PACS: 74.72.Lw, 81.40.L

В.А. Белошенко¹, А.П. Борзенко¹, В.А. Глазунова¹, М.К. Пактер²

ТЕРМОУСАЖИВАЮЩИЕСЯ МУФТЫ ИЗ НАПОЛНЕННЫХ ЭПОКСИДНЫХ КОМПОЗИЦИЙ

¹Донецкий физико-технический институт им. А.А. Галкина НАН Украины ул. Р. Люксембург, 72, г. Донецк, 83114, Украина

²Украинский государственный НИИ пластических масс

Изучены физико-механические характеристики термоусаживающихся муфт, изготовленных из композиций, наполненных наноразмерными порошками ZrO₂. Показано, что в случае порошков, содержащих агрегаты из сильно связанных частиц ZrO₂, пластичность и максимальная степень термоусадки муфт в зависимости от концентрации наполнителя изменяются экстремально, достигая наибольших значений в области концентраций ZrO₂, соответствующей 20 wt%. Явление пластификации объясняется особенностями деформации агрегатов наполнителя и их способностью к избирательной адсорбции компонентов эпоксидной композиции.

Введение

Ранее [1,2] был предложен способ изготовления термоусаживающихся муфт из эпоксидных полимеров (ЭП), основанный на дорновании трубчатой заготовки, полученной из материала с достаточно высоким уровнем пластичности. Такие изделия могут применяться для создания различного типа муфто-клеевых неразъемных соединений [2–4]: труб, кабелей высокого напряжения, элементов конструкций различного назначения и т.д. С целью повышения их эксплуатационных характеристик и защиты от внешних воздействий разработаны двухслойные термоусаживающиеся муфты, в которых внешняя втулка выполнена из термопластичного, а внутренняя – из термореактивного (эпоксидного) полимеров [5]. Несмотря на имеющийся ассортимент рассматриваемых изделий, попрежнему существует необходимость в получении таковых с новым комплексом свойств, расширяющим их функциональные возможности.

Одним из распространенных способов модификации полимеров является введение в них твердых нерастворимых добавок, позволяющих эффективно регулировать механические свойства. Как правило, присутствие наполнителя повышает упругие и прочностные характеристики и уменьшает пластичность. В то же время снижение деформационной способности отрицательно отражается на способности материала к термоусадке. Поэтому предпочтительный интерес представляют наполненные композиции, сохраняющие или увеличивающие уровень пластичности по сравнению с матричным полимером. Авторы [6,7] наблюдали указанный эффект в нанокомпозитах, что позволяет считать наполнители с наноразмерными частицами наиболее перспективными в плане достижения требуемого результата.

В настоящей работе исследовано влияние наполнителей в виде наноразмерных порошков диоксида циркония на физико-механические характеристики термоусаживающихся муфт из эпоксидных полимеров.

Экспериментальная часть

В качестве полимерной матрицы использовали эпоксидную композицию, включающую сложный диглицидиловый эфир (СДГЭ) гидрофталевой кислоты, блоколигомер (БО) из алифатической эпоксидной смолы и кислого олигоэфира, эпоксидиановую смолу (ЭД) с молекулярной массой 390–430, изо-метилтетрагидрофталевый ангидрид (ИМТГФА) и трис (диметиламинометил) фенол (ТДАФ) [2]. Соотношение ингредиентов составляло, wt%:: СДГЭ – 77.5; БО – 20; ЭД – 2.5; ИМТГФА – 68; ТДАФ – 0.7.

Порошки наполнителя были изготовлены по одной технологии – осаждением из оксихлоридов циркония и отличались условиями получения: № 1 синтезирован в лабораторных условиях, № 2 получен из промышленного полупродукта (гидроксида) с последующей обработкой в лабораторных условиях и № 3 произведен промышленным способом. Концентрацию наполнителя *C* варьировали от 0 до 30 wt% (содержание ЭП принимали за 100%).

