PACS: 61.12.Ex, 61.16.Bg

Б.А. Гринберг<sup>1</sup>, Н.В. Казанцева<sup>1</sup>, Е.В. Шорохов<sup>2</sup>, А.Н. Пирогов<sup>1</sup>, Ю.А. Дорофеев<sup>1</sup>

НЕЙТРОНОГРАФИЧЕСКОЕ И ЭЛЕКТРОННО-МИКРОСКОПИЧЕСКОЕ ИССЛЕДОВАНИЕ ФАЗОВЫХ ПРЕВРАЩЕНИЙ В НИКЕЛЕВОМ СУПЕРСПЛАВЕ ПОСЛЕ УДАРНО-ВОЛНОВОГО НАГРУЖЕНИЯ

<sup>1</sup>Институт физики металлов УрО РАН ул. С. Ковалевской, 18, г. Екатеринбург, 620219, Россия

<sup>2</sup>Российский Федеральный Ядерный Центр им. Академика Е.И. Забабахина – Всероссийский научно-исследовательский институт технической физики г. Снежинск, 456770, Челябинская обл., Россия

Методами нейтронографии и просвечивающей электронной микроскопии (ПЭМ) с высоким разрешением в образцах жаропрочного никелевого суперсплава (90%  $\gamma'$ -фазы) после ударно-волнового нагружения обнаружено фазовое превращение исходной  $\gamma'$ -фазы (L1<sub>2</sub>) в метастабильную длиннопериодную тетрагональную фазу DO<sub>22</sub>, имеющую строгую ориентацию по базису фазы L1<sub>2</sub>. При повышении давления количество фазы DO<sub>22</sub> увеличивается. После нагружения 100 GPa большие области фазы DO<sub>22</sub> с тонкими механическими микродвойниками наблюдаются вблизи трещин.

### Введение

Жаропрочные никелевые суперсплавы работают в условиях сложнонапряженного состояния, характеризующегося постоянными изменениями величины и знака нагрузок. Основной упрочняющей фазой жаропрочных сплавов на никелевой основе является  $\gamma'$ -фаза (Ni<sub>3</sub>Al, *Pm*3*m*, L1<sub>2</sub>), поэтому ее структура и состав существенно влияют на жаропрочность. Эта фаза интересна тем, что обладает аномальной зависимостью предела текучести от температуры. В настоящее время существует модель, объясняющая аномальное изменение предела текучести  $\gamma'$ -фазы с повышением температуры вследствие термически активированного превращения скользящих сверхдислокаций в барьеры [1–3]. В модели, предложенной Сузуки [4], происхождение температурной аномалии предела текучести связывается с неустойчивостью кубической решетки L1<sub>2</sub> относительно превращений в длиннопериодную тетрагональную фазу DO<sub>22</sub>. Последнюю можно получить из L1<sub>2</sub> путем введения параллельных антифазных границ с направлением вектора смещения  $1/2 \langle 110 \rangle$  в каждую *М*-кубическую плоскость вдоль оси куба L1<sub>2</sub>. Модулированная структура DO<sub>22</sub> образуется при M = 1 [5]. Присутствие фазы с тетрагональной длиннопериодной структурой DO<sub>22</sub> наряду с кубическими  $\gamma$ - и  $\gamma'$ -фазами было обнаружено при сильной деформации холодной прокаткой никелевых суперсплавов, Ni<sub>3</sub>Al стехиометрического состава или состава, близкого к стехиометрии [6–8].

Целью данной работы является исследование фазовых превращений в никелевом суперсплаве, содержащем 90% ү'-фазы, после сильной деформации в ударных волнах.

