PACS: 72.20.-i

А.Ю. Моллаев<sup>1</sup>, Р.К. Арсланов<sup>1</sup>, Л.А. Сайпулаева<sup>1</sup>, А.Н. Бабушкин<sup>2</sup>, Т.С. Лях<sup>2</sup>, С.В. Татур<sup>2</sup>, С.Ф. Маренкин<sup>3</sup>, С.Г. Михайлов<sup>3</sup>

ФАЗОВЫЕ ПРЕВРАЩЕНИЯ В CdAs<sub>2</sub> И ZnAs<sub>2</sub> ПРИ ВЫСОКОМ ДАВЛЕНИИ

<sup>1</sup>Институт физики Дагестанского научного центра РАН ул. М. Ярагского, 94, г. Махачкала, 367003, Россия E-mail: a.mollaev@mail.ru

<sup>2</sup>Уральский государственный университет им. А.М. Горького пр. Ленина, 51, г. Екатеринбург, 620083, Россия

<sup>3</sup>Институт общей и неорганической химии им. Н.С. Курнакова РАН Москва, Россия

На ориентированных монокристаллах  $CdAs_2$  и  $ZnAs_2$  измерены удельное электросопротивление и коэффициент Холла при гидростатическом давлении до 9 GPa и определены барические зависимости электросопротивления при квазигидростатике до 50 GPa. В  $CdAs_2$  на барических зависимостях электросопротивления и коэффициента Холла при подъеме давления при  $P \approx 5.5$  GPa наблюдаются фазовые переходы, положения которых не зависят от кристаллографической ориентации образца. В  $ZnAs_2$  предполагается наличие двух фазовых переходов: 1) в диапазоне давлений P = 10-15 GPa и 2) при P = 25-30 GPa.

## Введение

Диарсениды цинка и кадмия относятся к полупроводникам  $A^{II}B^{V}$  и кристаллизуются в моноклинной и тетрагональной сингониях соответственно. Особенностью структур этих соединений является наличие, наряду со связями M–As, связей между атомами As, которые образуют зигзагообразные структуры, вытянутые вдоль оси *C*, что обусловливает значительную анизотропию электрических свойств [1].

ZnAs<sub>2</sub> и CdAs<sub>2</sub> – наименее исследованные соединения группы  $A^{II}B^{V}$ . Литературные данные, посвященные изучению фазовых переходов в этих соединениях под давлением, крайне ограничены и противоречивы. Для поликристаллических образцов ZnAs<sub>2</sub> удельное электросопротивление измерено на наковальнях Бриджмена при давлениях до 11 GPa при 25°C [2], а для CdAs<sub>2</sub> – в аппаратах высокого давления типа «наковальня с лункой» [2,3]. Представляло интерес исследование удельного электросопротивления и эффекта Холла на монокристаллических образцах ZnAs<sub>2</sub> и CdAs<sub>2</sub>.

#### Методика эксперимента

Были измерены удельное электросопротивление  $\rho$  и коэффициент Холла  $R_{\rm H}$  на образцах CdAs<sub>2</sub> и ZnAs<sub>2</sub> при гидростатическом давлении до 9 GPa в аппаратах высокого давления типа «Тороид» [4,5] и до 50 GPa в алмазных камерах высокого давления с наковальнями типа «закругленный конус–плоскость», изготовленными из синтетических алмазов [6,7].

Исследованы две группы образцов *n*-CdAs<sub>2</sub>, которые имели следующие параметры:  $n = (3-4)\cdot 10^{14} \text{ cm}^{-3}$ ,  $\rho = 7-11 \Omega \cdot \text{сm}$  и  $n = (1-2)\cdot 10^{14} \text{ cm}^{-3}$ ,  $\rho = 27-40 \Omega \cdot \text{сm}$ соответственно. Образцы были ориентированы так, чтобы ребра параллелепипедов совпадали с кристаллографическими направлениями [100] и [001]. Монокристаллы *p*-ZnAs<sub>2</sub> при гидростатическом давлении до 9 GPa имели следующие параметры:  $\rho = 6.3 \Omega \cdot \text{сm}$ ,  $|R_{\rm H}| = 7.25 \text{ cm}^3/\text{C}$ . Контакты для измерения электрических свойств изготовляли пайкой припоями на основе олова. Погрешность измерений электросопротивления, эффекта Холла и давления не превышала соответственно ±3; 3.5 и 3%.