Образцы для исследований изготавливали смешиванием компонентов эпоксидной композиции с порошком ZrO_2 в необходимом соотношении с последующим отверждением этой смеси в соответствующих формах при 120°C в течение 4 h. Смешивание осуществляли при температуре T = 60-70°C с помощью механической мешалки. Для предотвращения процесса седиментации отверждение проводили при вращении форм. В зависимости от характера использованного наполнителя получали 3 разновидности полимерных композиций.

Термоусаживающиеся фитинги (муфты) изготавливали методом дорнования трубчатой заготовки. Исходные размеры муфт: внутренний диаметр $d_0 = 20$ mm, высота – 35 mm; толщина стенки – 3.5 mm. Дорнование осуществляли в высокоэластичном состоянии с последующим охлаждением деформированной заготовки на дорне до температуры ниже температуры стеклования T_g полимерной матрицы. Степень деформации определяли по формуле: $\varepsilon = \frac{d-d_0}{d} \cdot 100\%$, где d – диаметр дорна.

Микротвердость H_{μ} измеряли на образцах, вырезанных из муфт после их термоусадки. Нагрузка на индентор составляла 5 N. Среднее значение H_{μ} рассчитывали по 10–15 отпечаткам.

Дифференциальную сканирующую калориметрию (ДСК) и термомеханический анализ (ТМА) осуществляли для образцов, вырезанных из муфт, с использованием термомеханического комплекса Du Pont 9900. Скорость нагрева образцов составляла 10 deg·min⁻¹ (ДСК) и 5 deg·min⁻¹ (ТМА).

Исследование фракционного состава и морфологии порошков ZrO_2 проводили методом просвечивающей электронной микроскопии (ПЭМ). С этой целью порошки препарировали по специально разработанной в ДонФТИ НАНУ методике с использованием ультразвукового распыления. Средний размер областей когерентного рассеяния (ОКР) рассчитывали по формуле Селянова–Шеррера из полуширины $B_{0.5}$ дифракционных пиков плоскостей (111). Для изучения поверхности разрушения композитов использовали метод двуступенчатых реплик. Исследования выполняли на приборе JEM-200А фирмы JEOL.

Результаты и обсуждение

На рис. 1 приведены зависимости предельной степени деформации дорнованием, при которой трубчатая заготовка не подвергается разрушению, от концентрации ZrO₂. Они соответствуют трем вариантам композиций, отличающимся способом получения ZrO₂. Для композиции № 1 имеет место экстремальный тип зависимости $\varepsilon(C)$ с вершиной максимума в области концентраций наполнителя C = 15-20 wt%. В случае композиции № 3 также наблюдается максимум, но не во всем интервале *C*, а при содержании ZrO₂ более 10 wt%. В области малых концентраций ε не зависит от *C*. Поведение композиции № 2 существенно отличается от остальных. Увеличение в ней массовой доли ZrO₂ приводит к снижению деформационной способности материала.

Рис. 1. Зависимость предельной степени деформации заготовки ε и микротвердости H_{μ} от концентрации наполнителя *С. 1, 2, 3* – соответственно композиты № 1, 2, 3

Характер зависимостей $H_{\mu}(C)$ также в определенной степени согласуется с результатами исследования деформационной способности муфт (рис. 1), хотя измерения H_{μ} и проводились на материале, находящемся в стеклообразном состоянии. С ростом доли наполнителя у композиции № 2 отмечается очень незначительное увеличение микротвердости, в то время как для композиций № 1 и 3 имеет место экстремальное изменение H_{μ} с минимумом при C = 15 wt%. Поскольку величина H_{μ} пропорциональна пределу текучести σ_{ysl} [8], можно считать, что в области концентраций, близкой к C = 15 wt%, у композиций № 1, 3 происходит максимальное разупрочнение. Для композиции № 2 σ_{ysl} практически не изменяется.

