PACS: 61.82.Rx, 62.50.+p, 71.10.-w

В.А. Волошин, В.Г. Бутько, А.А. Гусев, Т.Н. Шевцова

МОДЕЛИ УГЛЕРОДНЫХ НАНОТРУБОК И РАСПРЕДЕЛЕНИЕ ЭЛЕКТРОННОЙ ПЛОТНОСТИ В НИХ

Донецкий физико-технический институт им. А.А. Галкина НАН Украины ул. Р. Люксембург, 72, г. Донецк, 83114, Украина E-mail: voloshin@host.dipt.donetsk.ua

Построены некоторые модели углеродных нанотрубок, как максимально приближенных к реальным структурам, так и виртуальных. Рассчитано распределение электронной плотности (ЭП) в них. Показана возможность целенаправленного образования областей повышенной ЭП определенной формы, предполагающая изменения электрических, магнитных и прочностных свойств.

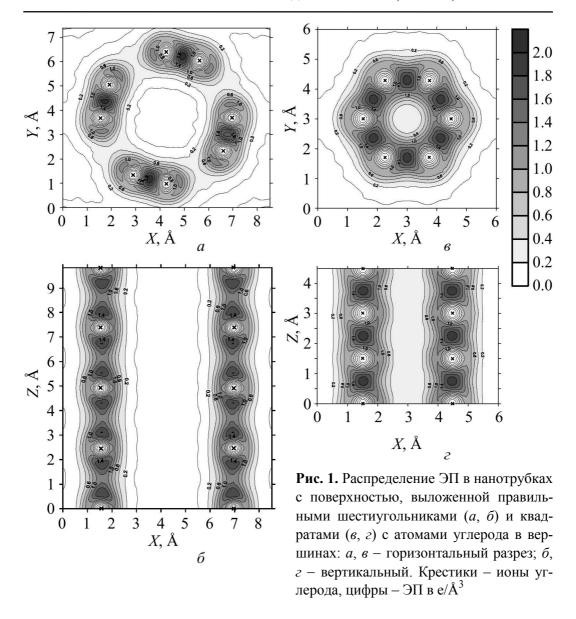
Введение

В работе рассчитывается распределение ЭП в нанотрубках модифицированным статистическим методом (МСМ). В этом методе ЭП получается непосредственно как реакция электронной подсистемы на ионные псевдопотенциалы, минуя промежуточную стадию расчета электронного спектра [1–3].

МСМ позволяет находить распределение ЭП для кристаллов, состоящих из ионов любых элементов таблицы Менделеева. При этом под ЭП понимается плотность электронов только нескольких внешних (валентных) электронных конфигураций данного атома [4]. Остальные электроны совместно с ядром составляют остов атома. Использование МСМ в расчетах электронной структуры сжимающихся тел имеет естественные границы применимости, а именно, атомные остовы не должны перекрываться. В результате расчета можно получить электронную плотность в каждой точке элементарной ячейки, а затем – карту распределения этой величины на любом срезе.

В предыдущих публикациях МСМ применялся для объяснения или предсказания свойств конкретных реальных кристаллов [4–7]. В настоящей работе он впервые используется для анализа свойств виртуальных моделей.

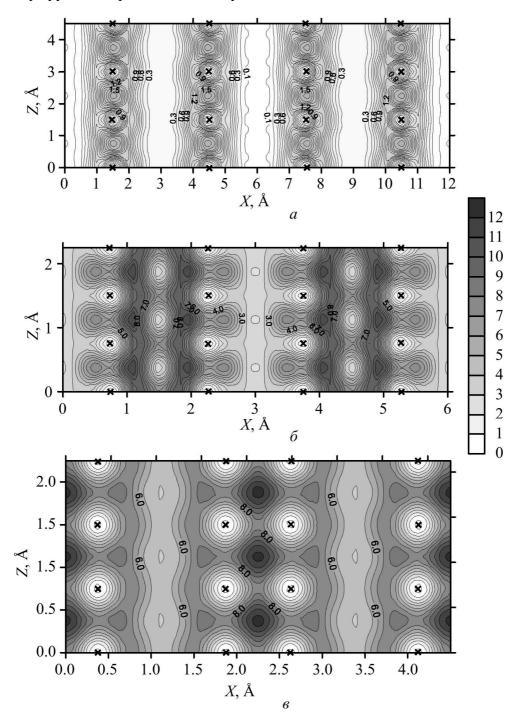
Построение моделей


Для построения моделей можно пользоваться разными методиками. Наиболее общей является методика, когда основным звеном выбирается кольцо