## 2. Техника эксперимента

Исследования проводили на монокристаллах никелевого суперсплава типа ВКНА-4У с ориентацией [001], выращенного из расплава по методу Бриджмена. В исходном состоянии сплав состоял из 90% γ'-фазы (интерметаллид Ni<sub>3</sub>Al, упорядоченный по типу L1<sub>2</sub>) и 10% γ-фазы (ГЦК-твердый раствор на основе никеля). Образцы были приготовлены в форме дисков диаметром 20 mm и толщиной 4 и 2 mm.

Ударно-волновое нагружение образцов проводили в течение 1 µs: 1) торможением на преграде продуктов взрыва (максимальное давление на поверхности образцов 20 GPa) и 2) ударом стальной пластины (максимальное давление – 100 GPa).

Нейтронографические исследования осуществляли на двух дифрактометрах Д2 и Д3 с длинами волн соответственно  $\lambda = 0.1805$  nm и  $\lambda = 0.24232$  nm, установленных на горизонтальных пучках реактора ИВВ-2М, при температуре 20°С. Использованный в работе метод съемки монолитного образца в режиме вращения позволяет получить отражения от монокристаллического образца как от поликристалла. Обработку результатов проводили с использованием программ Microcal Origin 5.0, Excel и Carine Crystallography 3.1.

ПЭМ-анализ был выполнен с помощью просвечивающего электронного микроскопа JEM-200CX.

### 3. Результаты и обсуждение

*Нейтронография*. Исходный образец вращали вокруг вертикальной оси [001] со скоростью 2 rev/min. Нейтронограмма исходного образца приведена на рис. 1,*а* и содержит только линии  $\gamma'$ -фазы.

Съемку образца 1 выполняли при такой же ориентации, как и в исходном состоянии: ось [001] устанавливали горизонтально и вращение образца производили вокруг вертикальной оси. На нейтронограмме (рис. 1, $\delta$ ) рядом с линией (111), принадлежащей  $\gamma'$ -фазе, можно видеть еще одну дополнительную линию, положение которой совпадает с положением самой сильной линии фазы DO<sub>22</sub>.



**Рис. 1.** Нейтронограммы никелевого суперсплава: a – исходный образец;  $\delta$  – образец 1 (20 GPa); e, z – образец 2 (100 GPa). Ось [001] образцов размещали горизонтально (a,  $\delta$ , e) и вертикально (z); вращение образцов производили вокруг вертикальной оси;  $\lambda = 0.2432$  nm (a,  $\delta$ , z) и  $\lambda = 0.1805$  nm (e);  $T = 20^{\circ}$ C

Исследование образца 2 было выполнено двумя способами: ось [001] устанавливали 1) горизонтально и 2) вертикально, после чего вращение образца производили вокруг вертикальной оси.

На полученных нейтронограммах было обнаружено, что смена ориентации образца существенно влияет на положение линий на нейтронограмме: когда ось [001] образца устанавливали горизонтально и вращение образца производили вокруг вертикальной оси (как в случае исходного состояния), то на нейтронограмме могли видеть появление дополнительных линий, не принадлежащих  $\gamma'$ -фазе, в случае, когда ось [001] была ориентирована вертикально, линии новой фазы не наблюдали (рис. 1,*в*,*г*). Это может свидетельствовать о строгой и определенной ориентации решетки новой фазы относительно решетки  $\gamma'$ -фазы, а именно – о совпадении (или очень близких значениях) в одном параметре и о различии – в другом.

Положение линий и характер их появления при смене ориентации образца позволяют рассматривать эти дополнительные линии как линии фазы  $DO_{22}$ , имеющей тетрагональную решетку, ориентированную по базису с решеткой  $\gamma'$ -фазы. Один параметр решетки  $DO_{22}$  близок к параметру кубической фазы, а второй – к удвоенному параметру решетки кубической  $\gamma'$ -фазы. Также следует обратить внимание на сильное снижение интенсивности линии  $(100)_{\gamma'}$ . Такое изменение интенсивности можно сопоставить либо с понижением степени дальнего порядка  $\gamma'$ -фазы, либо с образованием фазы  $DO_{22}$ . Авторы работы [9] обнаружили, что расчет степени дальнего порядка по различным парам линий – структурной и сверхструктурной (соответственно (100) и (200); (110) и (220)) – приводит к сильному расхождению в результатах, что, по мнению авторов, соответствует фазовому переходу  $L1_2 \rightarrow DO_{22}$ , а не  $L1_2 \rightarrow A1$  (разупорядоченная  $\gamma$ -фаза).

