манганитов был проведен в работах [8,9].

Таблица

Обра- зец	Параметр решетки <i>a</i> , Å	α, deg	Объем ре- шетки <i>V</i> , Å ³	Содержа- ние Мп ⁴⁺ , %	δ	Формула соединения
L _{1.00}	5.523	60.56	241.3	12	0.06	$\begin{array}{c} La_{0.98}Mn_{0.98}O_{3}\\ (La_{0.98}\square_{0.02})(Mn_{0.98}\square_{0.02})O_{3}\end{array}$
L _{0.97}	5.477	60.66	235.8	_	_	_
L _{0.94}	5.482	60.55	235.9	24	0.03	$\frac{La_{0.93}Mn_{0.99}O_3}{(La_{0.93}\square_{0.07})(Mn_{0.99}\square_{0.01})O_3}$
L _{0.90}	5.479	60.63	235.9	22	-0.04	$\frac{La_{0.90}MnO_{2.96}}{(La_{0.9}\square_{0.1})MnO_{2.94}\square_{0.04}}$
L _{0.815}	5.484	60.55	236.2	_	_	_

Параметры структуры образцов

Удельное электросопротивление образцов ρ измеряли стандартным четырехзондовым методом на постоянном токе. Начальную магнитную восприимчивость χ регистрировали радиочастотным методом на частоте 1 MHz. Высокие гидростатические давления до 12 kbar (при *T* = 300 K) создавали в контейнере типа цилиндр–поршень с фиксированным объемом. Средой, передающей давление, являлся полиэтилсилоксан ПЭС-5. Величину давления измеряли манганиновым манометром, температуру в диапазоне 77–300 K – термопарой медь–константан. Исследования ЯМР ⁵⁵Мп выполнены на импульсном некогерентном спектрометре с разверткой частоты и аналоговым накоплением сигнала.

3. Результаты

На рис. 1 представлены температурные зависимости магнитной восприимчивости. Для образца $L_{1.0}$ данные, полученные с помощью СКВИДмагнетометра, приведены в [10]. Наблюдаются переходы в ферромагнитное состояние для образцов $L_{0.94}$, $L_{0.90}$ и $L_{0.815}$, причем для последнего такой переход наиболее резкий. Можно заключить, что образец $L_{0.815}$ самый магнитно-однородный из всех ферромагнитных образцов.

Рис. 1. Начальная радиочастотная магнитная восприимчивость образцов La_xMnO_3 при нормальном давлении: $I - L_{0.815}$, $2 - L_{0.90}$, $3 - L_{0.94}$, $4 - L_{0.97}$. На вставке показано влияние на магнитную восприимчивость образца $La_{0.94}$ высокого давления *P*, kbar: I - 0, 2 - 7.95, 3 - 11.77

Для образца L_{0.97} характерен размытый переход с широким максимумом при T = 125 К. Согласно [10] зависимость $\chi(T)$ образца L_{1.0} имеет практически такой же вид с максимумом при T = 60 К. Подобные температурные зависимости восприимчивости обычно характерны для суперпарамагнитных или спин-стекольных состояний, что свидетельствует о сильной магнитной неоднородности. Учитывая данные таблицы, можно отметить качественное различие в поведении допированных и «самодопированных» манганитов. В допированных (La–Sr) манганитах температура магнитного упорядочения, вызванного механизмом двойного обмена, растет от $T_C = 145$ до 370 K при увеличении содержания Mn⁴⁺ от 10 до 30% [11]. В исследованных самодопированных манганитах уменьшение содержания Mn⁴⁺ (которое близко к оптимальному для допированных двухвалентными металлами) от 24 до 22% вызывает не падение, а рост T_C и переход к магнитно более однородным состояниям. Причиной такого поведения, на наш взгляд, является понижение дефектности марганцевой подсистемы вследствие уменьшения концентрации вакансий от 2% в образце $L_{0.94}$ до ~ 0 в образце $L_{0.9}$, поскольку вакансии Мп вызывают фрустрацию магнитного порядка. Очень наглядно это показано в работе [7] на образцах LaMn_vO₃, где видно, что образец с 5% вакансий Мп ферромагнитен при $T_C \approx 175$ K, в то время как образец с 10% вакансий не испытывает магнитного упорядочения. На вставке рис. 1 показано влияние высокого давления на поведение магнитной восприимчивости образца $L_{0.94}$. Отмечается рост T_C под давлением со скоростью 1.44 K/kbar.