Данные калориметрических и термомеханических исследований (табл. 1, 2) свидетельствуют о том, что выбранные наполнители не являются инертными по отношению к полимерной матрице. На это указывают различия в величинах T_g , ширины температурного интервала стеклования ΔT_g , скачка теплоемкости ΔC_p в области T_g и др. Наблюдаемые различия указывают на сокращение длины межузловых цепей в наполненных композициях по сравнению с ЭП [9]. Это является естественным следствием наполнения системы, поскольку частицы ZrO₂ могут играть роль узлов полимерной сетки в композите. Однако характер влияния ZrO₂ зависит от способа его получения.

Таблица 1

Данные ДСК-исследований ко	мпозиций ЭП-ZrO ₂
----------------------------	------------------------------

Состав композиции	T _g , ℃	ΔT , °C	$\Delta C_p, J/(g \cdot K)$
ЭП	49	7	0.16
$\exists \Pi + 20 \text{ wt}\% \text{ ZrO}_2$:			
№ 1	51	13	0.26
<u>№</u> 2	51	15	0.27
<u>№</u> 3		9	0.23

Таблица 2

Данные ТМА-композиций ЭП–ZrO₂

Состав композиции	Tg, ⁰C	T _{max} , ⁰C	<i>T_f</i> , °C	$lpha_{T_{ m max}}$, μ m/(m·K)	$\Delta h/h, \%$	<i>T</i> ₂ , ⁰C
ЭП	59	65	74	4330	3.90	140
$\Theta\Pi + 15 \text{ wt}\% \text{ ZrO}_2$:						
Nº 1	62	69	75	214	0.20	_
Nº 2	58	62	67	480	0.36	105
Nº 3	63	64	70	91	0.06	135

Примечание. T_{max} , T_f – температуры, соответствующие максимуму и окончанию основного процесса расширения; T_2 – температура начала новой ступени расширения; $\alpha_{T_{\text{max}}}$ – коэффициент термического расширения, соответствующий области перед T_{max} ; $\Delta h/h$ – относительная деформация, соответствующая интервалу T_g – T_f .

Сетка композиции № 1 по сравнению с таковой для композиции № 3 имеет деформационно-температурные показатели ($\alpha_{T_{\text{max}}}$, $\Delta h/h$), позволяющие ожидать более высокую деформационную способность у этого материала. В то же время они ниже, чем у ЭП и даже у композиции № 2, что позволяет говорить о полной корреляции с данными рис. 1. Для ЭП и композиций № 2 и 3 на кривой ТМА в области высоких температур имеет место излом, отмечаемый температурой T_2 . Он свидетельствует о наличии часто сшитых участков полимерной сетки с более высокой T_g [10], которые могут ограничивать деформационные резервы материала. В связи с этим логично связать более высокие значения T_2 (более плотная сетка) с меньшей пластичностью. Из табл. 2 видно, что наблюдаемые изменения в величине T_2 не согласуются с результатами дорнования трубчатых заготовок. Все перечисленные несоответствия заставляют искать причину пластификации муфт в природе самого наполнителя.

Рентгеноструктурные и электронно-микроскопические исследования показали, что порошки ZrO₂, полученные в различных условиях, имеют близкие значения OKP, но существенно отличаются друг от друга своей морфологией (табл. 3). Их особенности можно охарактеризовать путем оценки размера первичных частиц, агрегатов и агломератов, а также степени связности частиц в агрегатах (плотности агрегатов). О величине последней можно достаточно уверенно судить на основании электронно-микроскопических изображений порошков, поскольку в методике их препарирования используется ультразвук.

Характерными особенностями порошков № 1 и 3 являются высокая степень связности в агломератах и наличие большого количества пор в частицах, что свидетельствует о протекании диффузионных процессов в порошковой системе в ходе ее приготовления. Пористый агрегат, формирующийся обычно на начальных стадиях, при высокотемпературной обработке превращается в поликристаллическую частицу. Порошок № 2 хоть и представлен, как и № 3, частицами с бимодальным распределением, но их взаимодействие в агрегатах довольно слабое.