#### Результаты и обсуждения

В монокристаллах CdAs<sub>2</sub> вырезанных по кристаллографическим направлениям [100] и [001] на барических зависимостях  $\rho(P)$  и  $R_{\rm H}(P)$  при компрессии наблюдается структурный фазовый переход при P = 5.5 GPa (рис. 1). На образцах, ориентированных по кристаллографическому направлению [100], при P = 3 GPa наблюдается еще один максимум (рис. 1,*a*). Картина в образцах, вырезанных по кристаллографическому направлению [001], имеет



**Рис. 1.** Барические зависимости удельного электросопротивления  $\rho$  (кривая *1*) и коэффициента Холла  $R_{\rm H}$  (кривая *2*) для образцов CdAs<sub>2</sub>, ориентированных по кристаллографическим направлениям [100] (*a*) и [001] (*б*), при комнатной температуре



Рис. 2. Барические зависимости удельного электросопротивления  $\rho$  (кривая *l*) и коэффициента Холла  $R_{\rm H}$  (кривая *2*) ZnAs<sub>2</sub> при комнатной температуре

более сложный характер. В них обнаружено два максимума: при P = 1.8 GPa и P = 3 GPa (рис. 1, $\delta$ ). Появление этих максимумов, вероятно, связано с особенностями зонной структуры CdAs<sub>2</sub>, поскольку известно, что в его запрещенной зоне имеются один мелкий и два глубоких донорных уровня [1]. Фазовый переход наблюдается также и при декомпрессии давления  $P \approx 3.1$  GPa.

Анализ значений концентраций и подвижностей CdAs<sub>2</sub> до и после фазового перехода для образцов,

ориентированных по направлениям [100] и [001], позволяет сделать вывод, что в обоих случаях мы имеем фазовый переход полупроводник-полупроводник.

С ростом давления величина  $\rho$  в ZnAs<sub>2</sub> падает на порядок, а  $R_{\rm H}$  – на два порядка. При P = 7 GPa  $\rho$  и  $R_{\rm H}$  выходят на насыщение (рис. 2).

Так как в  $ZnAs_2$  по аналогии с  $CdAs_2$  ожидаемый фазовый переход не был обнаружен, мы предположили, что он должен наблюдаться при более высоких давлениях. С этой целью были проведены исследования в алмазных камерах при давлениях до 50 GPa.

При увеличении давления, начиная с некоторого значения  $P \ge 10$  GPa, сопротивление образца *p*-ZnAs<sub>2</sub> уменьшается и при 35–40 GPa имеет максимум (рис. 3,*a*), который был нами интерпретирован как фазовый переход.



**Рис. 3.** Барические зависимости сопротивления  $R \operatorname{ZnAs}_2$  для 1-го (*a*) и 3-го (*б*) циклов подъема и сброса давления при комнатной температуре

Сравнительный анализ результатов, полученных при гидростатическом давлении и в алмазных камерах, позволяет предположить, что в диапазоне давлений P = 10-15 GPa наблюдается растянутый фазовый переход. Необработанный давлением материал при давлении около 10 GPa имеет весьма высокое (~  $3 \cdot 10^3 \Omega$ ) сопротивление.

При снижении давления после достижения его максимального значения барическая зависимость сопротивления не совпадает с таковой для исходного материала. В последующих циклах повышения и снижения давления сопротивление образца изменяется с некоторым гистерезисом. Заметим, что если снизить давление до атмосферного, то при последующем нагружении барическое поведение сопротивления сохраняется и отличается от исходного.