Температурные зависимости удельного сопротивления при нормальном и высоком гидростатическом давлениях представлены на рис. 2. Зависимость

Рис. 2. Удельное электрическое сопротивление La_xMnO₃ при разных давлениях *P*, kbar: для L_{0.97} – 0, 6.42, 11.63; для L_{0.94} – 0, 7.77, 11.8; для L_{0.90} – 0, 7.95, 11.45; для L_{0.815} – 0, 7.77, 10.87

 $\rho(T)$ образца L_{1.0} приведена в [10]. Зависимости $\rho(T)$ образцов L_{1.0} и L_{0.97} имеют полупроводниковый характер, образец L_{0.94} отличается широким максимумом ρ при 105 К и тенденцией перехода к металлическому типу проводимости, а образцы L_{0.90} и L_{0.815} демонстрируют часто встречающийся двухпиковый характер зависимости $\rho(T)$ [12] с металлической проводимостью при низких температурах.

Проводимость образца $L_{0.97}$ даже при максимальном давлении остается полупроводниковой, хотя ρ падает при 100 К почти в 30 раз. Ферромагнитный изолирующий (FMI) образец $L_{0.94}$ показывает переход в ферромагнитное металлическое (FMM) состояние, индуцируемый давлением, и уменьшение удельного сопротивления при 100 К в ~ 8.5 раза. Очень близкий результат ранее получен в работе [13] для монокристалла $La_{0.94}Mn_{0.98}O_3$, в котором металлическое состояние при температуре ниже $T_C = 210$ К реализовалось при давлении 9.4 kbar. FMM-образцы $L_{0.90}$ и $L_{0.815}$ не изменяют характера металлической проводимости под давлением (уменьшение сопротивления при 100 К в 3.5 и 2.5 раза соответственно).

Учитывая близость высокотемпературного максимума $\rho(T)$ к T_C для образцов L_{0.90} и L_{0.815}, из зависимостей $\rho(T,P)$ определены барические коэффициенты d T_C /dP, равные 2.3 и 2.1 K/kbar соответственно. Полученные барические коэффициенты можно сравнить со значением 1.7 K/kbar для La_{0.94}Mn_{0.98}O₃ [13], а также со значениями 3.67 K/kbar для слабодопированного La_{0.79}Ca_{0.21}MnO₃ и 1.57 K/kbar для оптимально допированного La_{0.67}Ca_{0.33}MnO₃ [14].

Спектры ЯМР ⁵⁵Мп при 77 К приведены на рис. 3. Как видно, у всех образцов наблюдается одиночная линия поглощения, амплитуда которой монотонно уменьшается от L_{0.815} к L_{1.00}. Характерно, что резонансная частота (~ 370 MHz) и ширина линии (~ 50 MHz) одинаковы для всех образцов. Спектры очень хорошо отвечают условию быстрого электронного Mn⁴⁺ \leftrightarrow Mn³⁺ обмена. Лишь небольшое низкочастотное крыло в районе 320 MHz свидетельствует о присутствии ионов Mn⁴⁺, не участвующих в обмене. Обычно их приписывают границам

Рис. 3. Спектры ЯМР ⁵⁵Мп образцов La_xMnO₃ при 77 К: $1 - L_{1.00}$, $2 - L_{0.97}$, $3 - L_{0.94}$, $4 - L_{0.90}$, $5 - L_{0.815}$. На вставке представлены зависимости амплитуды спектров ЯМР при частоте 370 MHz и проводимости образцов от степени нестехиометрии

ферромагнитных кластеров или поверхности наночастиц [15,16]. Столь слабое проявление ЯМР Mn⁴⁺ свидетельствует, по-видимому, о том, что кластеры в исследованных образцах имеют мезоскопические размеры.

