PACS: 62.50.-p, 64.10.+h, 64.30.+t

Е.П. Троицкая¹, В.В. Чабаненко¹, Е.Е. Горбенко²

ФОНОННАЯ ДИСПЕРСИЯ СЖАТЫХ КРИСТАЛЛОВ ИНЕРТНЫХ ГАЗОВ В ГЦК-ФАЗЕ

¹Донецкий физико-технический институт им. А.А. Галкина НАН Украины ул. Р. Люксембург, 72, г. Донецк, 83114, Украина

²Луганский национальный педагогический университет им. Т. Шевченко ул. Оборонная, 2, г. Луганск, 91011, Украина

Рассчитываются фононные частоты кристаллов ряда Ne–Xe при $p \neq 0$ с выходом за адиабатическое приближение. Использование концепции управляющих параметров, которыми являются интегралы перекрытия волновых функций электронов в основном и возбужденном состояниях, позволяет приближенно рассчитать вклады электрон-ионного взаимодействия в фононные частоты при небольших давлениях (сжатиях $\Delta V/V_0 \leq 0.4$). Исследование роли различных взаимодействий показало, что величины фононных частот, рассчитанные в самой простой модели (с учетом только первых соседей) и самой сложной (первые + вторые соседи + неадиабатика, $V_{sr} \sim S^n$) близки друг к другу. Разница в моделях для всех кристаллов ряда Ne–Xe наиболее заметна на границе зоны Бриллюэна.

1. Введение

Интерес к методам вычисления фононных спектров твердых тел особенно возрос в последние 2-3 года в связи с развитием техники высоких давлений, поскольку описание сжатого вещества зачастую требует пересмотра основных положений и приближений.

В настоящей работе представлены «первопринципные» исследования неадиабатических эффектов в динамике решетки кристаллов инертных газов (КИГ) в широком интервале давления. Анализ подобных эффектов совершенно необходим при описании поведения вещества при $p \neq 0$, когда параметр адиабатичности не мал, и электронные и фононные спектры могут иметь общую область существования. В качестве основы берутся модель К.Б. Толпыго и ее модификации. Преимущество подхода К.Б. Толпыго заключается в том, что в нем оперируют не общими буквенными выражениями – все параметры гамильтониана могут быть рассчитаны из первых принципов по крайней мере в случае сильной связи.

2. Теория

В модели К.Б. Толпыго [1] кристалл рассматривается как совокупность N точечных ионов валентности Z (ядро и внутренние электроны) и оболочек, каждая из которых состоит из Z валентных электронов, взаимодействующих не только с ионами, но и между собой. Таким образом, волновая функция кристалла есть детерминант $N \times N$, состоящий из детерминантов $Z \times Z$. При этом, учтены корреляции внутри валентных электронов отдельного атома.

В наших работах с К.Б. Толпыго [2–4] была развита динамическая теория решеток КИГ, учитывающая деформацию электронных оболочек атомов. «Из первых принципов» получено выражение для потенциальной энергии КИГ как функции смещения атомов из положения равновесия и их дипольных моментов, выведены общие уравнения колебаний кубических гранецентрированных решеток этих кристаллов.

В [5,6] нами был получен адиабатический потенциал КИГ и для расчетов атомных свойств предложена простая модельная форма

$$E = \frac{1}{2} \sum_{R} \left\{ V_{sr}(R) - \frac{C}{R^6} \left[1 - A e^{-\beta(x-1)} \right] \right\}, \quad x = R/R_{\min}.$$
 (1)

Параметр Ван-дер-Ваальса *C*, а также параметры *A* и β находились из условия минимума энергии, экспериментального значения энергии связи E_{bind}^{\exp} и малого отклонения сдвигового модуля упругости *C*₄₄ от его экспериментального значения при заданном объеме ячейки при *T* = *p* = 0; *V*_{sr} параметры не содержит.

Короткодействующее отталкивание $V_{sr}(r)$ в (1) с ростом сжатия становится определяющим при исследовании атомных свойств сжатых кристаллов. Важно поэтому $V_{sr}(r)$ рассчитать как можно точнее. В [7] потенциал $V_{sr}(r)$ был получен из первых принципов в приближении Хартри–Фока и в базисе точно ортогонализованных атомных орбиталей с использованием кластерного разложения Абаренкова–Антоновой [8].