**ПЭМ с высоким разрешением.** Структура монокристалла в исходном состоянии состояла из кубоидов  $\gamma'$ -фазы и эвтектики  $\gamma/\gamma'$ , окаймляющей кубоиды (рис. 2), параметр решетки  $\gamma'$  составил a = 0.3572 nm.



**Рис. 2.** Структура (ПЭМ) исходного образца: a – темнопольное изображение в рефлексе  $\gamma'$ -фазы;  $\delta$  – микроэлектронограмма к a, ось зоны [001]



Физика и техника высоких давлений 2004, том 14, № 4

б



**Рис. 3.** Структура (ПЭМ) образца 1 (20 GPa): a – светлопольное изображение области DO<sub>22</sub>-фазы;  $\delta$  – темнопольное изображение в рефлексе  $(101)_{DO_{22}}$ ; e – микроэлектронограмма к a,  $\delta$ 

После ударного нагружения нам не удалось обнаружить больших областей разупорядоченной  $\gamma(Fm3m)$ -фазы. Структура сплава 2 остается практически без изменений, можно наблюдать лишь повышенную плотность дислокаций. Однако при индицировании микродифракций было обнаружено присутствие ближних точечных рефлексов, не совпадающих с отражениями кубической фазы и соответствующих отражениям от плоскостей (101)<sub>DO<sub>22</sub></sub> (рис. 3).

После сильной (100 GPa) деформации в ударных волнах можно видеть образование двух вариантов полос разориентации, проходящих сквозь границы исходных кубоидов (рис. 4,a, $\delta$ ). Также в структуре сплава присутствует большое количество хрупких трещин, вблизи которых обнаружены области с микродвойниками (рис. 4,e,z). Расшифровка электронограмм с двойниковых областей позволяет утверждать, что это области DO<sub>22</sub>-фазы. В структуре DO<sub>22</sub> обнаружено два типа микродвойников, отличающиеся плоскостью двойникования: двойники превращения – микродомены, находящиеся в двойниковой ориентации и образующиеся при высокотемпературном фазовом превращении, и деформационные (механические) двойники [10]. Характер расположения двойниковых рефлексов в сплаве после ударного



Физика и техника высоких давлений 2004, том 14, № 4

a b

**Рис. 4.** Структура (ПЭМ) образца 2 (100 GPa):  $a, \delta$  – полосы разориентации; e – микродвойники в DO<sub>22</sub>; e – микроэлектронограмма к e, ось зоны [110]<sub>DO22</sub>

в

г

нагружения свидетельствует, что области с микродвойниками представляют собой механические двойники DO<sub>22</sub>-фазы.

#### Выводы

Сильная деформация играет особую роль в описании фазовых превращений сдвигового типа. В условиях сильной деформации и при отсутствии температурных эффектов метастабильные области новой фазы сдвигового типа получают возможность роста. При этом возникающие наноразмерные области такой фазы, оказывающие существенное влияние на свойства исходного материала, могут и не фиксироваться обычными методами, для этого требуются более точные методы исследования, например нейтронография или электронная микроскопия с высоким разрешением. Причиной появления таких метастабильных фаз может быть последовательное накопление линейных дефектов (дислокаций) в процессе сильной деформации, движение которых создает различные дефекты упаковки в соседних атомных слоях. Доказательством этого может служить обнаруженное при сильной деформации в ударных волнах никелевого суперсплава фазовое превращение  $\gamma'$ -фазы (L1<sub>2</sub>) в длиннопериодную структуру DO<sub>22</sub>, кристаллическую решетку которой можно получить посредством введения в кубическую решетку дефекта упаковки.