Отметим, что ширина линии ЯМР «самодопированных» манганитов (~ 50 MHz) приблизительно в 2.5 раза больше, чем для оптимально допированного La_{0.65}Sr_{0.35}MnO₃ (~ 20 MHz) [17]. Уширение, вероятно, связано с меньшей подвижностью носителей в «самодопированных» манганитах по сравнению с оптимально допированными ввиду их большей неоднородности и коррелирует с тем фактом, что удельное сопротивление «самодопированных» манганитов на несколько порядков больше, чем допированных. Спектры ЯМР, отвечающие ферромагнитным кластерам, имеют одинаковую форму как для FMI-состояния (образцы L_{1.00}, L_{0.97}), так и для FMM-состояния (L_{0.90}, L_{0.815}). Такое постоянство формы спектров резко контрастирует со случаем слабодопированного La_{0.85}Sr_{0.15}MnO₃, спектр которого [17] простирается от 310 до 470 MHz и состоит из трех широких линий Mn⁴⁺, Mn³⁺.

Наиболее интересной особенностью спектров на рис. З является большое монотонное увеличение интенсивности резонансной линии при переходе от полупроводникового образца $L_{1.00}$ (интенсивность 55 arb. units) к металлическому $L_{0.815}$ (2300 arb. units). Поскольку коэффициенты усиления ЯМР η об-

разцов различаются незначительно, такое повышение интенсивности однозначно свидетельствует о росте суммарного объема ферромагнитных кластеров при увеличении степени самодопирования.

4. Выводы

Сопоставляя данные рис. 1, 2, можно классифицировать образцы следующим образом: $L_{1.0}$ и $L_{0.97}$ – спин-стекольные (или суперпарамагнитные) изолирующие; $L_{0.94}$ – FMI; $L_{0.90}$ и $L_{0.815}$ – FMM.

Сравнивая барические коэффициенты, можно заключить, что интеграл двойного обмена «самодопированных» манганитов при сжатии изменяется приблизительно с той же скоростью, что и допированных манганитов.

Из вставки рис. З видна явная корреляция между зависимостями удельной проводимости и интенсивности спектров ЯМР. Соотношение La/Mn, отвечающее перколяционному пределу и переходу из FMI- в FMM-состояние, составляет ~ 0.95.

Работа выполнена при финансовой поддержке Государственного фонда фундаментальных исследований Украины (проект № Ф7/471–2001).

- 1. I.O. Troyanchuk, V.A. Khomchenko, M. Tovar, H. Szymczak, K. Bärner, Phys. Rev. B69, 054432 (2004).
- 2. F. Prado, R.D. Sanchez, A. Caneiro, M.T. Caus, M.J. Tovar, Solid State Chem. 146, 418 (1999).
- Н.Н. Лошкарева, Ю.П. Сухоруков, Э.А. Нейфельд, В.Е. Архипов, А.В. Королев, В.С. Гавико, Е.В. Панфилова, В.П. Дякина, Я.М. Муковский, Д.А. Шулятев, ЖЭТФ 117, 440 (2000).
- 4. I. Loa, P. Adler, A. Grzechnik, K. Syassen, U. Schwarz, M. Hanfland, G.Kh. Rozenberg, P. Gorodetsky, M.P. Pasternak, Phys. Rev. Lett. 87, 125501 (2001).
- 5. J.-S. Zhou, J.B. Goodenough, Phys. Rev. Lett. 89, 087201 (2002).
- 6. J.A.M. van Roosmalen, P. van Vlaanderen, E.H.P. Cordfunke, W.L. IJdo, D.J.W. IJdo, J. Solid State Chem. **114**, 516 (1995).
- 7. A. Arulray, R. Manesh, G.N. Subbanna, R. Mahendiran, A.K. Raychaudhuri, C.N.R. Rao, J. Solid State Chem. **127**, 87 (1996).
- 8. В.П. Пащенко, С.И. Харцев, О.П. Черенков, А.А. Шемяков, З.А. Самойленко, А.Д. Лойко, В.И. Каменев, Неорган. материалы **35**, 1509 (1999).
- В.П. Дьяконов, В.П. Пащенко, Э.Е. Зубов, В.И. Михайлов, Ю. Буханцев, И.М. Фита, В.А. Турченко, Н.А. Дорошенко, А. Шевчик, Р. Жуберек, Г. Шимчак, ФТТ 45, 870 (2003).
- 10. М.М. Савоста, В.Д. Дорошев, В.И. Каменев, В.А. Бородин, Т.Н. Тарасенко, А.С. Мазур, М. Маришко, ЖЭТФ **124**, 633 (2003).
- 11. A. Urushibara, Y. Morytomo, T. Arima, A. Asamitsu, G. Kido, Y. Tokura, Phys. Rev. B51, 14103 (1995).
- 12. А.И. Товстолыткин, А.Н. Погорелый, С.М. Ковтун, ФНТ 25, 1282 (1999).