3. Результаты и обсуждения

Представим результаты расчетов фононных частот КИГ при $p \neq 0$ в гармоническом приближении в различных моделях. Здесь самая простая модель M2 – приближение ближайших соседей (E = F = 0) без учета неадиабатических вкладов (g = h = 0); V_{sr} в (1) вычислено в приближении S^2 ; в M3 добавлены вторые соседи, M3a – 1 + 2 соседи + неадиабатические вклады $V_{sr} \sim S^2$; M4 – приближение ближайших соседей (E = F = g = h = 0), но V_{sr} содержит члены всех высших порядков по S ($V_{sr} \sim S^n$); в M5 добавлены вторые соседи и неадиабатические слагаемые, $V_{sr} \sim S^n$. При малых **k** существенную роль играют вторые соседи, вклады от которых в точке X отсутствуют. Эффекты электрон-фононного взаимодействия (неадиабатики) и учета всего ряда по S в V_{sr} заметны при всех **k**. Пересечение фононных кривых в моделях M4 и M5 означает, что конкурирующие вклады от вторых соседей и от электрон-фононного взаимодействия сравнялись. С ростом сжатия это происходит при все меньших **k** [9].

Физика и техника высоких давлений 2005, том 15, № 2

Рис. Фононные дисперсионные кривые для Ne (a), Ar (б), Кг (в), Хе (г) в симметричных направлениях волнового вектора k: 1, 2 - продольная и поперечная ветви, рассчитанные в модели М2 при $\Delta V/V_0 = 0.3$; 3, 5 – то же, при $\Delta V/V_0 = 0$; 4, 6 – эксперимент. Для ω_T (линия 5) при p = 0 расчет совпадает с экспериментом в кристаллах ряда Ne–Kr; \times – значения ω_L и ω_T в точках X и L при $\Delta V/V_0 = 0.3$, рассчитанные в моделях с учетом электронфононного взаимодействия (М5 – для Ne, М3а – для Ar-Xe)

9

На рисунке схематически изображены фононные дисперсионные кривые для ряда Ne–Xe при $\Delta V/V_0 = 0$ и 0.3. Ne подробно обсуждался в [9]. Двойные линии при p = 0 появляются из-за того, что расчеты в модели К.Б. Толпыго (M1) с определенными из эксперимента параметрами и с вычисленными нами близки в случае Ne, Ar, Kr.

4. Заключение

В [10] авторы анализировали вклады трехчастичных кластеров в энергию связи, решеточную постоянную, модуль упругости ряда Ne–Xe при p = 0. Они пришли к выводу, что, хотя двухчастичные вклады доминируют в энергии связи во всех случаях, влияние трехчастичных вкладов не является пренебрежимо малым и для Xe достигает примерно 7% энергии связи, для Ne – всего ~ 3%. В [11] нами был оценен вклад трехчастичного $V_{sr}^{(3)} ~ S^2$ как 0.1 от $V_{sr} ~ S^2$. Анализ, проведенный в [12], показал, что выполнение соотношения Коши для Kr при $p \le 8$ GPa подтверждает центральный характер сил в КИГ, а следовательно, и возможность использовать потенциал (1) для описания атомных свойств КИГ при $p \ne 0$.

Нужно отметить, что фононные частоты – очень чувствительная характеристика кристалла (в отличие от макросвойств, являющихся интегральной функцией от ω), которая позволила выявить роль членов высших порядков по *S* в *V*_{sr} даже при небольших сжатиях более наглядно, чем при расчете зонной структуры Ne.

Интересно также, что благодаря описанной выше компенсации вкладов от эффектов неадиабатики и вторых соседей можно сделать вывод, что нет смысла в дальнейшем усложнять расчеты, поскольку самая простая модель ближе всего к самой сложной.