Работа выполнена при финансовой поддержке: Программы «Национальная технологическая база» № 454-2002/33-02; Российского фонда фундаментальных исследований–Урал № 04-03-96008; РФФИ № 03-02-16315.

- 1. P.H. Tornton, R.G. Davies, T.L. Iohnston, Met. Trans. A1, 207 (1970).
- 2. K. Aoki, O. Izumi, Trans. JIM. 19, 203 (1978).
- 3. C. Lall, S. Chin, D.P. Pope, Met. Trans. A10, 1323 (1979).
- 4. D.M. Wee, T. Suzuki, Trans. JIM 20, 634 (1979).
- 5. *M. Yamaguchi, Y. Umakoshi*, The deformation behavior of intermetallic superlattice compounds **34**, 1 (1990).
- 6. B. Bhattacharya, R.K. Ray, Met. Trans. A31, 3001 (2000).
- 7. B. Bhattacharya, Ray, Met. Trans. A31, 3011 (2000).
- 8. Sandip Ghosh Chowdhury, R.K. Ray, A.K. Jena, Scripta Met. Mater. 32, 1501 (1995).
- 9. R. Ramesh, R. Vasudevan, B. Pahiraj, B.H. Kolster, J. Mater. Sci. 27, 270 (1992).
- 10. J.B. Singh, M. Sundaraman, P. Mukhopadhyay, Phil. Mag. A80, 1983 (2000).

B.A. Grinberg, N.V. Kazantseva, E.V. Shorokhov, A.N. Pyrogov, Yu.A. Dorofeyev

# NEUTRON DIFFRACTION AND ELECTRON MICROSCOPY INVESTIGATION OF PHASE TRANSFORMATIONS IN NICKEL SUPERALLOY AFTER SHOCK WAVE LOADING

By the methods of neutron diffraction analysis and high-resolution transmission electron microscopy (TEM), the phase transformation of initial  $\gamma'$  (L1<sub>2</sub>) phase to metastable longperiod tetragonal phase DO<sub>22</sub> in nickel superalloy (90%  $\gamma'$ -phase) after shock wave loading has been found. It was found that the long-period tetragonal phase DO<sub>22</sub> and  $\gamma'$  (L1<sub>2</sub>) phases have a definite lattice orientation relationship, namely: basis orientation. The quantity of DO<sub>22</sub> phase increases with pressure. TEM study found that the deformation microtwins of the DO<sub>22</sub>-phase arouse near the cracks in the sample after 100 GPa loading.

**Fig. 1.** Neutron diffraction patterns of superalloy: a – initial sample;  $\delta$  – sample 1 (20 GPa); e, z – sample 2 (100 GPa). Horizontal (a,  $\delta$ , e) and vertical (z) positions of the [001] axis; rotation of samples around the vertical axis;  $\lambda = 0.2432$  nm (a,  $\delta$ , z) and  $\lambda = 0.1805$  nm (e);  $T = 20^{\circ}$ C

**Fig. 2.** Structure (TEM) of initial sample: a – the dark-field image in the  $\gamma'$ -phase reflection;  $\delta$  – the diffraction pattern to a, zone axis [001]

**Fig. 3.** Structure (TEM) of sample 1 (20 GPa): a – the bright-field image of the DO<sub>22</sub>phase region;  $\delta$  – the dark-field image in (101)<sub>DO<sub>22</sub></sub>; e – the diffraction pattern to a,  $\delta$ 

**Fig. 4.** Structure (TEM) of sample 2 (100 GPa):  $a, \delta$  – disorientation bands; e – micro twins of the DO<sub>22</sub>-phase; e – the diffraction pattern to e, zone axis [110]<sub>DO<sub>22</sub></sub>