из любого числа углеродных атомов. Атомы в кольце могут находиться на одинаковых расстояниях друг от друга или на разных, но расположенных в определенном порядке. Верхнее кольцо может наслаиваться на нижнее с заданным поворотом или без него и т.д.

Но можно в качестве звена выбрать сумму нескольких колец, построенных в определенном порядке. Так, из чередования суммы двух колец, находящихся друг от друга на расстоянии $\sqrt{3}/2a$, в котором атомы расположены на расстояниях: a - 2a - a - 2a (причем верхнее кольцо повернуто на один шаг по отношению к нижнему), получается трубка, поверхность которой будет состоять из гексагонов – равносторонних шестиугольников. Такая связь называется «креслом» [8,9], она построена на рис. $1,a,\delta$. Если расстояния и между кольцами, и между атомами в кольце будут одинаковыми, то поверхность трубки будет состоять из квадратов (рис. $1, 6, \epsilon$). Наконец, совокупность трубок составляет кристалл определенной симметрии. В работе приводятся структуры, определяемые двумерными гексагональной (кресло) и квадратной решетками. Целенаправленное изменение распределения ЭП возможно при определенном изменении расстояния, а значит, и взаимодействия между ионами, составляющими кристалл. Расстояния между ионами в звене, между звеньями и, наконец, между трубками в моделях могут быть изменены отдельно для каждого из этих расстояний, а также в любой комбинации, что позволяет получать довольно широкий спектр различных видов распределения ЭП.

Модели, в которых расстояния между атомами углерода соответствуют связям в алмазе и графите при атмосферном давлении


На рис. $1, a, \delta$ слева изображено распределение $\Im \Pi$ в двух взаимно перпендикулярных срезах модели углеродной трубки, максимально приближенной к реально существующим структурам. Ее однослойная поверхность состоит из гексагонов с расстояниями между ионами углерода d = C-C = 1.42 Å(аналогично структуре графита). Диаметр трубки D = 5.42 Å, расстояние между осями ближайших трубок c = 8.52 Å. Расстояние между ионами углерода в кольце меньше, чем между кольцами. Поэтому в первом случае связь между углеродами ковалентная, а во втором – ионная, т.е. более слабая. По всей длине трубок вдоль поверхности, как внутренней, так и внешней, имеются слои одинаковой по величине ЭП, что может предполагать электропроводность. В любых направлениях, перпендикулярных осям трубок, имеются области минимальной ЭП, что свидетельствует о невозможности в данном случае электропроводимости между трубками. Трубки в кристалле находятся на достаточно большом расстоянии, чтобы мало влиять друг на друга. (В данном случае c = 8.52 Å. Между ближайшими атомами соседних трубок 8.52 - 5.42 = 3.1 Å, при этом достигается минимально возможное в данном расчете взаимодействие между трубками). ЭП на внешних поверхностях этих трубок быстро спадает до нуля на середине расстояния между ними.

На рис. 1, 6, e изображено распределение ЭП в двух взаимно перпендикулярных срезах углеродной трубки, однослойная поверхность которой состоит из тетрагонов с расстояниями между ионами углерода как в кольце, так и между кольцами d = C - C = 1.5 Å (аналогично структуре алмаза). Диаметр трубки D = 3 Å. Расстояние между осями трубок c = 6 Å, поскольку расстояние между ионами углерода в кольце и между кольцами одинаковое, и связи между углеродами во всех случаях одинаковые, ковалентные, прочные. Соответственно минимальное взаимодействие между ближайшими атомами соседних трубок принимается на расстоянии, равном 6 - 3 = 3 Å. Так же, как на рис. 1, 6, по всей длине трубок вдоль поверхности, как внутренней, так и внешней, имеются слои одинаковой по величине ЭП. И в этой модели взаимное влияние трубок минимально.