Расчет зонных частот для всего ряда КИГ позволил определить важность различных взаимодействий в этом ряду. Ne, являясь типичным представителем Low-Z materials, выпадает из данного ряда. В нем помимо квантовых эффектов, проявляющихся при T = p = 0, интересны эффекты, проявляющиеся при больших давлениях, а именно: наиболее заметны неадиабатические эффекты и вклад членов высших порядков по S в V_{sr} . Для остальных кристаллов ряда Ar–Xe можно ограничиться $V_{sr} \sim S^2$. Вклад от электронфононного взаимодействия в частоты также уменьшается в этом ряду.

К сожалению, в настоящее время только начинается интенсивное экспериментальное изучение фононных спектров при больших давлениях [13,14], поэтому провести сравнение с экспериментом пока невозможно.

- 1. К.Б. Толпыго, ЖЭТФ 20, 467 (1950).
- 2. К.Б. Толпыго, Е.П. Троицкая, ФТТ 13, 1135 (1971).
- 3. М.А. Белоголовский, К.Б. Толпыго, Е.П. Троицкая, ФТТ **13**, 2109 (1971).
- 4. К.Б. Толпыго, Е.П. Троицкая, ФТТ 14, 2867 (1972).
- 5. В.Л. Дорман, Е.В. Зароченцев, Е.П. Троицкая, ФНТ 8, 94 (1982).
- 6. В.Л. Дорман, Е.В. Зароченцев, Е.П. Троицкая, ФТТ 23, 1581 (1981).
- 7. Е.В. Зароченцев, Е.П. Троицкая, ФТТ **43**, 1292 (2001).

- 8. *И.В. Абаренков, И.М. Антонова, В.Г. Барьяхтар, В.Л. Булатов, Е.В. Зароченцев,* в кн.: Методы вычислительной физики в теории твердого тела. Электронная структура идеальных и дефектных кристаллов, Наукова думка, Киев (1991).
- 9. Е.П. Троицкая, В.В. Чабаненко, Е.Е. Горбенко, ФТВД 14, № 3, 7 (2004).
- 10. K. Rosciszewski, B. Paulus, P. Fulde, H. Stoll, Phys. Rev. B60, 7905 (1999).
- 11. К.Б. Толпыго, Е.П. Троицкая, ФТТ 17, 102 (1975).
- 12. Е.В. Зароченцев, Е.П. Троицкая, В.В. Чабаненко, ФТТ 46, 245 (2004).
- 13. M. Krisch, J. Raman Spectrosc. 34, 628 (2003).
- 14. F. Occelli, M. Krisch, P. Loubeyre, F. Sette, R. Le Toullec, C. Masciovecchio, J-P. Rueff, Phys. Rev. B63, 224306 (2001).

E.P. Troitskaya, V.V. Chabanenko, E.E. Gorbenko

PHONON DISPERSION OF COMPRESSED FCC-PHASE INERT GAS CRYSTALS

Phonon frequencies of the Ne–Xe series crystals are calculated for $p \neq 0$ beyond the framework of adiabatic approximation. The concept of controlling parameters, such as the electron wave function overlap integrals helps in approximate calculation of contributions from the electron-ion interaction to phonon frequencies for low pressures (compression $\Delta V/V_0 \leq 0.4$). Studies of the role of different interactions have shown that values of phonon frequencies calculated within the simplest (with first neighbours taken into account) and most complex (nearest neighbours + next nearest neighbours + non-adiabatics, $V_{sr} \sim S^n$) models are close to each other for all crystals of the Ne–Xe series. Difference in the models is the most noticeable at the Brillouin zone boundary.

Fig. Phonon dispersion curves for Ne (*a*), Ar (δ), Kr (*b*), Xe (*c*) in symmetric directions of the wave vector **k**: 1, 2 – longitudinal and transverse branches calculated within the model M2 for $\Delta V/V_0 = 0.3$; 3, 5 – the same for $\Delta V/V_0 = 0$; 4, 6 – experiment. In the case of ω_T (line 5) for p = 0 the calculation coincides with the experiment (crystals Ne–Kr); values of ω_L and ω_T at points X and L for $\Delta V/V_0 = 0.3$ calculated within the models with the electron-phonon interaction taken into account (M5 for Ne, M3a – for Ar–Xe)