- 13. V. Markovich, E. Rozenberg, G. Gorodetsky, M. Greenblatt, W.H. McCarroll, Phys. Rev. B63, 054423 (2001).
- 14. J.J. Neumeier, M.F. Hundley, J.D. Thompson, R.H. Heffner, Phys. Rev. B52, R7006 (1995).
- 15. M.M. Savosta, V.N. Krivoruchko, I.A. Danilenko, V.Yu. Tarenkov, T.E. Konstantinova, V.A. Borodin, V.N. Varyukhin, Phys. Rev. B69, 024413 (2004).
- 16. M. Bibes, Ll. Balcells, J. Fontcuberta, M. Wojcik, S. Nadolski, E. Jedryka, Appl. Phys. Lett. 82, 982 (2003).
- 17. A. Anane, C. Dupast, K. Le Dang, J.P. Renard, P. Veillet, A.M. de Leon Guevara, F. Millot, L. Pinsard, A. Revcolevschi, J. Phys.: Condens. Matter 7, 7015 (1995).

V.A. Borodin, V.D. Doroshev, V.I. Kamenev, A.S. Mazur, T.N. Tarasenko

MAGNETIC AND TRANSPORT PROPERTIES OF SELF-DOPED LANTHANUM MANGANITES UNDER NORMAL AND HIGH PRESSURES

Magnetic, transport and resonance (NMR) properties of a series of the self-doped lanthanum manganites La_xMnO_3 (x = 1.0, 0.97, 0.94, 0.90, 0.815) under normal and high pressures have been studied. It was shown that the samples become more magneticallyordered with the change in conductivity character from semiconductor ($d\rho/dT < 0$) to metallic ($d\rho/dT > 0$) at low temperatures with the increase of nonstoichiometry degree. High hydrostatic pressure (~ 12 kbar) causes a semiconductor-metal transition of the sample with x = 0.94. The got pressure coefficients of $dT_C/dP = 1.44, 2.3$ and 2.1 K/kbar for x = 0.94, 0.90 and 0.815 accordingly, are close to values obtained for doped compositions. A correlation of resonance and transport properties of the explored series of samples was found.

Fig. 1. Initial radio-frequency magnetic susceptibility of the samples La_xMnO_3 under normal pressure: $I - L_{0.815}$, $2 - L_{0.90}$, $3 - L_{0.94}$, $4 - L_{0.97}$. Magnetic susceptibility of the sample $La_{0.94}$ as a function of high pressure *P*, kbar: I - 0, 2 - 7.95, 3 - 11.77 is shown in the insert

Fig. 2. Electrical resistivity of the samples La_xMnO_3 under different pressures *P*, kbar: for $L_{0.97} - 0$, 6.42, 11.63; for $L_{0.94} - 0$, 7.77, 11.8; for $L_{0.90} - 0$, 7.95, 11.45; for $L_{0.815} - 0$, 7.77, 10.87

Fig. 3. ⁵⁵Mn NMR spectra of the samples La_xMnO_3 at 77 K: $1 - L_{1.00}$, $2 - L_{0.97}$, $3 - L_{0.94}$, $4 - L_{0.90}$, $5 - L_{0.815}$. Dependences of the amplitude of NMR spectra with frequency of 370 MHz and conductivity of samples on the degree of nonstoichiometry are represented in the insert