Увеличение пластичности композиций с ростом концентрации наполнителя, обнаруженное в наших экспериментах, не совпадает с обычно наблюдаемым поведением таких материалов. Еще более удивительным оказывается факт снижения пластичности композиции № 2 на фоне ее повышения у образцов композиций № 1 и 3. Данные ДСК, ТМА и структурных исследований

Таблица 3

Характеристики порошков наполнителя по данным рентгеноструктурного анализа (ОКР) и электронной микроскопии

Наполнитель	Характерные размеры, пт			
	ОКР	частиц	агрегатов	агломератов
Nº 1	37	40	200	500-1000
Nº 2	35	20-40	300	300-2000
Nº 3	24	20-100	300	2000-3000

Физика и техника высоких давлений 2004, том 14, № 4

не позволяют однозначно объяснить отмеченные различия в механических свойствах ЭП и композиций. Для выяснения возможных причин неординарного поведения композиций в условиях приложения нагрузки были проведены электронно-микроскопические исследования изломов. Оказалось, что характер разрушения в сравниваемых образцах различен. В композициях № 1 и 2 трещина идет через агрегаты (рис. $2,a,\delta$). При этом плотность частиц в агрегатах композиции № 1 существенно выше, чем № 2. В образцах композиции № 3 (рис. 2,e) плотность частиц в агрегате сопоставима с № 1, но трещина распространяется по границе между матрицей и наполнителем.

Анализ полученных данных и литературных источников приводит к мысли о том, что в нашем случае значительную роль в разрушении и, следовательно, пластичности играют агрегаты и степень связности в них частиц, а не адгезионная связь частиц наполнителя с матрицей, обсуждаемая в других работах. Немаловажное значение также имеет тот факт, что размер частиц соответствует нанометровому диапазону.

Структура агрегата с сильно связанными наночастицами при деформировании допускает их поворот и скольжение [11], на что расходуется энергия развивающейся трещины, обусловливая тем самым повышение пластичности материала. Количество и распределение агрегатов на пути продвигающейся трещины имеет важное значение. Если их мало, то трещина продвигается быстро, а когда их очень много, агрегаты выполняют роль преград для продвижения трещины, и возникает определенная доля упрочняющего

эффекта. Таким образом, с ростом концентрации ZrO_2 у композиций $N \ge 1$ и 3 вначале наблюдается увеличение, а затем – снижение пластичности (см. рис. 1). Сдвиг максимума зависимости $\varepsilon(C)$ в сторону более высоких значений концентрации наполнителя в случае композиции $N \ge 3$, вероятно, связан с тем, что агрегаты в нем имеют существенно бо́льшие размеры и, следовательно, их мало, а пористые частицы ZrO_2 создают поликристаллические образования. Повороты и скольжение частиц в них затруднены по сравнению с композицией $N \ge 1$, поэтому заметное увеличение пластичности наблюдается при бо́льших, чем в случае композиции $N \ge 1$, концентрациях ZrO_2 . В то же время в образцах композиции $N \ge 2$ из-за слабого взаимодействия частиц в агрегатах повороты и скольжение между ними не реализуются, поэтому при повышении содержания наполнителя во всем исследованном интервале наблюдается снижение пластичности, причем тем существеннее, чем больше количество частиц в композите.

Еще одной возможной причиной эффекта пластификации можно считать избирательную адсорбцию компонентов неотвержденной композиции пористыми агрегатами ZrO₂. Сорбируются компоненты, способные образовать густую сетку, в частности ИМТГФА. В результате, хотя в композициях № 1 и 3 и наблюдается увеличение эффективной плотности узлов полимерной сетки по сравнению с ЭП, в материале присутствуют участки с разреженной сеткой, обеспечивающие повышение ее пластичности. Подобное изменение механических свойств, связанное с отклонением от стехиометрического состава эпоксидной композиции, вызванным недостатком ИМТГФА, отмечалось в работе [12]. Различие в характерах зависимостей $\varepsilon(C)$ композиций № 1 и 3 объясняется неодинаковой плотность микропор в порошках ZrO₂. В случае композиции № 1, где плотность микропор выше, процесс адсорбщии начинается при меньших концентрациях ZrO₂.