Сильно сжатые модели трубок

Изменение влияния трубок при их сближении последовательно показано на рис. 2. Как видим, это влияние минимально на рис. 2,a, поскольку $Э\Pi$ между трубками приближается к нулю.

Рис. 2. Изменение ЭП в кристалле из нанотрубок с поверхностью, выложенной квадратами (вертикальный разрез): a — расстояние между осями трубок 6 Å; δ — кристалл сжат в два раза, расстояние между осями трубок 3 Å; ϵ — в кристалле, сжатом в два раза, расстояние между осями трубок дополнительно уменьшено до 2.25 Å

Распределение ЭП на вертикальном срезе трубки из тетрагонов, в которой все расстояния уменьшены вдвое, изображено на рис. 2,6. Расстояние между осями 3 Å. При этом исчезли признаки электропроводности по внешней поверхности трубки, а ЭП на внутренней поверхности резко возросла. Впечатление таково, что электроны сблизившихся трубок взаимно отталкиваются и увеличивают ЭП внутренних слоев.

На рис. 2, г трубки сближены до расстояния между осями 2.25 Å, а между ближайшими атомами соседних трубок − до 0.75 Å. Попытка получить бесконечный слой одной плотности между двумя трубками из тетрагонов при слиянии их внешних локальных ЭП привела к тому, что такого слоя не образовалось. Вместо него сформировался локальный сгусток высокой ЭП, связывающий ковалентно наперекрест четыре ближайшие иона двух колец.

Заключение

В заключение можно сказать, что закономерности (наличие непрерывных линий одинаковой плотности по всей длине трубки, максимальной плотности между ионами и т.д.), вытекающие из сравнения реальной структуры с виртуальной, аналогичны. Это позволяет для дальнейшей работы использовать более простые модели.

- 1. *И.М. Резник*, Электронная плотность в теории свойств основного состояния кристалла, Наукова думка, Киев (1992).
- 2. И.М. Резник, ФНТ 22, 524 (1996).
- 3. И.М. Резник, ФТВД 6, № 3, 45 (1996).
- 4. В.А. Волошин, П.Н. Михеенко, В.В. Бабенко, В.Г. Бутько, И.М. Резник, Я.И. Южелевский, ФНТ **21**, 514 (1995).
- 5. В.В. Бабенко, В.Г. Бутько, В.А. Волошин, И.М. Резник, Е.В. Фоскарино, Письма в ЖЭТФ **61**, 643 (1995).
- 6. В.А. Волошин, А.А. Гусев, А.И. Дьяченко, И.М. Резник, ЖЭТФ **110**, 2135 (1996).
- 7. V.A. Voloshin, P.N. Mikheenko, A.A. Gusev, Supercond. Sci. Technol. 11, 1146 (1998).
- 8. *R. Saito, G. Dresselhaus, M.S. Dresselhaus*, Physical Properties of Carbon Nanotubes, Imperial College Press, London (1998).
- 9. А.Б. Елецкий, УФН 174, 1191 (2004).

V.A. Voloshin, V.G. But'ko, A.A. Gusev, T.N. Shevtsova

MODELS OF CARBON NANOTUBES AND ELECTRON-DENSITY DISTRIBUTION

Several models of carbon nanotubes, that are maximally approximated to real structures or virtual, have been constructed. Electron-density (ED) distribution in the tubes has been calculated. It is shown that a purposeful formation of regions of increased ED and of a definite shape is possible involving changes in the electric, magnetic and strength properties.

Физика и техника высоких давлений 2005, том 15, № 1

- **Fig. 1.** ED distribution in nanotubes with the surface composed of regular hexagons (a, δ) and squares (e, ε) and with carbon atoms at vertices: a, ε horizontal section; δ, ε vertical one. Small crosses carbon ions, numerals ED in $e/Å^3$
- **Fig. 2.** Change in ED in crystal from nanotubes with the surface composed of squares (vertical section): a distance between the axes of tubes makes 6 Å; δ double compression of the crystal, distance between the axes of tubes makes 3 Å; ϵ in doubly compressed crystal, distance between the axes of tubes has been additionally decreased to 2.25 Å