Полученные данные свидетельствуют, что при обработке давлением в ZnAs<sub>2</sub> возникают необратимые изменения, и образующаяся фаза высокого давления остается устойчивой при нормальных условиях.

### Заключение

На ориентированных по кристаллографическим направлениям [100] и [001] образцах *n*-CdAs наблюдались фазовые переходы полупроводник-полупроводник при P = 5.5 GPa при подъеме давления и P = 3.1 GPa при сбросе давления. Сделан вывод о независимости положения фазового перехода от кристаллографических направлений.

На основе анализа барических зависимостей p-ZnAs<sub>2</sub>  $\rho(P)$  при гидростатическом давлении до 9 GPa и R(P) при квазигидростатике до 50 GPa авторы пришли к заключению, что в диапазоне давлений P = 10-15 GPa, вероятно, имеется фазовый переход. Второй фазовый переход наблюдается на кривой R(P) при квазигидростатическом давлении P = 25-30 GPa. Для однозначного решения о природе фазовых переходов в арсенидах кадмия и цинка необходимо провести рентгеноструктурные исследования в изучаемом диапазоне давлений.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проекты № 02-02-17888 и № 03-02-17677) и проекта РАН «Физика и механика сильно сжатого вещества и проблемы внутреннего строения земли и планет».

- 1. *С.Ф. Маренкин, В.А. Морозова*, Неорган. материалы **35**, 1190 (1999).
- 2. J.B. Clark, C.W.F.T. Pistorius, High Temp.-High Pressures 5, 319 (1973).
- 3. В.Б. Шипило, Е.М. Плышевский, И.М. Бельский, Физика газовых и твердофазных давлений, Наука, Москва (1978).
- 4. L.G. Khvostantsev, V.A. Sidorov, Phys. Status Solidi A64, 379 (1981).
- 5. *А.Ю. Моллаев, Л.А. Сайпулаева, Р.К. Арсланов, С.Ф. Маренкин*, Неорган. материалы **37**, 403 (2001).

- 6. Л.Ф. Верещагин, Е.Н. Яковлев, Г.Н. Степанов, К.Х. Бибаев, Б.В. Виноградов, Письма в ЖЭТФ **16**, 240 (1972).
- 7. A.N. Babushkin, High Pressure Research 6, 349 (1992).

A.Yu. Mollaev, R.K. Arslanov, L.A. Saipulaeva, A.N. Babushkin, T.S. Lyakh, S.V. Tatur, S.F. Marenkin, S.G. Mikhailov

# PHASE TRANSFORMATIONS IN CdAs<sub>2</sub> AND ZnAs<sub>2</sub> AT THE HYDROSTATIC PRESSURE

In the oriented monocrystals of CdAs<sub>2</sub> and ZnAs<sub>2</sub> there have been measured the specific resistance and Hall coefficient at the hydrostatic pressure up to 9 GPa and baric dependences of electrical resistance at the quasi-hydrostatics up to 50 GPa have been determined. Phase transitions whose locations are independent of the crystallographic orientation of the sample have been observed in CdAs<sub>2</sub> on the baric dependences of electrical resistance at pressure rise for  $P \approx 5.5$  GPa. Two phase transitions have been supposed to be in ZnAs<sub>2</sub>, the first one in the pressure range P = 10-15 GPa and the second one at P = 25-30 GPa.

**Fig. 1.** Baric dependences of the specific resistance  $\rho$  (curve 1) and Hall coefficient  $R_{\rm H}$  (curve 2) for samples of CdAs<sub>2</sub> oriented along crystallographic directions [100] (*a*) and [001] ( $\delta$ ) at the room temperature

**Fig. 2.** Baric dependences of the specific resistance  $\rho$  (curve *1*) and Hall coefficient *R*<sub>H</sub> (curve *2*) of ZnAs<sub>2</sub> at the room temperature

**Fig. 3.** Baric dependences of ZnAs<sub>2</sub> resistance *R* for the  $1^{st}(a)$  and  $3^{rd}(\delta)$  cycles of pressure rise and relief at the room temperature