Выводы

1. Установлено, что введение в ЭП нанопорошков ZrO₂ со значительной пористостью агрегатов и высокой степенью связи между первичными частицами позволяет до 1.5 раз повышать деформируемость композиции в высокоэластическом состоянии.

2. Явление пластификации полимерной композиции может быть связано с возможностью поворотов и скольжения первичных частиц в агрегатах наполнителя, а также избирательной адсорбцией агрегатами наполнителя компонентов отверждающейся системы.

Авторы выражают благодарность Г.Я. Акимову и В.М. Тимченко за предоставленные порошки ZrO₂.

1. *В.О. Білошенко, В.Ф. Строганов, В.І. Шелудченко*, Патент 10299, Україна, Бюл. № 4 (1996).

Физика и техника высоких давлений 2004, том 14, № 4

- 2. В.А. Белошенко, В.Ф. Строганов, В.И. Шелудченко, Э.В. Амосова, Патент 2141600, РФ, Бюл. № 32 (1999).
- 3. *В.Ф. Строганов, В.О. Білошенко, В.І. Шелудченко*, Патент 10298, Україна, Бюл. № 4 (1996).
- 4. В.О. Білошенко, О.П. Борзенко, В.М. Варюхін, Патент 1332, Україна, Бюл. № 8 (2002).
- 5. В.О. Білошенко, В.Ф. Строганов, В.І. Шелудченко, В.М. Варюхін, Патент 23579А, Україна, Бюл. № 4 (1998).
- 6. *М. Зеленкова-Мышкова, Ю. Зеленка, В. Шпачек, Ф. Соча*, Механика композит. материалов **39**, 177 (2003).
- 7. А.А. Охлопкова, С.А. Слепцова, Механика композит. материалов 39, 183 (2003).
- 8. *F.J. Balta Calleja*, Structure Development During Polymer Processing, Kluwer Academic Publishers, Dordrecht, Boston, London (2000), p. 145.
- 9. В.А. Бернштейн, В.М. Егоров, Дифференциальная сканирующая калориметрия в физикохимии полимеров, Химия, Ленинград (1990), с. 256.
- 10. М.К. Пактер, Ю.С. Зайцев, Г.В. Борисенко, Ю.М. Парамонов, Т.К. Муратов, Ю.В. Зеленев, Пласт. массы № 10, 7 (1987).
- 11. *Х.-L. Jiang, Е. Jordan, L. Shaw, М. Gell*, Фіз.-хім. механіка матеріалів № 2, 122 (2003).
- 12. В.А. Белошенко, Г.В. Борисенко, Г.Т. Евтушенко, Г.И. Свиридов, ФТВД **3**, № 4, 34 (1993).

V.A. Beloshenko, A.P. Borzenko, V.A. Glazunova, M.K. Pakter

THERMALLY SHRINKABLE COUPLINGS FROM FILLED EPOXY COMPOSITIONS

Physical and mechanical characteristics of thermally shrinkable couplings from compositions filled with nanodimensional ZrO_2 powders have been studied. It is shown that in the case of powders with aggregates of strongly coupled ZrO_2 particles there is an extreme variation of plasticity and maximum degree of thermal shrinkage depending on filler concentration. They reach the highest values in the region of ZrO_2 concentrations corresponding to 20 wt%. Plasticization phenomenon is explained by a peculiar deformation of filler aggregates and their capacity for selective adsorption of components of the epoxy composition.

Fig. 1. Dependence of the limiting degree of billet deformation ε and microhardness H_{μ} on filler concentration *C*. *1*, *2*, *3* – composite No 1, 2, 3, respectively

Fig. 2. Character of fracture of ZrO_2 nanopowder aggregates for composites $N \ge 1$ (*a*), 2 (*b*), 3 (*b*)